Commensal Pseudomonas Species Isolated from Wastewater and Freshwater Milieus in the Eastern Cape Province, South Africa, as Reservoir of Antibiotic Resistant Determinants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation Processing of Samples
2.3. Identification of Isolates by Polymerase Chain Reaction (PCR)
2.4. Specie Specificity Screening of Pseudomonas isolates
Target genes | Sequences 5'–3' | Amplicon size (bp) | References |
---|---|---|---|
P. aeruginosa | GGCGTGGGTGTGGAAGTC | 199 | [18] |
TGGTGGCGATCTTGAACTTCTT | |||
P. putida | TCACCTCCGAGGAAACCAGCTTG | 676 | [19] |
TCTGTTGTGAACGCCCTGTC | |||
P. fluorescens | TGCATTCAAAACTGACTG | 850 | [20] |
AATCACACCGTGGTAACCG | |||
blaTEM gene | AGGAAGAGTATGATTCAACA | 535 | [21] |
CTCGTCGTTTGGTATGGC | |||
TetC gene | GGTTGAAGGCTCTCAAGGGC | 505 | [22] |
GGTTGAAGGCTCTCAAGGGC | |||
Integrons conserved segment | GGCATCCAAGCAGCAAG | Variable | [23] |
AAGCAGACTTGACCTGA | |||
blaOXA gene | TGAGCACCATAAGGCAACCA | 311 | [24] |
TTGGGCTAAATGGAAGCGTTT | |||
blaampC | GGTATGGCTGTGGGTGTTA | 882 | [25] |
TCCGAAACGGTTAGTTGAG |
2.5. Antibiotic Susceptibility Testing
2.6. PCR Detection of Antibiotic Resistant Genes
3. Results
3.1. Molecular Identification of Isolates
Seasons a | P. aeruginosa | P. putida | P. flourescens | Other Pseudomonas spp. | ||||
---|---|---|---|---|---|---|---|---|
Alice (%) | FBF (%) | Alice (%) | FBF (%) | Alice (%) | FBF (%) | Alice (%) | FBF (%) | |
Autumn | 0 | 0 | 12 (85.71) | 0 | 0 | 0 | 2 (14.29) | 0 |
Winter | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Spring | 2 (33.33) | 0 | 2 (33.33) | 0 | 2 (33.33) | 0 | 0 | 0 |
Summer | 0 | 0 | 0 | 6 (75) | 0 | 2(25) | 0 | 0 |
Seasons a | P. aeruginosa | P. putida | P. fluorescens | Other Pseudomonas spp. | ||||
---|---|---|---|---|---|---|---|---|
Alice (%) | FBF (%) | Alice (%) | FBF (%) | Alice (%) | FBF (%) | Alice (%) | FBF (%) | |
Autumn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Winter | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Spring | 0 | 2 (7.69) | 6 (23.08) | 2 (7.69) | 6 (23.08) | 2 (7.69) | 2 (7.69) | 6 (23.08) |
Summer | 0 | 0 | 0 | 4 (66.67) | 0 | 2 (33.33) | 0 | 0 |
3.2. Antibiotic Susceptibility Profile
Antibiotics | P. aeruginosa | P. putida | P. fluorescens | Other Pseudomonas species | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | ||
Penicillin | PG | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 |
AP | 0 | 0 | 100 | 40 | 10 | 50 | 25 | 0 | 75 | 0 | 0 | 100 | |
OX | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
Tetracycline | T | 0 | 100 | 0 | 20 | 40 | 40 | 25 | 25 | 50 | 0 | 50 | 50 |
MN | 100 | 0 | 0 | 30 | 40 | 30 | 25 | 50 | 25 | 50 | 50 | 0 | |
Quinolones | CIP | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 |
NA | 0 | 100 | 0 | 30 | 40 | 30 | 25 | 25 | 50 | 0 | 50 | 50 | |
OFX | 100 | 0 | 0 | 90 | 10 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | |
Cephems | CTX | 100 | 0 | 0 | 60 | 40 | 0 | 50 | 0 | 50 | 50 | 50 | 0 |
KF | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 25 | 75 | 0 | 0 | 100 | |
Phenicols | C | 100 | 0 | 0 | 20 | 30 | 50 | 25 | 25 | 50 | 50 | 0 | 50 |
Macrolides | E | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 25 | 75 | 0 | 50 | 50 |
Aminoglycosides | GM | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 |
Glycopeptides | VA | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 |
Nitrofurans | NI | 100 | 0 | 0 | 20 | 20 | 60 | 25 | 0 | 75 | 50 | 0 | 50 |
Folate pathway inhibitors | TM | 0 | 0 | 100 | 30 | 0 | 70 | 0 | 0 | 100 | 0 | 0 | 100 |
SMX | 0 | 0 | 100 | 0 | 0 | 100 | 50 | 0 | 50 | 0 | 0 | 100 | |
β-lactams | SAM | 0 | 0 | 100 | 60 | 10 | 30 | 75 | 0 | 25 | 0 | 0 | 100 |
Lincosamides | CD | 0 | 0 | 100 | 0 | 0 | 10 | 0 | 0 | 100 | 0 | 0 | 100 |
