Effects of Delta-Aminolevulinic Acid Dehydratase Polymorphisms on Susceptibility to Lead in Han Subjects from Southwestern China
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Participants
2.2. Genotype Determination for the ALAD Polymorphism
2.3. Determination of Lead in Blood and Urine
2.4. Questionnaire and Clinical Physical Examination
2.5. Statistical Analysis
3. Results
Type of Work | Lead Exposure | ALAD 1-1 Genotype | ALAD 1-2 Genotype | P | |||
---|---|---|---|---|---|---|---|
n | Mean±SD (μmol/L) | n | Mean±SD (μmol/L) | ||||
Cable Workers | Blood Lead | 63 | 0.51±0.10 | 6 | 0.44±0.11 | 0.083 | |
Urine Lead | 58 | 0.030±0.096 | 5 | 0.026±0.014 | 0.369 | ||
Battery Storage Workers * | Blood Lead | 83 | 1.91±0.42 | 4 | 1.48±0.34 | 0.052 | |
* | Urine Lead | 48 | 0.63±0.36 | * | 2 | 0.38±0.19 | 0.319 |
Total | Blood Lead | 146 | 1.31±0.76 | 10 | 0.86±0.58 | 0.040 | |
* | Urine Lead | 106 | 0.30±0.38 | * | 7* | 0.13±0.19 | 0.053 |
Self-conscious Symptom | Incidence | ALAD 1-1 Genotype (146) | ALAD 1-2 Genotype (10) | ||
---|---|---|---|---|---|
Incidence | Rank order | Incidence | Rank order | ||
Dreaminess | 49.4 | 46.6 | 1 | 90.0 | 1 |
Insomnia | 37.8 | 36.3 | 2 | 60.0 | 2 |
Dizziness | 33.3 | 32.9 | 3 | 40.0 | 3 |
Amnesia | 28.2 | 28.8 | 4 | 20.0 | 5 |
Debilitation | 23.1 | 23.3 | 5 | 20.0 | 5 |
Abdominal Pain | 22.4 | 21.9 | 6 | 30.0 | 4 |
Headache | 21.2 | 21.2 | 7 | 20.0 | 5 |
Limb Pain | 20.5 | 20.5 | 8 | 20.0 | 5 |
Numbness | 16.7 | 17.1 | 9 | 10.0 | 6 |
Nausea | 14.7 | 15.1 | 10 | 10.0 | 6 |
Diarrhea | 11.5 | 11.0 | 11 | 20.0 | 5 |
Vomit | 9.0 | 8.9 | 12 | 10.0 | 6 |
Symptom | Occupational exposure | P | Length of Lead Exposure | P | ||
---|---|---|---|---|---|---|
<5 year (n) | ≥5 year (n) | <5 year (n) | ≥5 year (n) | |||
ALAD 1-1 | ||||||
Insomnia | 30.9 (17) | 39.6 (36) | 0.292 | 26.5 (22) | 49.2 (31) | 0.005 |
Debilitation | 12.7 (7) | 29.7 (27) | 0.019 | 14.5 (12) | 34.9 (22) | 0.040 |
Amnesia | 16.4 (9) | 36.3 (33) | 0.010 | 18.1 (15) | 42.9 (27) | 0.001 |
Dreaminess | 34.5 (19) | 53.8 (49) | 0.023 | 38.6 (32) | 57.1 (36) | 0.026 |
ALAD 1-2 | ||||||
Insomnia | 66.7 (2) | 57.1 (4) | >0.5 | 57.1 (4) | 66.7 (2) | >0.5 |
Debilitation | 33.3 (1) | 14.3 (1) | >0.5 | 14.3 (1) | 33.3 (1) | >0.5 |
Amnesia | 0.0 (0) | 28.6 (2) | >0.5 | 14.3 (1) | 33.3 (1) | >0.5 |
Dreaminess | 100.0 (3) | 85.7 (6) | >0.5 | 85.7 (6) | 100.0 (3) | >0.5 |
Type of Work | Serum Ion | ALAD 1-1 Genotype | ALAD 1-2 Genotype | P | ||
---|---|---|---|---|---|---|
n | Mean±SD | n | Mean±SD | |||
Cable Workers | Ca | 63 | 2.40±0.17 (mmol/L) | 6 | 2.47±0.05 (mmol/L) | 0.024 |
Fe | 63 | 31.20±2.61 (μmol/L) | 6 | 31.48±2.51 (μmol/L) | 0.802 | |
Zn | 63 | 19.67±4.62 (μmol/L) | 6 | 17.35±1.84 (μmol/L) | 0.031 | |
Battery Storage Workers | Ca | 83 | 2.20±0.08 (mmol/L) | 4 | 2.13±0.10 (mmol/L) | 0.087 |
Fe | 83 | 21.77±9.47 (μmol/L) | 4 | 29.73±2.28 (μmol/L) | <0.001 | |
Zn | 83 | 8.60±4.45 (μmol/L) | 4 | 14.15±0.90 (μmol/L) | <0.001 | |
Total | Ca | 146 | 2.29±0.16 (mmol/L) | 10 | 2.33±0.19 (mmol/L) | 0.388 |
Fe | 146 | 25.84±8.70 (μmol/L) | 10 | 30.78±2.46 (μmol/L) | <0.001 | |
Zn | 146 | 13.37±7.11 (μmol/L) | 10 | 16.07±2.21 (μmol/L) | <0.05 |
Variance | ALAD 1-1 Genotype | ALAD 1-2 Genotype | Subgroup Combination |
---|---|---|---|
Ca | −0.548 ** | −0.763 * | −0.559 ** |
Fe | −0.572 ** | −0.347 | −0.575 ** |
Zn | −0.779 ** | −0.695 * | −0.775 ** |
4. Discussion
