The Nephrotoxicity of Drugs Used in Causal Oncological Therapies
Abstract
:1. Introduction
2. Materials and Methods
3. Chemotherapy
3.1. Nephrotoxicity of Chemotherapy—Risk Factors
3.2. The Assessment of Renal Function in Cancer Patients
3.3. Chemotherapeutics
3.3.1. Group of Alkylating Agents
Platinum-Based Chemotherapeutic Drugs
Nitrogen Mustards
Nitrosourea Derivatives
3.3.2. Cytotoxic Antibiotics
3.3.3. Antimetabolites
Methotrexate (4-amino-4-deoxy-N10-methylfolic acid)
Pemetrexed
Gemcitabine
5-Fluorouracil
4. Immunotherapy as a New Method of Cancer Treatment
4.1. Nephrotoxicity of Immunotherapy
4.2. Types and Epidemiology of Immune-Related Nephrotoxicity
4.3. Mechanism of Nephrotoxicity
4.4. Diagnosis of Nephrotoxicity
4.5. Treatment
5. Conclusions
- adequate monitoring of kidney function in cancer patients
- application of available preventive measures reducing the risk of kidney damage
- appropriate treatment of renal complications.
Author Contributions
Funding
Conflicts of Interest
References
- Capasso, A.; Benigni, A.; Capitanio, U.; Danesh, F.R.; Di Marzo, V.; Gesualdo, L.; Grandaliano, G.; Jaimes, E.A.; Malyszko, J.; Perazella, M.A.; et al. Summary of the International Conference on Onco-Nephrology: An emerging field in medicine. Kidney Int. 2019, 96, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol. 2019, 54, 407. [Google Scholar] [PubMed]
- Perazella, M.A. Renal vulnerability to drug toxicity. Clin. J. Am. Soc. Nephrol. 2009, 4, 1275–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enomoto, A.; Endou, H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin. Exp. Nephrol. 2005, 9, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Ciarimboli, G.; Holle, S.K.; Vollenbröcker, B.; Hagos, Y.; Reuter, S.; Burckhardt, G.; Bierer, S.; Herrmann, E.; Pavenstädt, H.; Rossi, R.; et al. New clues for nephrotoxicity induced by ifosfamide: Preferential renal uptake via the human organic cation transporter 2. Mol. Pharm. 2011, 8, 270–279. [Google Scholar] [CrossRef]
- Perazella, M.A. Onco-nephrology: Renal toxicities of chemotherapeutic agents. Clin. J. Am. Soc. Nephrol. 2012, 7, 1713–1721. [Google Scholar] [CrossRef] [Green Version]
- Torres da Costa e Silva, V.; Costalonga, E.C.; Coelho, F.O.; Caires, R.A.; Burdmann, E.A. Assessment of Kidney Function in Patients with Cancer. Adv. Chronic Kidney Dis. 2018, 25, 49–56. [Google Scholar] [CrossRef] [Green Version]
- McMahon, B.A.; Rosner, M.H. GFR Measurement and Chemotherapy Dosing in Patients with Kidney Disease and Cancer. Kidney360 2020, 1, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Stevens, L.A.; Schmid, C.H.; Greene, T.; Li, L.; Beck, G.J.; Joffe, M.M.; Froissart, M.; Kusek, J.W.; Zhang, Y.; Coresh, J.; et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 2009, 75, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Inker, L.A.; Eckfeldt, J.; Levey, A.S.; Leiendecker-Foster, C.; Rynders, G.; Manzi, J.; Waheed, S.; Coresh, J. Expressing the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) cystatin C equations for estimating GFR with standardized serum cystatin C values. Am. J. Kidney Dis. 2011, 58, 682–684. [Google Scholar] [CrossRef] [Green Version]
- Solomon, R.; Goldstein, S. Real-time measurement of glomerular filtration rate. Curr. Opin. Crit. Care 2017, 23, 470–474. [Google Scholar] [CrossRef]
