Air Change Rates and Interzonal Flows in Residences, and the Need for Multi-Zone Models for Exposure and Health Analyses
Abstract
:1. Introduction
2. Objectives
3. Materials and Methods
3.1. Recruitment, Sampling Schedule, and Study Homes
3.1.1. Walkthrough and Caregiver Surveys
3.1.2. Home and Household Characteristics
3.2. ACR, Interzonal Flow, and PM Measurements
3.3. IAQ Modeling
3.4. Data Analysis
4. Results and Discussion
4.1. ACRs in Residences and Bedrooms
Outcome | Season | Without filter | With filter | All groups | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Average | SD | Median | N | Average | SD | Median | N | Average | SD | Median | ||
ACRH (h−1) | Spring | 21 | 0.46 | 0.24 | 0.37 | 58 | 0.61 | 0.62 | 0.41 | 79 | 0.57 | 0.55 | 0.40 |
Summer | 33 | 0.91 | 1.53 | 0.46 | 49 | 0.69 | 0.45 | 0.60 | 82 | 0.78 | 1.03 | 0.58 | |
Fall | 8 | 0.78 | 0.50 | 0.60 | 44 | 0.78 | 0.65 | 0.60 | 52 | 0.78 | 0.63 | 0.60 | |
Winter | 12 | 0.97 | 0.61 | 0.79 | 38 | 0.84 | 0.64 | 0.72 | 50 | 0.88 | 0.63 | 0.74 | |
All | 74 | 0.78 | 1.08 | 0.55 | 189 | 0.72 | 0.60 | 0.57 | 263 | 0.73 | 0.76 | 0.57 | |
p-value * | 0.060 | 0.037 | 0.002 | ||||||||||
ACRB (h−1) | Spring | 20 | 1.41 | 1.05 | 0.96 | 56 | 1.19 | 0.81 | 1.05 | 76 | 1.25 | 0.87 | 1.00 |
Summer | 29 | 1.88 | 1.84 | 1.34 | 46 | 2.27 | 2.16 | 1.74 | 75 | 2.12 | 2.03 | 1.50 | |
Fall | 8 | 2.18 | 1.92 | 1.30 | 45 | 1.50 | 1.27 | 1.14 | 53 | 1.60 | 1.39 | 1.23 | |
Winter | 12 | 1.67 | 1.02 | 1.43 | 37 | 1.65 | 1.29 | 1.30 | 49 | 1.65 | 1.22 | 1.30 | |
All | 69 | 1.74 | 1.52 | 1.31 | 184 | 1.63 | 1.49 | 1.18 | 253 | 1.66 | 1.50 | 1.23 | |
p-value * | 0.822 | 0.048 | 0.049 |
Variable | Type * | ACRH | ACRB | ||||||
---|---|---|---|---|---|---|---|---|---|
N | Correlation Coefficient | p-value | N | Correlation Coefficient | p-value | ||||
House | Floor area | C | 256 | −0.363 | <0.001 | 247 | −0.073 | 0.255 | |
Forced air heating system/others | I | 225/29 | - | 0.943 | 217/29 | - | 0.522 | ||
No. of bedrooms | C | 254 | −0.135 | 0.031 | 246 | −0.040 | 0.533 | ||
Present/not present central AC | I | 86/168 | - | 0.012 | 83/163 | - | 0.620 | ||
Present/not present ventilation fan | I | 75/188 | - | 0.374 | 73/180 | - | 0.789 | ||
Furnace filter change frequency | C | 117 | 0.046 | 0.620 | 114 | 0.111 | 0.238 | ||
Child’s sleeping area | Floor area | C | 257 | −0.097 | 0.119 | 248 | −0.083 | 0.192 | |
Room volume | C | 257 | −0.069 | 0.273 | 248 | −0.088 | 0.167 | ||
Number of windows | C | 248 | −0.016 | 0.805 | 241 | 0.015 | 0.815 | ||
Occupancy | No. of adults | C | 263 | −0.076 | 0.222 | 253 | −0.070 | 0.268 | |
No. of children | C | 263 | 0.079 | 0.202 | 253 | −0.021 | 0.741 | ||
Dogs present | C | 83 | 0.199 | 0.072 | 81 | −0.005 | 0.961 | ||
Cats present | C | 29 | −0.020 | 0.917 | 26 | −0.158 | 0.440 | ||
Present/not present either dogs or cats | I | 102/161 | - | 0.651 | 99/154 | - | 0.638 | ||
