Fomentariol, a Fomes fomentarius Compound, Exhibits Anti-Diabetic Effects in Fungal Material: An In Vitro Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Sample Collection and Identification
2.2. Preparation of Fungal Extracts
2.3. α-Glucosidase Purification Methods
2.4. Alpha-Glucosidase and Alpha-Amylase Inhibition Assays
2.5. Dpp-4 Inhibition Assay
2.6. Analytical Techniques for Active Molecule Identification
3. Results
4. Alpha-Amylase
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation IDF Diabetes Atlas Fifth Edition 2021 [Internet]. Available online: https://diabetesatlas.org/atlas/tenth-edition/ (accessed on 1 October 2023).
- Weinger, K.; Beverly, E.A. Barriers to Achieving Glycemic Targets: Who Omits Insulin and Why? Diabetes Care 2010, 33, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.; Sawhney, B.; Hannachi, H.; Liu, J.; Wang, T.; Fu, A.Z.; Iglay, K.; McNeill, A.; Rajpathak, S. Distance to Glycemic Goal at the Time of Treatment Intensification in Patients with Type 2 Diabetes Mellitus Failing Metformin Monotherapy in the United States. Curr. Med. Res. Opin. 2020, 36, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R. Oral and Injectable (Non-Insulin) Pharmacological Agents for Type 2 Diabetes. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279141/ (accessed on 1 October 2023).
- Bin Rakhis, S.A.; AlDuwayhis, N.M.; Aleid, N.; AlBarrak, A.N.; Aloraini, A.A. Glycemic Control for Type 2 Diabetes Mellitus Patients: A Systematic Review. Cureus 2022, 14, e26180. [Google Scholar] [CrossRef]
- Nathan, D.M.; Schmader, K.E. Treatment of Type 2 Diabetes Mellitus in the Older Patient. UpToDate 2015, 1–21. Available online: https://www.uptodate.com/contents/treatment-of-type-2-diabetes-mellitus-in-the-older-patient (accessed on 1 October 2023).
- Ma, H.T.; Hsieh, J.F.; Chen, S.T. Anti-Diabetic Effects of Ganoderma Lucidum. Phytochemistry 2015, 114, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Wu, K.; Xu, L.; Cen, Y.; Ni, J.; Chen, J.; Zheng, W.; Liu, W. Methanol Extract of Inonotus Obliquus Improves Type 2 Diabetes Mellitus through Modifying Intestinal Flora. Front. Endocrinol. 2023, 13, 1103972. [Google Scholar] [CrossRef]
- Bhambri, A.; Srivastava, M.; Mahale, V.G.; Mahale, S.; Karn, S.K. Mushrooms as Potential Sources of Active Metabolites and Medicines. Front. Microbiol. 2022, 13, 837266. [Google Scholar] [CrossRef] [PubMed]
- Nurjannah, L.; Azhari, A.; Wulandari, A.P.; Amin, S.; Supratman, U. Screening and Evaluation of Antidiabetic Activities of Endophytic Fungi Associated with Etlingera Elatior. Biodiversitas 2023, 24, 3481–3487. [Google Scholar] [CrossRef]
- Cristini, V.; Nop, P.; Zlámal, J.; Vand, M.H.; Šeda, V.; Tippner, J. Fomes fomentarius and F. inzengae—A Comparison of Their Decay Patterns on Beech Wood. Microorganisms 2023, 11, 679. [Google Scholar] [CrossRef]
- Ślusarczyk, J.; Adamska, E.; Czerwik-Marcinkowska, J. Fungi and Algae as Sources of Medicinal and Other Biologically Active Compounds: A Review. Nutrients 2021, 13, 3178. [Google Scholar] [CrossRef]
- Gąsecka, M.; Siwulski, M.; Mleczek, M. Evaluation of Bioactive Compounds Content and Antioxidant Properties of Soil-Growing and Wood-Growing Edible Mushrooms. J. Food Process. Preserv. 2018, 42, e13386. [Google Scholar] [CrossRef]