- Rizk, D.V.; Meier, D.; Sandoval, R.M.; Chacana, T.; Reilly, E.S.; Seegmiller, J.C.; DeNoia, E.; Strickland, J.S.; Muldoon, J.; Molitoris, B.A. A Novel Method for Rapid Bedside Measurement of GFR. J. Am. Soc. Nephrol. 2018, 29, 1609–1613. [Google Scholar] [CrossRef] [Green Version]
- Schock-Kusch, D.; Sadick, M.; Henninger, N.; Kraenzlin, B.; Claus, G.; Kloetzer, H.M.; Weiß, C.; Pill, J.; Gretz, N. Transcutaneous measurement of glomerular filtration rate using FITC-sinistrin in rats. Nephrol. Dial. Transplant. 2009, 24, 2997–3001. [Google Scholar] [CrossRef]
- Florea, A.M.; Büsselberg, D. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects. Cancers 2011, 3, 1351. [Google Scholar] [CrossRef] [Green Version]
- Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of Cisplatin Nephrotoxicity. Toxins 2010, 2, 2490. [Google Scholar] [CrossRef] [Green Version]
- Pabla, N.; Dong, Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 2008, 73, 994–1007. [Google Scholar] [CrossRef] [Green Version]
- Oronsky, B.; Caroen, S.; Oronsky, A.; Dobalian, V.E.; Oronsky, N.; Lybeck, M.; Reid, T.R.; Carter, C.A. Electrolyte disorders with platinum-based chemotherapy: Mechanisms, manifestations and management. Cancer Chemother. Pharmacol. 2017, 80, 895. [Google Scholar] [CrossRef] [Green Version]
- Lajer, H.; Daugaard, G. Cisplatin and hypomagnesemia. Cancer Treat. Rev. 1999, 25, 47–58. [Google Scholar] [CrossRef]
- Ludwig, T.; Riethmüller, C.; Gekle, M.; Schwerdt, G.; Oberleithner, H. Nephrotoxicity of platinum complexes is related to basolateral organic cation transport. Kidney Int. 2004, 66, 196–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitada, N.; Takara, K.; Itoh, C.; Minegaki, T.; Tsujimoto, M.; Sakaeda, T.; Yokoyama, T. Comparative analysis of cell injury after exposure to antitumor platinum derivatives in kidney tubular epithelial cells. Chemotherapy 2008, 54, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Małyszko, J.; Kozłowska, K.; Kozłowski, L.; Małyszko, J. Nephrotoxicity of anticancer treatment. Nephrol. Dial. Transplant. 2017, 32, 924–936. [Google Scholar] [CrossRef] [PubMed]
- Gaughran, G.; Qayyum, K.; Smyth, L.; Davis, A. Carboplatin and hypomagnesemia: Is it really a problem? Asia. Pac. J. Clin. Oncol. 2021, 17, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Yaghobi Joybari, A.; Sarbaz, S.; Azadeh, P.; Mirafsharieh, S.A.; Rahbari, A.; Farasatinasab, M.; Mokhtari, M. Oxaliplatin-induced renal tubular vacuolization. Ann. Pharmacother. 2014, 48, 796–800. [Google Scholar] [CrossRef]
- Phan, N.T.; Heng, A.E.; Lautrette, A.; Kémény, J.L.; Souweine, B. Oxaliplatin-induced acute renal failure presenting clinically as thrombotic microangiopathy: Think of acute tubular necrosis. NDT Plus 2009, 2, 254. [Google Scholar] [CrossRef]
- Phull, P.; Quillen, K.; Hartshorn, K.L. Acute Oxaliplatin-induced Hemolytic Anemia, Thrombocytopenia, and Renal Failure: Case Report and a Literature Review. Clin. Color. Cancer 2017, 16, e105–e107. [Google Scholar] [CrossRef]
- Watanabe, D.; Fujii, H.; Yamada, Y.; Iihara, H.; Ishihara, T.; Matsuhashi, N.; Takahashi, T.; Yoshida, K.; Suzuki, A. Relationship Between Renal Function and the Incidence of Adverse Events in Patients with Colorectal Cancer Receiving Oxaliplatin. Anticancer Res. 2020, 40, 299–304. [Google Scholar] [CrossRef]
- Emadi, A.; Jones, R.J.; Brodsky, R.A. Cyclophosphamide and cancer: Golden anniversary. Nat. Rev. Clin. Oncol. 2009, 6, 638–647. [Google Scholar] [CrossRef]