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Yedjou, C.G.; Milner, J.N.; Howard, C.B.; Tchounwou, P.B. Basic apoptotic mechanisms of lead toxicity in human leukemia (HL-60) cells. Int. J. Environ. Res. Public Health 2010, 7, 2008–2017. [Google Scholar]
- Kelada, S.N.; Shelton, E.; Kaufmann, R.B.; Khoury, M.J. Delta-aminolevulinic acid dehydratase genotype and lead toxicity: A HuGE review. Am. J. Epidemiol. 2001, 154, 1–13. [Google Scholar]
- Jaffe, E.K. The porphobilinogen synthase family of metalloenzymes. Acta Crystallogr. Biol. Crystallogr. 2000, 56, 115–128. [Google Scholar] [CrossRef]
- Battistuzzi, G.; Petrucci, R.; Silvagni, L.; Urbani, F.R.; Caiola, S. δ-Aminolevulinate dehydrase: A new genetic polymorphism in man. Ann. Hum. Genet. 1981, 45, 223–229. [Google Scholar] [CrossRef]
- Onalaja, A.O.; Claudio, L. Genetic susceptibility to lead poisoning. Environ. Health Perspect. 2000, 108(Suppl 1), 23–28. [Google Scholar]
- Patil, A.J.; Bhagwat, V.R.; Patil, J.A.; Dongre., N.N.; Ambekar, J.G.; Jailkhani, R.; Das, K.K. Effect of lead (Pb) exposure on the activity of superoxide dismutase and catalase in battery manufacturing workers (BMW) of Western Maharashtra (India) with reference to heme biosynthesis. Int. J. Environ. Res. Public Health 2006, 3, 329–337. [Google Scholar] [CrossRef]
- Lin-Fu, J.S. Vulnerability of children to lead exposure and toxicity: Part one. N. Engl. J. Med. 1973, 289, 1229–1233. [Google Scholar] [CrossRef]
- Ziegler, E.E.; Edwards, B.B.; Jensen, R.L.; Mahaffey, K.R.; Fomon, S.J. Absorption and retention of lead by infants. Pediatr. Res. 1978, 12, 29–34. [Google Scholar]
- Wetmur, J.G.; Kaya, A.H.; Plewinska, M.; Desnick, R.J. Molecular characterization of the human δ-aminolevulinate dehydratase 2 (ALAD2) allele: Implications for molecular screening of individuals for genetic susceptibility to lead poisoning. Am. J. Hum. Genet. 1991, 49, 757–763. [Google Scholar]
- Smith, C.M.; Wang, X.; Hu, H.; Kelsey, K.T. A polymorphism in the δ-aminolevulinic acid dehydratase gene may modify the pharmacokinetics and toxicity of lead. Environ. Health Perspect. 1995, 103, 248–253. [Google Scholar]
- Benkmann, H.G.; Bogdanski, P.; Goedde, H.W. Polymorphism of δ-aminolevulinic acid dehydratase in various populations. Hum. Hered. 1983, 33, 62–64. [Google Scholar] [CrossRef]
- Hsieh, L.L.; Liou, S.H.; Chen, Y.H.; Tsai, L.C.; Yang, T.; Wu, T.N. Association between aminolevulinate dehydrogenase genotype and blood lead levels in Taiwan. J. Occup. Environ. Med. 2000, 42, 151–155. [Google Scholar] [CrossRef]
- Miyaki, K.; Lwin, H.; Masaki, K.; Song, Y.; Takahashi, Y.; Muramatsu, M.; Nakayama, T. Association between a polymorphism of aminolevulinate dehydrogenase (ALAD) gene and blood lead levels in Japanese subjects. Int. J. Environ. Res. Public Health 2009, 6, 999–1009. [Google Scholar]
- Ziemsen, B.; Angerer, J.; Lehnert, G.; Benkmann, H.G.; Goedde, H.W. Polymorphism of δ-aminolevulinic acid dehydratase in lead-exposed workers. Int. Arch. Occup. Environ. Health 1986, 58, 245–247. [Google Scholar] [CrossRef]
- Wetmur, J.G.; Lehnert, G.; Desnick, R.J. The δ-aminolevulinate dehydratase polymorphism: Higher blood lead levels in lead workers and environmentally exposed children with the 1-2 and 2-2 isozymes. Environ. Res. 1991, 56, 109–119. [Google Scholar] [CrossRef]
- Schwartz, B.S.; Lee, B.K.; Stewart, W.; Ahn, K.D.; Springer, K.; Kelsey, K. Associations of δ-aminolevulinic acid dehydratase genotype with plant, exposure duration, and blood lead and zinc protoporphyrin levels in Korean lead workers. Am. J. Epidemiol. 1995, 142, 738–745. [Google Scholar]