- Niazi, A.R.; Ghafoor, A. Different Ways to Exploit Mushrooms: A Review. All Life 2021, 14, 450–460. [Google Scholar] [CrossRef]
- Barron, G.L. Predatory Fungi, Wood Decay, and the Carbon Cycle. Biodiversity 2003, 4, 3–9. [Google Scholar] [CrossRef]
- Lind, A.L.; Wisecaver, J.H.; Lameiras, C.; Wiemann, P.; Palmer, J.M.; Keller, N.P.; Rodrigues, F.; Goldman, G.H.; Rokas, A. Drivers of Genetic Diversity in Secondary Metabolic Gene Clusters within a Fungal Species. PLoS Biol. 2017, 15, e2003583. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, Y.; Hirata, R.; Yasui, H.; Hattori, M.; Sakurai, H. Inhibitory Effect of CuSO4 on α-Glucosidase Activity in ddY Mice. Metallomics 2010, 2, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Sham Shihabudeen, H.; Hansi Priscilla, D.; Thirumurugan, K. Cinnamon Extract Inhibits α-Glucosidase Activity and Dampens Postprandial Glucose Excursion in Diabetic Rats. Nutr. Metab. 2011, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Oki, T.; Matsui, T.; Matsumoto, K. Evaluation of α-Glucosidase Inhibition by Using an Immobilized Assay System. Biol. Pharm. Bull. 2000, 23, 1084–1087. [Google Scholar] [CrossRef]
- Matsui, T.; Shimada, M.; Saito, N.; Matsumoto, K. α-Glucosidase Inhibition Assay in an Enzyme-Immobilized Amino-Microplate. Anal. Sci. 2009, 25, 559–562. [Google Scholar] [CrossRef]
- Bernfeld, P. [17] Amylases, α and β. Methods Enzymol. 1955, 1, 149–158. [Google Scholar] [CrossRef]
- Maljurić, N.; Golubović, J.; Ravnikar, M.; Žigon, D.; Štrukelj, B.; Otašević, B. Isolation and Determination of Fomentariol: Novel Potential Anti-diabetic Drug from Fungal Material. J. Anal. Methods Chem. 2018, 2018, 2434691. [Google Scholar] [CrossRef]
- Arpin, N.; Favre-Bonvin, J.; Steglich, W. Le Fomentariol: Nouvelle Benzotropolone Isolée de Fomes fomentarius. Phytochemistry 1974, 13, 1949–1952. [Google Scholar] [CrossRef]
- Grienke, U.; Zöll, M.; Peintner, U.; Rollinger, J.M. European Medicinal Polypores—A Modern View on Traditional Uses. J. Ethnopharmacol. 2014, 154, 564–583. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S. Effects of Fomes fomentarius Supplementation on Antioxidant Enzyme Activities, Blood Glucose, and Lipid Profile in Streptozotocin-Induced Diabetic Rats. Nutr. Res. 2005, 25, 187–195. [Google Scholar] [CrossRef]
- Park, Y.M.; Kim, I.T.; Park, H.J.; Choi, J.W.; Park, K.Y.; Lee, J.D.; Nam, B.H.; Kim, D.G.; Lee, J.Y.; Lee, K.T. Anti-Inflammatory and Anti-Nociceptive Effects of the Methanol Extract of Fomes fomentarius. Biol. Pharm. Bull. 2004, 27, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
- Schwarze, F.W.M.R.; Engels, J.; Mattheck, C. Fungal Strategies of Wood Decay in Trees; Springer: Berlin, Germany, 2000. [Google Scholar]
- Seo, D.W.; Yi, Y.J.; Lee, M.S.; Yun, B.S.; Lee, S.M. Differential Modulation of Lipopolysaccharide-Induced Inflammatory Cytokine Production by and Antioxidant Activity of Fomentariol in RAW264.7 Cells. Mycobiology 2015, 43, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.I.; Son, H.J.; Moon, K.S.; Kim, J.K.; Kim, J.G.; Chun, H.S.; Ahn, S.K.; Hong, C., II. Novel α-Glucosidase Inhibitors, CKD-711 and CKD-711a Produced by Streptomyces sp. CK-4416. II. Biological Properties. J. Antibiot. 2002, 55, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.P.; SinhaRoy, R.; Pocai, A.; Kelly, T.M.; Scapin, G.; Gao, Y.; Pryor, K.A.D.; Wu, J.K.; Eiermann, G.J.; Xu, S.S.; et al. A Comparative Study of the Binding Properties, Dipeptidyl peptidase-4 (DPP-4) Inhibitory Activity and Glucose-lowering Efficacy of the DPP-4 Inhibitors Alogliptin, Linagliptin, Saxagliptin, Sitagliptin and Vildagliptin in Mice. Endocrinol. Diabetes Metab. 2018, 1, e00002. [Google Scholar] [CrossRef]