Smoking | Never any smokers indoors/smokers indoor | I | 148/115 | - | 0.029 | 142/111 | - | 0.842 | |
Any smokers in household/no smokers | I | 153/110 | - | 0.023 | 148/105 | - | 0.174 | ||
Number of smokers | C | 263 | 0.162 | 0.008 | 253 | 0.079 | 0.212 | ||
Cleaning | Use/not use a vacuum cleaner | I | 117/22 | - | 0.416 | 115/21 | - | 0.246 | |
Vacuumed CSA in the last 2 weeks | C | 117 | −0.004 | 0.967 | 115 | 0.014 | 0.879 | ||
Swept/dusted CSA in the last 2 weeks | C | 263 | 0.212 | 0.001 | 253 | 0.164 | 0.009 | ||
Air pollutants | Outdoor | PM2.5 (µg/m3) | C | 210 | 0.092 | 0.184 | 201 | 0.132 | 0.061 |
Indoor | PM (µg/m3) | C | 225 | 0.152 | 0.023 | 216 | 0.146 | 0.032 | |
0.3−1.0 µm PNC (#/liter) | C | 224 | 0.077 | 0.248 | 214 | 0.216 | 0.001 | ||
1-5 µm PNC (#/liter) | C | 224 | 0.055 | 0.415 | 214 | 0.064 | 0.352 | ||
CO2 (ppm) | C | 241 | −0.246 | <0.001 | 233 | −0.334 | <0.001 | ||
Naphthalene (µg/m3) | C | 252 | −0.188 | 0.003 | 242 | −0.095 | 0.142 | ||
BTEX (µg/m3) | C | 252 | −0.345 | <0.001 | 242 | −0.199 | 0.002 | ||
TVOC (µg/m3) | C | 252 | −0.311 | <0.001 | 242 | −0.184 | 0.004 | ||
Meteorology | Average temperature | C | 263 | −0.062 | 0.318 | 253 | 0.029 | 0.647 | |
Minimum relative humidity | C | 263 | 0.201 | 0.001 | 253 | 0.069 | 0.274 | ||
Average daily station pressure | C | 263 | 0.079 | 0.199 | 253 | 0.188 | 0.003 | ||
Resultant wind direction | C | 263 | 0.017 | 0.786 | 253 | −0.024 | 0.701 | ||
Average wind speed | C | 263 | −0.090 | 0.147 | 253 | −0.132 | 0.035 | ||
Season (Spring, Summer, Fall, Winter) | M | - | - | 0.002 | - | - | 0.049 |
4.2. Interzonal Flows
Outcome | Season | Without filter | With filter | All groups | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Average | SD | Median | N | Average | SD | Median | N | Average | SD | Median | ||
𝛼HB | Spring | 20 | 0.55 | 0.18 | 0.60 | 55 | 0.53 | 0.16 | 0.53 | 75 | 0.54 | 0.17 | 0.54 |
Summer | 23 | 0.57 | 0.21 | 0.58 | 38 | 0.51 | 0.19 | 0.53 | 61 | 0.53 | 0.20 | 0.53 | |
Fall | 7 | 0.46 | 0.25 | 0.52 | 42 | 0.60 | 0.18 | 0.62 | 49 | 0.58 | 0.20 | 0.61 | |
Winter | 11 | 0.55 | 0.21 | 0.58 | 38 | 0.54 | 0.18 | 0.53 | 49 | 0.54 | 0.18 | 0.55 | |
All | 61 | 0.55 | 0.20 | 0.58 | 173 | 0.55 | 0.18 | 0.54 | 234 | 0.55 | 0.18 | 0.55 | |
p-value * | 0.804 | 0.189 | 0.525 | ||||||||||
𝛼BH | Spring | 20 | 0.30 | 0.19 | 0.30 | 55 | 0.23 | 0.17 | 0.20 | 75 | 0.25 | 0.17 | 0.22 |
Summer | 23 | 0.38 | 0.28 | 0.31 | 38 | 0.27 | 0.24 | 0.21 | 61 | 0.31 | 0.26 | 0.26 | |
Fall | 7 | 0.24 | 0.26 | 0.24 | 42 | 0.24 | 0.17 | 0.20 | 49 | 0.24 | 0.18 | 0.20 | |
Winter | 11 | 0.21 | 0.17 | 0.16 | 38 | 0.25 | 0.15 | 0.24 | 49 | 0.24 | 0.15 | 0.22 | |
All | 61 | 0.31 | 0.23 | 0.27 | 173 | 0.25 | 0.18 | 0.20 | 234 | 0.26 | 0.20 | 0.22 | |
p-value * | 0.249 | 0.942 | 0.753 |
4.3. Scenario Analyses
Parameter | Unit | N | Average | SD | 25th | Median | 75th | 90th |
---|---|---|---|---|---|---|---|---|