Ansamycins | RP | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 |
Antibiotics | P. aeruginosa | P. putida | P. fluorescens | Other Pseudomonas species | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | ||
Penicillin | PG | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 |
AP | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 33.33 | 0 | 66.67 | |
OX | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | |
Tetracycline | T | 0 | 0 | 100 | 0 | 40 | 60 | 0 | 0 | 100 | 0 | 33.33 | 66.67 |
MN | 0 | 0 | 100 | 0 | 80 | 20 | 0 | 50 | 50 | 33.33 | 0 | 66.67 | |
Quinolones | CIP | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 |
NA | 0 | 0 | 100 | 20 | 0 | 80 | 0 | 100 | 0 | 0 | 33.33 | 66.67 | |
OFX | 100 | 0 | 0 | 80 | 0 | 20 | 100 | 0 | 0 | 100 | 0 | 0 | |
Cephems | CTX | 0 | 0 | 100 | 20 | 60 | 20 | 100 | 0 | 0 | 0 | 33.33 | 66.67 |
KF | 0 | 0 | 100 | 0 | 0 | 100 | 50 | 50 | 0 | 0 | 0 | 100 | |
Phenicols | C | 0 | 0 | 100 | 0 | 20 | 80 | 0 | 0 | 100 | 0 | 33.33 | 66.67 |
Macrolides | E | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 |
Aminoglycosides | GM | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 |
Glycopeptides | VA | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 |
Nitrofurans | NI | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 |
Folate pathway inhibitors | TM | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 |
SMX | 0 | 0 | 100 | 0 | 0 | 100 | 50 | 0 | 50 | 0 | 0 | 100 | |
β-lactams | SAM | 0 | 0 | 100 | 0 | 20 | 80 | 100 | 0 | 0 | 33.33 | 0 | 66.67 |
Lincosamides | CD | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 |
Ansamycins | RP | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 |
3.3. Identification of Antibiotic Resistance Genes
4. Discussion
5. Conclusions
Acknowledgements
Conflict of Interest
References
- Adel, K.K.; Sabiha, S.S. Genetic site determination of antibiotic resistance genes in Pseudomonas aeruginosa by genetic transformation. Br. J. Pharmacol. Toxicol. 2010, 1, 85–89. [Google Scholar]
- Hamelin, K.; Bruant, G.; El-Shaarawi, A.; Hill, S.; Edge, T.A.; Fairbrother, J.; Harel, J.; Maynard, C.; Masson, L.; Brousseau, R. Occurrence of virulence and antimicrobial resistance genes in Escherichia coli isolates from different aquatic ecosystems within the St. Clair River and Detroit River areas. Appl. Environ. Microbiol. 2007, 73, 477–484. [Google Scholar]
- Aarestrup, F.M.; Hasman, H.; Jensen, L.B.; Moreno, M.; Herrero, I.A.; Domínguez, L.; Finn, M.; Franklin, A. Antimicrobial resistance among Enterococci from pigs in three European countries. Appl. Environ. Microbiol. 2002, 68, 4127–4129. [Google Scholar]
- Huddleston, J.R.; Zak, J.C.; Jeter, R.M. Antimicrobial susceptibilities of Aeromonas spp. isolated from environmental sources. Appl. Environ. Microbiol. 2006, 72, 7036–7042. [Google Scholar] [CrossRef]
- Wittwer, M.; Keller, J.; Wassenaar, T.M.; Stephan, R.; Howald, D.; Regula, G.; Bissig-Choisat, B. Genetic diversity and antibiotic resistance patterns in a Campylobacter population isolated from poultry farms in Switzerland. Appl. Environ. Microbiol. 2005, 71, 2840–2847. [Google Scholar] [CrossRef]
- Schlüter, A.; Szczepanowski, R.; Pühler, A.; Top, E.M. Genomicsof IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol. Rev. 2007, 31, 449–477. [Google Scholar] [CrossRef]
- Li, D.; Yang, M.; Hu, J.; Zhang, J.; Liu, R.; Gu, X.; Zhang, Y.; Wang, Z. Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river. Environ. Microbiol. 2009, 11, 1506–1517. [Google Scholar] [CrossRef]
- Zhang, Y.; Marrs, C.F.; Simon, C.; Xi, C. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Sci. Total Environ. 2009, 407, 3702–3706. [Google Scholar] [CrossRef]