- Rashid, F.; Ahmad, M.; Ashfaq, U.A.; Al-Mutairi, A.A.; Al-Hussain, S.A. Design, Synthesis and Pharmacological Evaluation of 2-(3-BenzoyI-4-Hydroxy-1,1-Dioxido-2H-Benzo[e] [1,2]thiazin-2-yI)-N-(2-Bromophenyl) Acetamide as Antidiabetic Agent. Drug Des. Devel. Ther. 2022, 16, 4043–4060. [Google Scholar] [CrossRef] [PubMed]
- Větrovský, T.; Voříšková, J.; Šnajdr, J.; Gabriel, J.; Baldrian, P. Ecology of Coarse Wood Decomposition by the Saprotrophic Fungus Fomes fomentarius. Biodegradation 2011, 22, 709–718. [Google Scholar] [CrossRef]
- Taha, M.; Ismail, N.H.; Imran, S.; Rokei, M.Q.B.; Saad, S.M.; Khan, K.M. Synthesis of New Oxadiazole Derivatives as α-Glucosidase Inhibitors. Bioorganic Med. Chem. 2015, 23, 4155–4162. [Google Scholar] [CrossRef]
- de Sales, P.M.; de Souza, P.M.; Simeoni, L.A.; Magalhães, P.d.O.; Silveira, D. α-Amylase Inhibitors: A Review of Raw Material and Isolated Compounds from Plant Source. J. Pharm. Pharm. Sci. 2012, 15, 141–183. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, G.; Liao, Y.; Gong, D. Inhibitory Kinetics and Mechanism of Kaempferol on α-Glucosidase. Food Chem. 2016, 190, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Aiysha Thompson, K. Type 2 Diabetes Mellitus and Glucagon Like Peptide-1 Receptor Signalling. Clin. Exp. Pharmacol. 2013, 3, 4. [Google Scholar] [CrossRef]
- Klen, J.; Dolžan, V. Glucagon-like Peptide-1 Receptor Agonists in the Management of Type 2 Diabetes Mellitus and Obesity: The Impact of Pharmacological Properties and Genetic Factors. Int. J. Mol. Sci. 2022, 23, 3451. [Google Scholar] [CrossRef] [PubMed]
- Hölscher, C. Protective Properties of GLP-1 and Associated Peptide Hormones in Neurodegenerative Disorders. Br. J. Pharmacol. 2022, 179, 695–714. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravnikar, M.; Štrukelj, B.; Otašević, B.; Sirše, M. Fomentariol, a Fomes fomentarius Compound, Exhibits Anti-Diabetic Effects in Fungal Material: An In Vitro Analysis. Nutraceuticals 2024, 4, 273-282. https://doi.org/10.3390/nutraceuticals4020017
Ravnikar M, Štrukelj B, Otašević B, Sirše M. Fomentariol, a Fomes fomentarius Compound, Exhibits Anti-Diabetic Effects in Fungal Material: An In Vitro Analysis. Nutraceuticals. 2024; 4(2):273-282. https://doi.org/10.3390/nutraceuticals4020017
Chicago/Turabian StyleRavnikar, Matjaž, Borut Štrukelj, Biljana Otašević, and Mateja Sirše. 2024. "Fomentariol, a Fomes fomentarius Compound, Exhibits Anti-Diabetic Effects in Fungal Material: An In Vitro Analysis" Nutraceuticals 4, no. 2: 273-282. https://doi.org/10.3390/nutraceuticals4020017
APA StyleRavnikar, M., Štrukelj, B., Otašević, B., & Sirše, M. (2024). Fomentariol, a Fomes fomentarius Compound, Exhibits Anti-Diabetic Effects in Fungal Material: An In Vitro Analysis. Nutraceuticals, 4(2), 273-282. https://doi.org/10.3390/nutraceuticals4020017