Q1 | m3·h−1 | 234 | 242 | 272 | 109 | 179 | 287 | 446 |
Q2 | m3·h−1 | 234 | 43 | 39 | 17 | 31 | 52 | 87 |
Q3 | m3·h−1 | 234 | 57 | 76 | 23 | 41 | 71 | 102 |
Q4 | m3·h−1 | 234 | 84 | 138 | 27 | 54 | 96 | 166 |
QF2 | m3·h−1 | 156 | 456 | 223 | 282 | 499 | 661 | 722 |
V1 | m3 | 234 | 360 | 137 | 261 | 359 | 434 | 495 |
V2 | m3 | 234 | 28 | 11 | 22 | 25 | 29 | 36 |
Cout | μg·m−3 | 179 | 11 | 4 | 8 | 10 | 14 | 17 |
Case or Scenario | Condition | Emission Rate | No Filter | With Filter (F) | ||||
---|---|---|---|---|---|---|---|---|
Type | No. | (cig/day) | (mg·h−1) | C1 (LA) (µg·m−3) | C2 (BR) (µg·m−3) | C1 (LA) (µg·m−3) | C2 (BR) (µg·m−3) | |
Observed in Field Study | - | Houses with ETS | - | - | - | 39 | - | 25 |
- | Houses without ETS | - | - | - | 27 | - | 12 | |
Source in Living Area | 1, 1F | Nominal rate | 10.0 | 7.5 | 24 | 15 | 22 | 4 |
1MT | Match to ETS without filter | 33.5 | 25.1 | 71 | 39 | 64 | 10 | |
1FMT | Match to ETS with filter | 85.0 | 63.8 | 172 | 92 | 157 | 25 | |
1M | Match to non-ETS without filter | 21.5 | 16.1 | 47 | 27 | 43 | 7 | |
1FM | Match to non-ETS with filter | 37.5 | 28.1 | 78 | 43 | 72 | 12 | |
Source in Bedroom | 2, 2F | Nominal rate | 10.0 | 7.5 | 20 | 78 | 8 | 21 |
2MT | Match to ETS without filter | 4.7 | 3.5 | 12 | 39 | 6 | 10 | |
2FMT | Match to ETS with filter | 12.0 | 9.0 | 24 | 93 | 9 | 25 | |
2M | Match to non-ETS without filter | 3.0 | 2.3 | 9 | 27 | 5 | 7 | |
2FM | Match to non-ETS with filter | 5.5 | - | 13 | 45 | 6 | 12 | |
No Indoor Sources | 3, 3F | Without filter | - | - | 4 | 5 | 4 | 1 |
4.4. Sensitivity Analyses
Para-meter | Units | Emissions in Living Area | Emissions in Bedroom | No Indoor Emissions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No Filter (1) | W/Filter (1F) | No Filter (2) | W/Filter (2F) | No Filter (3) | W/Filter (3F) | ||||||||
LR | BR | LR | BR | LR | BR | BR | LR | BR | LR | BR | |||
Predicted concentrations | |||||||||||||
C1 | µg·m−3 | 24 | - | 22 | - | 20 | - | 8 | - | 4 | - | 4 | - |
C2 | µg·m−3 | - | 15 | - | 4 | - | 78 | - | 21 | - | 5 | - | 1 |
Relative sensitivity | |||||||||||||
E1 | µg·h−1 | 0.82 | 0.69 | 0.83 | 0.69 | - | - | - | - | - | - | - | - |
E2 | µg·h−1 | - | - | - | - | 0.78 | 0.94 | 0.54 | 0.94 | - | - | - | - |
Q1 | m3·h−1 | −0.50 | −0.42 | −0.45 | −0.37 | −0.47 | −0.06 | −0.18 | −0.01 | 0.16 | 0.08 | 0.30 | 0.13 |
Q2 | m3·h−1 | −0.04 | −0.29 | 0.00 | 0.05 | −0.36 | −0.43 | −0.05 | −0.09 | 0.02 | 0.08 | 0.03 | 0.44 |
Q3 | m3·h−1 | 0.05 | 0.35 | 0.03 | 0.69 | −0.35 | −0.41 | −0.06 | −0.10 | −0.01 | −0.03 | 0.02 | 0.30 |
Q4 | m3·h−1 | −0.09 | −0.08 | −0.18 | −0.15 | 0.69 | 0.09 | 0.36 | 0.02 | 0.01 | 0.01 | −0.15 | −0.06 |
CoutkP,1 | µg·m−3 | 0.16 | 0.13 | 0.16 | 0.13 | 0.19 | 0.03 | 0.44 | 0.03 | 0.87 | 0.42 | 0.96 | 0.42 |
CoutkP,2 | µg·m−3 | 0.02 | 0.18 | 0.01 | 0.18 | 0.03 | 0.03 | 0.02 | 0.03 | 0.13 | 0.58 | 0.04 | 0.58 |