- Shaik, A.P.; Jamil, K. A study on the ALAD gene polymorphisms associated with lead exposure. Toxicol. Ind. Health 2008, 24, 501–506. [Google Scholar] [CrossRef]
- Bellinger, D.C. The protean toxicities of lead: New chapters in a familiar story. Int. J. Environ. Res. Public Health 2011, 8, 2593–2628. [Google Scholar] [CrossRef]
- Kiran, K.B.; Prabhakara, R.Y; Noble, T.; Weddington, K.; McDowell, V.P.; Rajanna, S.; Bettaiya, R. Lead-induced alteration of apoptotic proteins in different regions of adult rat brain. Toxicol. Lett. 2009, 184, 56–60. [Google Scholar] [CrossRef]
- NourEddine, D.; Miloud, S.; Abdelkader, A. Effect of lead exposure on dopaminergic transmission in the rat brain. Toxicology 2005, 207, 363–368. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Long, L.L.; Zhu, X.Y.; Zheng, H.; Fu, X.; Ou, S.Y.; Wei, D.L.; Zhou, H.L.; Zheng, W. Evidence for altered hippocampal volume and brain metabolites in workers occupationally exposed to lead: A study by magnetic resonance imaging and 1H magnetic resonance spectroscopy. Toxicol. Lett. 2008, 181, 118–125. [Google Scholar] [CrossRef]
- Krieg, E.F.; Butler, M.A.; Chang, M.H.; Liu, T.; Yesupriya, A.; Lindegren, M.L.; Dowling, N. Lead and cognitive function in ALAD genotypes in the third National Health and Nutrition Examination Survey. Neurotoxicol. Teratol. 2009, 31, 364–371. [Google Scholar] [CrossRef]
- Rajan, P.; Kelsey, K.T.; Schwartz, J.D.; Bellinger, D.C.; Weuve, J.; Sparrow, D.; Spiro, A.; Smith, T.J.; Nie, H.; Hu, H.; Wright, R.O. Lead burden and psychiatric symptoms and the modifying influence of the delta-aminolevulinic acid dehydratase (ALAD) polymorphism: The VA Normative Aging Study. Am. J. Epidemiol. 2007, 166, 1400–1408. [Google Scholar] [CrossRef]
- Weuve, J.; Kelsey, K.T.; Schwartz, J.; Bellinger, D.; Wright, R.O.; Rajan, P.; Spiro, A.; Sparrow, D.; Aro, A.; Hu, H. Delta-aminolevulinic acid dehydratase polymorphism and the relation between low level lead exposure and the Mini-Mental Status Examination in older men: The Normative Aging Study. Occup. Environ. Med. 2006, 63, 746–753. [Google Scholar] [CrossRef]
- Pizent, A.; Jurasovic, J.; Telisman, S. Serum calcium, zinc, and copper in relation to biomarkers of lead and cadmium in men. J. Trace Elem. Med. Biol. 2003, 17, 199–205. [Google Scholar] [CrossRef]
- Bradberry, S.; Vale, A. A comparison of sodium calcium edetate (edetate calcium disodium) and succimer (DMSA) in the treatment of inorganic lead poisoning. Clin. Toxical.(Phila.) 2009, 47, 841–858. [Google Scholar]
- Pires, J.B.; Miekeley, N.; Donangelo, C.M. Calcium supplementation during lactation blunts erythrocyte lead levels and delta-aminolevulinic acid dehydratase zinc-reactivation in women non-exposed to lead and with marginal calcium intakes. Toxicology 2002, 175, 247–255. [Google Scholar] [CrossRef]
- Ettinger, A.S.; Lamadrid, F.H.; Tellez, R.M.M.; Mercado, G.A.; Peterson, K.E.; Schwartz, J.; Hu, H.; Hernandez, A.M. Effect of calcium supplementation on blood lead levels in pregnancy: A randomized placebo-controlled trial. Environ. Health Perspect. 2009, 117, 26–31. [Google Scholar]
- Varnai, V.M.; Piasek, M.; Blanusa, M.; Saric, M.M.; Simic, D.; Kostial, K. Calcium supplementation efficiently reduces lead absorption in suckling rats. Pharmacol. Toxicol. 2001, 89, 326–330. [Google Scholar]
- Markowitz, M.E.; Sinnett, M.; Rosen, J.F. A randomized trial of calcium supplementation for childhood lead poisoning. Pediatrics 2004, 113, 34–39. [Google Scholar]
