Chemical Profile of Cold-Pressed Beech Nut (Fagus sylvatica L.) Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Oil Extraction
2.3. Reagents
2.4. Oil Analysis
2.5. Peroxide Value (PV) (ISO 3960:2007) [9]
2.6. Free Fatty Acids (FFA) (ISO 660:2009) [10]
2.7. UV Extinction Coefficients (K232 and K270) (ISO 3656:2011) [11]
2.8. Pigments
2.9. Fatty Acid Composition
2.10. Tocopherols
2.11. Sterol Content
2.12. Statistical Analysis
3. Results
3.1. Beech Nut Properties
3.2. Physicochemical Characteristics of Oil
3.3. Fatty Acid Profile
3.4. Tocopherols
3.5. Sterols
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cesarettin, A.; Shahidi, F. Tree Nuts “Composition, Phytochemicals and Health Effects”; CRC Press Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2009. [Google Scholar]
- Siger, A.; Dwiecki, K.; Borzyszkowski, W.; Turski, M.; Rudzińska, M.; Nogala-Kałucka, M. Physicochemical characteristics of the cold-pressed oil obtained from seeds of Fagus sylvatica L. Food Chem. 2017, 225, 239–245. [Google Scholar] [CrossRef]
- Houston Durrant, T.; de Rigo, D.; Caudullo, G. Fagus sylvatica and other beeches in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the EU: Luxemburg, 2016. [Google Scholar]
- Vander Wall, S.B. The evolutionary ecology of nut dispersal. Bot. Rev. 2001, 67, 74–117. [Google Scholar] [CrossRef]
- Kaliniewicz, Z.; Markowski, P.; Anders, A.; Tylek, P.; Krzysiak, Z.; Wasielewski, W. Analysis of Variations in and Correlations Between Selected Physical Parameters of Common Beech (Fagus silvatica L.). Tech. Sci. Univ. Warm. Mazury Olszt. 2018, 21, 49–63. [Google Scholar] [CrossRef]
- Brunet, J.; Fritz, Ö.; Richnau, G. Biodiversity in European beech forests—A review with recommendations for sustainable forest management. Ecol. Bull. 2010, 53, 77–94. [Google Scholar] [CrossRef]
- Dandik, L.; Sahin, E.; Karaosmanoğlu, F.; Isiğigür, A.; Aksoy, H.A. Characteristics of beechnut oil (Fagus orientalis lipsky) of turkish origin. J. Am. Oil Chem. Soc. 1992, 69, 1274–1275. [Google Scholar] [CrossRef]
- FAO. FAOSTAT. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 15 December 2022).
- ISO 3960:2007; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. ISO: Geneva, Switzerland, 2007. Available online: https://www.iso.org/standard/39158.html (accessed on 16 January 2024).
- ISO 660:2009; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. ISO: Geneva, Switzerland, 2009. Available online: https://www.iso.org/standard/44879.html (accessed on 16 January 2024).
- ISO 3656:2011; Animal and Vegetable Fats and Oils—Determination of Ultraviolet Absorbance Expressed as Specific UV Extinction. ISO: Geneva, Switzerland, 2011. Available online: https://www.iso.org/standard/51008.html (accessed on 15 December 2022).
- Pokornỳ, J.; Kalinová, L.; Dysseler, P. Determination of chlorophyll pigments in crude vegetable oils. Pure Appl. Chem. 1995, 67, 1781–1787. [Google Scholar] [CrossRef]
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/72142.html (accessed on 19 February 2024).
- ISO 12966-4:2015; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography. ISO: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/63503.html (accessed on 19 February 2024).
- ISO 9936:2016; Animal and Vegetable Fats and Oils—Determination of Tocopherol and Tocotrienol Contents by High-Performance Liquid Chromatography. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/69595.html (accessed on 19 February 2024).
- ISO 12228-1:2014; Animal and Vegetable Fats and Oils—Determination of Individual and Total Sterols Contents—Gas Chromatographic Method—Part 1: Animal and Vegetable Fats and Oils. ISO: Geneva, Switzerland, 2014. Available online: https://www.iso.org/standard/60248.html (accessed on 19 February 2024).
- Pukacka, S.; Ratajczak, E. Factors influencing the storability of Fagus sylvatica L. seeds after release from dormancy. Plant Growth Regul. 2014, 72, 17–27. [Google Scholar] [CrossRef]
- Zlatanov, M.D.; Angelova-Romova, M.J.; Antova, G.A.; Dimitrova, R.D.; Momchilova, S.M.; Nikolova-Damyanova, B.M. Variations in Fatty Acids, Phospholipids and Sterols during the Seed Development of a High Oleic Sunflower Variety. JAOCS J. Am. Oil Chem. Soc. 2009, 86, 867–875. [Google Scholar] [CrossRef]
- Reyes, D.; Rodríguez, D.; Lorenzo, O.; Nicolás, G.; Canas, R.; Canton, F.R.; Canovas, F.M.; Nicolás, C. Immunolocalization of FsPK1 correlates this abscisic acid-induced protein kinase with germination arrest in Fagus sylvatica L. seeds. J. Exp. Bot. 2006, 57, 923–929. [Google Scholar] [CrossRef]
- FAO (Food Agriculture Organisation). Codex Standard For Named Vegetable Oils. 1999. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B210-1999%252FCXS_210e.pdf (accessed on 1 November 2021).