kD,1 | h−1 | −0.19 | −0.16 | −0.17 | −0.14 | −0.19 | −0.03 | −0.17 | −0.01 | −0.19 | −0.09 | −0.17 | −0.08 |
kD,2 | h−1 | −0.01 | −0.05 | 0.00 | −0.01 | −0.05 | −0.05 | −0.01 | −0.01 | −0.01 | −0.05 | 0.00 | −0.01 |
V1 | m3 | −0.19 | −0.16 | −0.17 | −0.14 | −0.19 | −0.03 | −0.17 | −0.01 | −0.19 | −0.09 | −0.17 | −0.08 |
V2 | m3 | −0.01 | −0.05 | 0.00 | −0.01 | −0.05 | −0.05 | −0.01 | −0.01 | −0.01 | −0.06 | 0.00 | −0.02 |
ηF2QF2 | m3·h−1 | - | - | −0.03 | −0.68 | - | - | −0.39 | −0.68 | - | - | −0.05 | −0.68 |
5. Strengths and Limitations
6. Conclusions
Acknowledgements
References
- Breen, M.S.; Breen, M.; Williams, R.W.; Schultz, B.D. Predicting residential air exchange rates from questionnaires and meteorology: Model evaluation in central north Carolina. Environ. Sci. Technol. 2010, 44, 9349–9356. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nazaroff, W.W. Modeling residential exposure to secondhand tobacco smoke. Atmos. Environ. 2006, 40, 4393–4407. [Google Scholar] [CrossRef]
- Burke, J.M.; Zufall, M.J.; Ozkaynak, H. A population exposure model for particulate matter: Case study results for PM2.5 in Philadelphia, PA. J. Expos. Anal. Environ. Epidem. 2001, 11, 470–489. [Google Scholar] [CrossRef]
- Miller, S.L.; Nazaroff, W.W. Environmental tobacco smoke particles in multizone indoor environments. Atmos. Environ. 2001, 35, 2053–2067. [Google Scholar] [CrossRef]
- Jia, C.; Batterman, S.; Godwin, C.; Charles, S.; Chin, J.Y. Sources and migration of volatile organic compounds in mixed-use buildings. Indoor Air 2010, 20, 357–369. [Google Scholar] [CrossRef]
- Lai, A.C.K.; Nazaroff, W.W. Modeling indoor particle deposition from turbulent flow onto smooth surfaces. J. Aerosol Sci. 2000, 31, 463–476. [Google Scholar] [CrossRef]
- Wallace, L.A.; Emmerich, S.J.; Howard-Reed, C. Effect of central fans and in-duct filters on deposition rates of ultrafine and fine particles in an occupied townhouse. Atmos. Environ. 2004, 38, 405–413. [Google Scholar] [CrossRef]
- Howard-Reed, C.; Wallace, L.A.; Ott, W.R. The effect of opening windows on air change rates in two homes. J. Air Waste Manage. Assoc. 2002, 52, 147–159. [Google Scholar] [CrossRef]
- Wallace, L.A.; Emmerich, S.J.; Howard-Reed, C. Continuous measurements of air change rates in an occupied house for 1 year: The effect of temperature, wind, fans, and windows. J. Expos. Anal. Environ. Epidem. 2002, 12, 296–306. [Google Scholar] [CrossRef]
- Xu, Y.; Raja, S.; Ferro, A.R.; Jaques, P.A.; Hopke, P.K.; Gressani, C.; Wetzel, L.E. Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children’s health. Bldg. Environ. 2010, 45, 330–337. [Google Scholar] [CrossRef]
- Johnson, T.; Myers, J.; Kelly, T.; Wisbith, A.; Ollison, W. A pilot study using scripted ventilation conditions to identify key factors affecting indoor pollutant concentration and air exchange rate in a residence. J. Expos. Anal. Environ. Epidem. 2004, 14, 1–22. [Google Scholar] [CrossRef]