- Konofal, E.; Cortese, S. Lead and neuroprotection by iron in ADHD. Environ. Health Perspect. 2007, 115, 398–399. [Google Scholar] [CrossRef]
- Muwakkit, S.; Nuwayhid, I.; Nabulsi, M.; Hajj, R.; Khoury, R.; Mikati, M.; Abboud, M.R. Iron deficiency in young Lebanese children: Association with elevated blood lead levels. J. Pediatr. Hematol. Oncol. 2008, 30, 382–386. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, W.; Zheng, W.; Liu, Y.; Xu, H.; Zheng, G.; Dai, Z.; Zhang, W.; Chen, Y.; Chen, J. Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development. Toxicol. Appl. Pharmacol. 2007, 219, 33–41. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, S.S.; Hwangbo, Y.; Ahn, K.D.; Lee, B.K. Cross-sectional study of blood lead effects on iron status in Korean lead workers. Nutrition 2003, 19, 571–576. [Google Scholar]
- Kordas, K.; Stoltzfus, R.J.; Lopez, P.; Rico, J.A.; Rosado, J.L. Iron and zinc supplementation does not improve parent or teacher ratings of behavior in first grade Mexican children exposed to lead. J. Pediatr. 2005, 147, 632–639. [Google Scholar] [CrossRef]
- Serwint, J.R.; Damokosh, A.I.; Berger, O.G.; Chisolm, J.J.; Gunter, E.W.; Jones, R.L.; Rhoads, G.G.; Rogan, W. No difference in iron status between children with low and moderate lead exposure. J. Pediatr. 1999, 135, 108–110. [Google Scholar] [CrossRef]
- Winneke, G. Zinc to prevent lead poisoning. Can. Med. Assoc. J. 1996, 154, 1622–1623. [Google Scholar]
- Batra, N.; Nehru, B.; Bansal, M.P. The effect of zinc supplementation on the effects of lead on the rat testis. Reprod. Toxicology 1998, 12, 535–540. [Google Scholar] [CrossRef]
- Rico, J.A.; Kordas, K.; Lopez, P.; Rosado, J.L.; Vargas, G.G.; Ronquillo, D.; Stoltzfus, R.J. Efficacy of iron and/or zinc supplementation on cognitive performance of lead-exposed Mexican schoolchildren: A randomized, placebo-controlled trial. Pediatrics 2006, 117, 518–527. [Google Scholar] [CrossRef]
- De Castro, C.S.; Arruda, A.F.; Da Cunha, L.R.; De Souza, J.R.; Braga, J.W.; Dórea, J.G. Toxic metals (Pb and Cd) and their respective antagonists (Ca and Zn) in infant formulas and milk marketed in Brasilia, Brazil. Int. J. Environ. Res. Public Health 2010, 7, 4062–4077. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yang, Y.; Wu, J.; Sun, P. Effects of Delta-Aminolevulinic Acid Dehydratase Polymorphisms on Susceptibility to Lead in Han Subjects from Southwestern China. Int. J. Environ. Res. Public Health 2012, 9, 2326-2338. https://doi.org/10.3390/ijerph9072326
Yang Y, Wu J, Sun P. Effects of Delta-Aminolevulinic Acid Dehydratase Polymorphisms on Susceptibility to Lead in Han Subjects from Southwestern China. International Journal of Environmental Research and Public Health. 2012; 9(7):2326-2338. https://doi.org/10.3390/ijerph9072326
Chicago/Turabian StyleYang, Yuelin, Jin Wu, and Pin Sun. 2012. "Effects of Delta-Aminolevulinic Acid Dehydratase Polymorphisms on Susceptibility to Lead in Han Subjects from Southwestern China" International Journal of Environmental Research and Public Health 9, no. 7: 2326-2338. https://doi.org/10.3390/ijerph9072326
APA StyleYang, Y., Wu, J., & Sun, P. (2012). Effects of Delta-Aminolevulinic Acid Dehydratase Polymorphisms on Susceptibility to Lead in Han Subjects from Southwestern China. International Journal of Environmental Research and Public Health, 9(7), 2326-2338. https://doi.org/10.3390/ijerph9072326