- Dedebas, T.; Ekici, L.; Sagdic, O. Chemical characteristics and storage stabilities of different cold-pressed seed oils. J. Food Process. Preserv. 2021, 45, e15107. [Google Scholar] [CrossRef]
- Daun, J.K. Spectrophotometric analysis of chlorophyll pigments in canola and rapeseed oils. Lipid Technol 2012, 24, 134–136. [Google Scholar] [CrossRef]
- Kornsteiner, M.; Wagner, K.H.; Elmadfa, I. Tocopherols and total phenolics in 10 different nut types. Food Chem 2006, 98, 381–387. [Google Scholar] [CrossRef]
- Demirbas, A. Transesterification of beechnut oil into biodiesel in compressed methanol. Energy Sources Part A: Recovery Util. Environ. Eff. 2009, 31, 1501–1509. [Google Scholar] [CrossRef]
- Prasad, R.B.N.; Erhard Gülz, P.-G. Composition of Lipids of Beech (Fagus sylvatica L.) Seed Oil. Z. Naturforschung C 1989, 44, 735–738. [Google Scholar] [CrossRef]
- Van Boven, M.; Holser, R.A.; Cokelaere, M.; Decuypere, E.; Govaerts, C.; Lemey, J. Characterization of Triglycerides Isolated from Jojoba Oil. J. Am. Oil Chem. Soc. 2000, 77, 1325–1329. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, M.F.; Sánchez-García, A.; Salas, J.J.; Garcés, R.; Martínez-Force, E. Characterization of the morphological changes and fatty acid profile of developing Camelina sativa seeds. Ind. Crops Prod. 2013, 50, 673–679. [Google Scholar] [CrossRef]
- Delgado, G.E.; Krämer, B.K.; Lorkowski, S.; März, W.; von Schacky, C.; Kleber, M.E. Individual omega-9 monounsaturated fatty acids and mortality—The Ludwigshafen Risk and Cardiovascular Health Study. J. Clin. Lipidol. 2017, 11, 126–135. [Google Scholar] [CrossRef]
- Fan, G.; Li, Y.; Liu, Y.; Suo, X.; Jia, Y.; Yang, X. Gondoic acid alleviates LPS-induced Kupffer cells inflammation by inhibiting ROS production and PKCθ/ERK/STAT3 signaling pathway. Int. Immunopharmacol. 2022, 111, 109171. [Google Scholar] [CrossRef]
- Bellien, J.; Bozec, E.; Bounoure, F.; Khettab, H.; Malloizel-Delaunay, J.; Skiba, M.; Iacob, M.; Donnadieu, N.; Coquard, A.; Morio, B.; et al. The effect of camelina oil on vascular function in essential hypertensive patients with metabolic syndrome: A randomized, placebo-controlled, double-blind study. Am. J. Clin. Nutr. 2022, 115, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Neđeral, S.; Petrović, M.; Vincek, D.; Pukec, D.; Škevin, D.; Kraljić, K.; Obranović, M. Variance of quality parameters and fatty acid composition in pumpkin seed oil during three crop seasons. Ind Crops Prod 2014, 60, 15–21. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Maraei, R.W.; El-Ansary, A.E.; Rezk, A.A.; Mansour, A.T.; Aly, A.A. Characterizing the Bioactive Ingredients in Sesame Oil Affected by Multiple Roasting Methods. Foods 2022, 11, 2261. [Google Scholar] [CrossRef]
- Maguire, L.S.; O’sullivan, S.M.; Galvin, K.; O’connor, T.P.; O’brien, N.M. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int. J. Food Sci. Nutr. 2004, 55, 171–178. [Google Scholar] [CrossRef]
- Miraliakbari, H.; Shahidi, F. Lipid class compositions, tocopherols and sterols of tree nut oils extracted with different solvents. J. Food Lipids 2008, 15, 81–96. [Google Scholar] [CrossRef]
- Obranović, M.; Škevin, D.; Kraljić, K.; Pospišil, M.; Neđeral, S.; Blekić, M.; Putnik, P. Influence of climate, variety and production process on tocopherols, plastochromanol-8 and pigments in flaxseed oil. Food Technol. Biotechnol. 2015, 53, 496. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Rani, A.; Dixit, A.K.; Bhatnagar, D.; Chauhan, G.S. Relative changes in tocopherols, isoflavones, total phenolic content, and antioxidative activity in soybean seeds at different reproductive stages. J. Agric. Food Chem. 2009, 57, 2705–2710. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Dietary Reference Values for vitamin E as α-tocopherol. EFSA J. 2015, 13, 4149. [Google Scholar] [CrossRef]