- Miller-Leiden, S.; Lohascio, C.; Nazaroff, W.W.; Macher, J.M. Effectiveness of in-room air filtration and dilution ventilation for tuberculosis infection control. J. Air Waste Manage. Assoc. 1996, 46, 869–882. [Google Scholar] [CrossRef]
- Ott, W.R.; Klepeis, N.E.; Switzer, P. Analytical solutions to compartmental indoor air quality models with application to environmental tobacco smoke concentrations measured in a house. J. Air Waste Manage. Assoc. 2003, 53, 918–936. [Google Scholar] [CrossRef]
- The Center for Urban Studies, WSU. 2000 Census Demographic Profile of City of Detroit. Available online: www.cus.wayne.edu/content/profiles/00SP1DetroitTracts.pdf (accessed on 30 March 2001).
- Du, L.; Batterman, S.; Parker, E.A.; Godwin, C.; Chin, J.-Y.; O’Toole, A.; Robins, T.G.; Brakefield-Caldwell, W.; Lewis, T. Particle concentrations and effectiveness of free-standing air filters in bedrooms of children with asthma in Detroit, Michigan. Bldg. Environ. 2011, 46, 2303–2313. [Google Scholar] [CrossRef]
- Dietz, R.N.; Goodrich, R.W. Measurement of HVAC System Performance and Local Ventilation Using Passive Perfluorocarbon Tracer Technology. Available online: www.ecd.bnl.gov/pubs/BNL61990.pdf (accessed on June 1995).
- The 2009 ASHRAE Handbook Fundamentals; American Society of Heating, Refrigerating, and Air Conditioning Engineers Inc.: Atlanta, GA, USA, 2009.
- Jia, C.; Batterman, S.; Godwin, C. Continuous, intermittent and passive sampling of airborne VOCs. J. Environ. Monitor. 2007, 9, 1220–1230. [Google Scholar] [CrossRef]
- Batterman, S.; Metts, T.; Kalliokoski, P.; Barnett, E. Low-flow active and passive sampling of VOCs using thermal desorption tubes: Theory and application at an offset printing facility. J. Environ. Monit. 2002, 4, 361–370. [Google Scholar] [CrossRef]
- Batterman, S.; Jia, C.R.; Hatzivasilis, G.; Godwin, C. Simultaneous measurement of ventilation using tracer gas techniques and VOC concentrations in homes, garages and vehicles. J. Environ. Monit. 2006, 8, 249–256. [Google Scholar] [CrossRef]
- Charles, S.M.; Jia, C.; Batterman, S.A.; Godwin, C. VOC and particulate emissions from commercial cigarettes: Analysis of 2,5-DMF as an ETS tracer. Environ. Sci. Technol. 2008, 4, 1324–1331. [Google Scholar]
- Batterman, S.; Du, L.; Mentz, G.; Mukherjee, B.; Parker, E.; Godwin, C.; Chin, J.Y.; O’Toole, A.; Robins, T.; Rowe, Z.; Lewis, T. Particulate matter concentrations in residences: An intervention study evaluating stand-alone filters and air conditioners. Indoor Air 2012, 22, 235–252. [Google Scholar] [CrossRef] [Green Version]
- Fisk, W.J.; Faulkner, D.; Palonen, J.; Seppanen, O. Performance and costs of particle air filtration technologies. Indoor Air 2002, 12, 223–234. [Google Scholar] [CrossRef]
- EPA’s Technology Transfer Network (TTN)—Air Quality System. Available online: www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm (accessed on 13 November 2012).