- Esiobu, N.; Armenta, L.; Ike, J. Antibiotic resistance in soil and water environments. Int. J. Environ. Health Res. 2002, 12, 133–144. [Google Scholar] [CrossRef]
- Lin, J.; Biyela, P.T.; Puckree, T. Antibiotic resistance profiles of environmental isolates from Mhlathuze River, KwaZulu-Natal (RSA). Water SA 2004, 30, 23–28. [Google Scholar]
- Knezevic, P.; Petrovic, O. Antibiotic resistance of commensal Escherichia coli of food-producing animals from three Vojvodinian farms, Serbia. Int. J. Antimicrob. Agents 2008, 31, 360–363. [Google Scholar] [CrossRef]
- Kang, H.Y.; Jeong, Y.S.; Oh, J.Y.; Tae, S.H.; Choi, C.H.; Moon, D.C.; Lee, W.K.; Lee, Y.C.; Seol, S.Y.; Cho, D.T.; et al. Characterization of antimicrobial resistance and class 1 integrons found in Escherichia coli isolates from humans and animals in Korea. J. Antimicrob. Chemother. 2005, 55, 639–644. [Google Scholar] [CrossRef]
- Lee, J.C.; Kang, H.Y.; Oh, J.Y.; Jeong, J.H.; Kim, J.; Seol, S.Y.; Cho, D.T.; Lee, Y.C. Antimicrobial resistance and integrons found in commensal Escherichia coli isolates from healthy humans. J. Bacteriol. Virol. 2006, 36, 133–139. [Google Scholar] [CrossRef]
- Ruiz, L.M.; Dominguez, A.; Ruiz, N.; Vinas, M. Relationship between clinical and environmental isolates of Pseudomonas aeruginosa in a hospital setting. Arch. Med. Res. 2004, 35, 251–257. [Google Scholar] [CrossRef]
- Green Drop Progress Report (GDS) 2012; Department of Water Affairs Republic of South Africa (DWA): Pretoria, South Africa, 2012.
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2001; pp. 21–55. [Google Scholar]
- Wagner, J.; Short, K.; Catto-Smith, A.G.; Cameron, D.J.S.; Bishop, R.F.; Kirkwood, C.D. Identification and characterisation of Pseudomonas 16S ribosomal DNA from ileal biopsies of children with Crohn’s disease. PLoS One 2008, 3. [Google Scholar] [CrossRef]
- Lutz, J.K.; Lee, J. Prevalence and antimicrobial-resistance of Pseudomonas aeruginosa in swimming pools and Hot Tubs. Int. J. Environ. Res. Public Health 2011, 8, 554–564. [Google Scholar] [CrossRef]
- Hanning, I.; Jarquin, R.; O’leary, A.; Slavik, M. Polymerase Chain Reaction-based assays for the detection and differentiation of poultry significant Pseudomonads. J. Rapid Methods Autom. Microbiol. 2009, 17, 490–502. [Google Scholar] [CrossRef]
- Scarpellini, M.; Franzetti, L.; Galli, A. Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiol. Lett. 2004, 236, 257–260. [Google Scholar] [CrossRef]
- Wang, C.; Cai, P.; Chang, D.; Mi, Z. A Pseudomonas aeruginosa isolate producing the GES-5 extended-spectrum beta-lactamase. J. Antimicrob. Chemother. 2006, 57, 1261–1262. [Google Scholar] [CrossRef]
- Agersø, Y.; Sandvang, D. Class 1 integrons and tetracycline resistance genes in Alcaligenes, Arthrobacter, and Pseudomonas spp. isolated from pigsties and manured soil. Appl. Environ. Microbiol. 2005, 71, 7941–7947. [Google Scholar]
- Fonseca, E.L.; Vieira, V.V.; Cipriano, R.; Vicente, A.C. Class 1 integrons in Pseudomonas aeruginosa isolates from clinical settings in Amazon region, Brazil. FEMS Immunol. Med. Microbiol. 2005, 44, 303–309. [Google Scholar] [CrossRef]
- Kuo, H.; Yang, C.; Lin, M.; Cheng, W.; Tiene, N.; Liou, M. Distribution of blaOXA-carrying imipenem-resistant Acinetobacter spp. in 3 hospitals in Taiwan. Diag. Microbiol. Infect. Dis. 2010, 66, 195–199. [Google Scholar] [CrossRef]
- Yang, C.H.; Lee, S.; Su, P.; Yang, C.S.; Chuang, L. Genotype and antibiotic susceptibility patterns of drug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii isolates in Taiwan. Microbial Drug Res. 2008, 14, 281–288. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standard Institute (CLSI), Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement, 7th ed; CLSI: Wayne, PA, USA, 2006; pp. 15–130.