- Valitova, J.N.; Sulkarnayeva, A.G.; Minibayeva, F.V. Plant sterols: Diversity, biosynthesis, and physiological functions. Biochemistry (Moscow) 2016, 81, 819–834. [Google Scholar] [CrossRef]
- bin Sayeed, M.; Karim, S.; Sharmin, T.; Morshed, M. Critical Analysis on Characterization, Systemic Effect, and Therapeutic Potential of Beta-Sitosterol: A Plant-Derived Orphan Phytosterol. Medicines 2016, 3, 29. [Google Scholar] [CrossRef]
- Lukić, M.; Lukić, I.; Krapac, M.; Sladonja, B.; Piližota, V. Sterols and triterpene diols in olive oil as indicators of variety and degree of ripening. Food Chem. 2013, 136, 251–258. [Google Scholar] [CrossRef]
- Rogowska, A.; Szakiel, A. The role of sterols in plant response to abiotic stress. Phytochem. Rev. 2020, 19, 1525–1538. [Google Scholar] [CrossRef]
Component | |
---|---|
Water content (%) | 25.35 ± 0.07 |
Oil content (%) | 13.19 ± 0.01 |
Protein content (%) | 19.40 ± 0.27 |
Component | |
---|---|
Free fatty acids (%) | 1.74 ± 0.11 |
Peroxide value (mEq O2 kg−1) | 1.86 ± 0.18 |
K232 | 1.88 ± 0.06 |
K270 | 0.32 ± 0.02 |
Chlorophyll (mg kg−1) | 1.47 ± 0.09 |
Total carotenes (mg kg−1) | 7.16 ± 0.39 |
Fatty Acid | (%) | ||
---|---|---|---|
Saturated | |||
Myristic acid | C14:0 | 0.2 ± 0.00 | |
Palmitic acid | C16:0 | 7.3 ± 0.01 | |
Margaric acid | C17:0 | 0.1 ± 0.00 | |
Stearic acid | C18:0 | 2.8 ± 0.00 | |
Arachidic acid | C20:0 | 0.6 ± 0.02 | |
Heneicosylic acid | C21:0 | 0.3 ± 0.01 | |
Monounsaturated | |||
Palmitoleic acid | C16:1 | 0.2 ± 0.00 | |
Oleic acid (n-9) | C18:1 | 35.0 ± 0.01 | |
Gondoic acid (n-9) | C20:1 | 7.7 ± 0.01 | |
Polyunsaturated | |||
Linoleic acid (n-6) | C18:2 | 40.5 ± 0.01 | |
α-Linolenic acid | C18:3 | 5.2 ± 0.00 | |
SFA | 11.4 ± 0.03 | ||
MUFA | 42.9 ± 0.02 | ||
PUFA | 45.7 ± 0.01 |
mg 100 g−1 Oil | (%) | |
---|---|---|
α-Tocopherol | 15.32 ± 0.63 | 12.99% |
β-Tocopherol | 1.65 ± 0.18 | 1.40% |
γ-Tocopherol | 99.38 ± 3.41 | 84.27% |
δ-Tocopherol | 1.58 ± 0.06 | 1.34% |
Total | 117.93 ± 3.92 |
mg kg−1 Oil | (%) | |
---|---|---|
Campesterol | 222.79 ± 12.39 | 8.2% |
Stigmasterol | 58.19 ± 19.91 | 2.1% |
β-sitosterol | 2181.13 ± 103.49 | 80.5% |
Δ5-avenasterol | 246.62 ± 23.01 | 9.1% |
Total | 2708.73 ± 140.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obranović, M.; Kraljić, K.; Škevin, D.; Balbino, S.; Tomljanović, K. Chemical Profile of Cold-Pressed Beech Nut (Fagus sylvatica L.) Oil. Nutraceuticals 2024, 4, 94-103. https://doi.org/10.3390/nutraceuticals4010007
Obranović M, Kraljić K, Škevin D, Balbino S, Tomljanović K. Chemical Profile of Cold-Pressed Beech Nut (Fagus sylvatica L.) Oil. Nutraceuticals. 2024; 4(1):94-103. https://doi.org/10.3390/nutraceuticals4010007
Chicago/Turabian StyleObranović, Marko, Klara Kraljić, Dubravka Škevin, Sandra Balbino, and Kristijan Tomljanović. 2024. "Chemical Profile of Cold-Pressed Beech Nut (Fagus sylvatica L.) Oil" Nutraceuticals 4, no. 1: 94-103. https://doi.org/10.3390/nutraceuticals4010007
APA StyleObranović, M., Kraljić, K., Škevin, D., Balbino, S., & Tomljanović, K. (2024). Chemical Profile of Cold-Pressed Beech Nut (Fagus sylvatica L.) Oil. Nutraceuticals, 4(1), 94-103. https://doi.org/10.3390/nutraceuticals4010007