- Zhao, B.; Wu, J. Effect of particle spatial distribution on particle deposition in ventilation rooms. J. Hazard. Mater. 2009, 170, 449–456. [Google Scholar] [CrossRef]
- Riley, W.J.; McKone, T.E.; Lai, A.C.K.; Nazaroff, W.W. Indoor particulate matter of outdoor origin: Importance of size-dependent removal mechanisms. Environ. Sci. Technol. 2002, 36, 1868–1868. [Google Scholar]
- Thatcher, T.L.; Lai, A.C.K.; Moreno-Jackson, R.; Sextro, R.G.; Nazaroff, W.W. Effects of room furnishings and air speed on particle deposition rates indoors. Atmos. Environ. 2002, 36, 1811–1819. [Google Scholar] [CrossRef]
- Vette, A.F.; Rea, A.W.; Lawless, P.A.; Rodes, C.E.; Evans, G.; Highsmith, V.R.; Sheldon, L. Characterization of indoor-outdoor aerosol concentration relationships during the Fresno PM exposure studies. Aerosol Sci. Technol. 2001, 34, 118–126. [Google Scholar]
- Thatcher, T.L.; Lunden, M.M.; Revzan, K.L.; Sextro, R.G.; Brown, N.J. A concentration rebound method for measuring particle penetration and deposition in the indoor environment. Aerosol Sci. Technol. 2003, 37, 847–864. [Google Scholar] [CrossRef]
- Mosley, R.B.; Greenwell, D.J.; Sparks, L.E.; Guo, Z.; Tucker, W.G.; Fortmann, R.; Whitfield, C. Penetration of ambient fine particles into the indoor environment. Aerosol Sci. Technol. 2001, 34, 127–136. [Google Scholar]
- Jia, C.; Batterman, S.A.; Relyea, G.E. Variability of indoor and outdoor VOC measurements: An analysis using variance components. Environ. Pollut. 2011, 169, 152–159. [Google Scholar]
- Williams, R.; Rea, A.; Vette, A.; Croghan, C.; Whitaker, D.; Stevens, C.; McDow, S.; Fortmann, R.; Sheldon, L.; Wilson, H.; Thornburg, J.; Phillips, M.; Lawless, P.; Rodes, C.; Daughtrey, H. The design and field implementation of the Detroit Exposure and Aerosol Research Study. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 643–659. [Google Scholar] [CrossRef]
- Batterman, S.; Jia, C.R.; Hatzivasilis, G. Migration of volatile organic compounds from attached garages to residences: A major exposure source. Environ. Res. 2007, 104, 224–240. [Google Scholar] [CrossRef]
- Stocco, C.; MacNeill, M.; Wang, D.; Xu, X.; Guay, M.; Brook, J.; Wheeler, A.J. Predicting personal exposure of Windsor, Ontario residents to volatile organic compounds using indoor measurements and survey data. Atmos. Environ. 2008, 42, 5905–5912. [Google Scholar] [CrossRef]
- Yamamoto, N.; Shendell, D.G.; Winer, A.M.; Zhang, J. Residential air exchange rates in three major US metropolitan areas: Results from the Relationship Among Indoor, Outdoor, and Personal Air Study 1999–2001. Indoor Air 2010, 20, 85–90. [Google Scholar] [CrossRef]
- Persily, A.; Musser, A.; Emmerich, S.J. Modeled infiltration rate distributions for U.S. housing. Indoor Air 2010, 20, 473–485. [Google Scholar] [CrossRef]
- Beko, G.; Lund, T.; Nors, F.; Toftum, J.; Clausen, G. Ventilation rates in the bedrooms of 500 Danish children. Bldg. Environ. 2010, 45, 2289–2295. [Google Scholar] [CrossRef]
- Beko, G.; Toftum, J.; Clausen, G. Modeling ventilation rates in bedrooms based on building characteristics and occupant behavior. Bldg. Environ. 2011, 46, 2230–2237. [Google Scholar] [CrossRef]