- Gilliver, M.; Bennett, M.; Begon, M.; Hazel, S.; Hart, C. Antibiotic resistance found in wild rodents. Nature 1999, 401, 233–234. [Google Scholar]
- Pallecchi, L.; Riccobono, E.; Mantella, A.; Fernandez, C.; Bartalesi, F.; Rodriguez, H.; Gotuzzo, E.; Bartoloni, A.; Rossolini, G.M. Small qnrB-harbouring ColE-like plasmids widespread in commensal enterobacteria from a remote Amazonas population not exposed to antibiotics. J. Antimicrob. Chemother. 2011. [Google Scholar] [CrossRef]
- Osterblad, M.; Norrdahl, K.; Korpimaki, E.; Huovinen, P. How wild are wild mammals? Nature 2001, 409, 37–38. [Google Scholar]
- Thaller, M.C.; Migliore, L.; Marquez, C.; Tapia, W.; Cedeno, V.; Rossolini, G.M.; Gentile, G. Tracking acquired antibiotic resistance in commensal bacteria of Galápagos land Iguanas: No man, no resistance. PLoS One 2010, 5, e8989. [Google Scholar]
- Ceremonie, H.; Buret, F.; Simonet, P.; Vogel, T.M. Natural electrotransformation of lightning-competent Pseudomonas sp. strain N3 in artificial soil microcosms. Appl. Environ. Microbiol. 2006, 72, 2385–2389. [Google Scholar] [CrossRef]
- Demaneche, S.; Kay, E.; Gourbiere, F.; Simonet, P. Natural transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in soil. Appl. Environ. Microbiol. 2001, 67, 2617–2621. [Google Scholar]
- Lachmayr, K.L.; Kerkhof, L.J.; Dirienzo, A.G.; Cavanaugh, C.M.; Ford, T.E. Quantifying nonspecific TEM beta-lactamase (blaTEM) genes in a wastewater stream. Appl. Environ. Microbiol. 2009, 75, 203–211. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Igbinosa, I.H.; Nwodo, U.U.; Sosa, A.; Tom, M.; Okoh, A.I. Commensal Pseudomonas Species Isolated from Wastewater and Freshwater Milieus in the Eastern Cape Province, South Africa, as Reservoir of Antibiotic Resistant Determinants. Int. J. Environ. Res. Public Health 2012, 9, 2537-2549. https://doi.org/10.3390/ijerph9072537
Igbinosa IH, Nwodo UU, Sosa A, Tom M, Okoh AI. Commensal Pseudomonas Species Isolated from Wastewater and Freshwater Milieus in the Eastern Cape Province, South Africa, as Reservoir of Antibiotic Resistant Determinants. International Journal of Environmental Research and Public Health. 2012; 9(7):2537-2549. https://doi.org/10.3390/ijerph9072537
Chicago/Turabian StyleIgbinosa, Isoken H., Uchechukwu U. Nwodo, Anibal Sosa, Mvuyo Tom, and Anthony I. Okoh. 2012. "Commensal Pseudomonas Species Isolated from Wastewater and Freshwater Milieus in the Eastern Cape Province, South Africa, as Reservoir of Antibiotic Resistant Determinants" International Journal of Environmental Research and Public Health 9, no. 7: 2537-2549. https://doi.org/10.3390/ijerph9072537
APA StyleIgbinosa, I. H., Nwodo, U. U., Sosa, A., Tom, M., & Okoh, A. I. (2012). Commensal Pseudomonas Species Isolated from Wastewater and Freshwater Milieus in the Eastern Cape Province, South Africa, as Reservoir of Antibiotic Resistant Determinants. International Journal of Environmental Research and Public Health, 9(7), 2537-2549. https://doi.org/10.3390/ijerph9072537