- Bornehag, C.G.; Sundell, J.; Hagerhed-Engman, L.; Sigsgaard, T. Association between ventilation rates in 390 Swedish homes and allergic symptoms in children. Indoor Air 2005, 15, 275–280. [Google Scholar] [CrossRef]
- Chou, P.C.; Chiang, C.M.; Li, Y.Y.; Lee, C.Y.; Chang, K.F. Natural ventilation efficiency in a bedroom with a central-pivoting window. Indoor Built Environ. 2008, 17, 164–172. [Google Scholar] [CrossRef]
- Abt, E.; Suh, H.H.; Allen, G.; Koutrakis, P. Characterization of indoor particle sources: A study conducted in the metropolitan Boston area. Environ. Health Perspect. 2000, 108, 35–44. [Google Scholar] [CrossRef]
- Murray, D.M.; Burmaster, D.E. Residential air exchange rates in the United States: Empirical and estimated parametric distributions by season and climatic region. Risk Anal. 1995, 15, 459–465. [Google Scholar] [CrossRef]
- Cheng, K.C.; Acevedo-Bolton, V.; Jiang, R.T.; Klepeis, N.E.; Ott, W.R.; Fringer, O.B.; Hildemann, L.M. Modeling exposure close to air pollution sources in naturally ventilated residences: Association of turbulent diffusion coefficient with air change rate. Environ. Sci. Technol. 2011, 45, 4016–4022. [Google Scholar]
- Ferro, A.R.; Klepeis, N.E.; Ott, W.R.; Nazaroff, W.W.; Hildemann, L.M.; Switzer, P. Effect of interior door position on room-to-room differences in residential pollutant concentrations after short-term releases. Atmos. Environ. 2009, 43, 706–714. [Google Scholar] [CrossRef]
- He, C.R.; Morawska, L.D.; Hitchins, J.; Gilbert, D. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos. Environ. 2004, 38, 3405–3415. [Google Scholar] [CrossRef] [Green Version]
- Löfroth, G. Environmental tobacco smoke: Multicomponent analysis and room-to-room distribution in homes. Tob. Control 1993, 2, 222–225. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Du, L.; Batterman, S.; Godwin, C.; Chin, J.-Y.; Parker, E.; Breen, M.; Brakefield, W.; Robins, T.; Lewis, T. Air Change Rates and Interzonal Flows in Residences, and the Need for Multi-Zone Models for Exposure and Health Analyses. Int. J. Environ. Res. Public Health 2012, 9, 4639-4661. https://doi.org/10.3390/ijerph9124639
Du L, Batterman S, Godwin C, Chin J-Y, Parker E, Breen M, Brakefield W, Robins T, Lewis T. Air Change Rates and Interzonal Flows in Residences, and the Need for Multi-Zone Models for Exposure and Health Analyses. International Journal of Environmental Research and Public Health. 2012; 9(12):4639-4661. https://doi.org/10.3390/ijerph9124639
Chicago/Turabian StyleDu, Liuliu, Stuart Batterman, Christopher Godwin, Jo-Yu Chin, Edith Parker, Michael Breen, Wilma Brakefield, Thomas Robins, and Toby Lewis. 2012. "Air Change Rates and Interzonal Flows in Residences, and the Need for Multi-Zone Models for Exposure and Health Analyses" International Journal of Environmental Research and Public Health 9, no. 12: 4639-4661. https://doi.org/10.3390/ijerph9124639
APA StyleDu, L., Batterman, S., Godwin, C., Chin, J. -Y., Parker, E., Breen, M., Brakefield, W., Robins, T., & Lewis, T. (2012). Air Change Rates and Interzonal Flows in Residences, and the Need for Multi-Zone Models for Exposure and Health Analyses. International Journal of Environmental Research and Public Health, 9(12), 4639-4661. https://doi.org/10.3390/ijerph9124639