- Almalag, H.M.; Alasmari, S.S.; Alrayes, M.H.; Binhameed, M.A.; Alsudairi, R.A.; Alosaimi, M.M.; Alnasser, G.A.; Abuzaid, R.A.; Khalil, N.; Abouzaid, H.H.; et al. Incidence of hemorrhagic cystitis after cyclophosphamide therapy with or without mesna: A cohort study and comprehensive literature review. J. Oncol. Pharm. Pract. 2021, 27, 340–349. [Google Scholar] [CrossRef]
- Korkmaz, A.; Topal, T.; Oter, S. Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation. Cell Biol. Toxicol. 2007, 23, 303–312. [Google Scholar] [CrossRef]
- Ulinski, T.; Aoun, B. Pediatric Idiopathic Nephrotic Syndrome: Treatment Strategies in Steroid Dependent and Steroid Resistant Forms. Curr. Med. Chem. 2010, 17, 847–853. [Google Scholar] [CrossRef]
- Salido, M.; Macarron, P.; Hernández-García, C.; D’Cruz, D.P.; Khamashta, M.A.; Hughes, G.R.V. Water intoxication induced by low-dose cyclophosphamide in two patients with systemic lupus erythematosus. Lupus 2003, 12, 636–639. [Google Scholar] [CrossRef]
- Ensergueix, G.; Pallet, N.; Joly, D.; Levi, C.; Chauvet, S.; Trivin, C.; Augusto, J.F.; Boudet, R.; Aboudagga, H.; Touchard, G.; et al. Ifosfamide nephrotoxicity in adult patients. Clin. Kidney J. 2019, 13, 660–665. [Google Scholar] [CrossRef] [Green Version]
- Springate, J.; Chan, K.; Lu, H.; Davies, S.; Taub, M. Toxicity of ifosfamide and its metabolite chloroacetaldehyde in cultured renal tubule cells. Vitro Cell. Dev. Biol. Anim. 1999, 35, 314–317. [Google Scholar] [CrossRef]
- Yilmaz, N.; Emmungil, H.; Gucenmez, S.; Ozen, G.; Yildiz, F.; Balkarli, A.; Kimyon, G.; Coskun, B.N.; Dogan, I.; Pamuk, O.N.; et al. Incidence of Cyclophosphamide-induced Urotoxicity and Protective Effect of Mesna in Rheumatic Diseases. J. Rheumatol. 2015, 42, 1661–1666. [Google Scholar] [CrossRef]
- Matz, E.L.; Hsieh, M.H. Review of Advances in Uroprotective Agents for Cyclophosphamide- and Ifosfamide-induced Hemorrhagic Cystitis. Urology 2017, 100, 16–19. [Google Scholar] [CrossRef] [Green Version]
- Nikolova, T.; Roos, W.P.; Krämer, O.H.; Strik, H.M.; Kaina, B. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 29–39. [Google Scholar] [CrossRef]
- Irfan, N.; Samuel, E.; Ranjha, F.R.; Waheed, A.; Bakar, M.A.; Usman, S.; Butt, S.; Rashid, A.; Yousaf, I. Toxicity Profile of Procarbazine Lomustine and Vincristine Chemotherapy in Low-Grade Glioma—Retrospective Review. Cureus 2020, 12, e11070. [Google Scholar] [CrossRef]
- Bass, P.D.; Gubler, D.A.; Judd, T.C.; Williams, R.M. The Mitomycinoid Alkaloids: Mechanism of Action, Biosynthesis, Total Syntheses and Synthetic Approaches. Chem. Rev. 2013, 113, 6816. [Google Scholar] [CrossRef]
- Giroux, L.; Bettez, P.; Giroux, L. Mitomycin-C nephrotoxicity: A clinico-pathologic study of 17 cases. Am. J. Kidney Dis. 1985, 6, 28–39. [Google Scholar] [CrossRef] [PubMed]
- El-Ghazal, R.; Podoltsev, N.; Marks, P.; Chu, E.; Wasif Saif, M. Mitomycin—C-induced thrombotic thrombocytopenic purpura/hemolytic uremic syndrome: Cumulative toxicity of an old drug in a new era. Clin. Color. Cancer 2011, 10, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Chenn Wu, D.; Liu, J.M.; Chen, Y.M.; Yang, S.; Liu, S.M.; Chen, L.T.; Whang-Peng, J. Mitomycin-C Induced Hemolytic Uremic Syndrome: A Case Report and Literature Review. Jpn. J. Clin. Oncol. 1997, 27, 115–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, R.; Beem, E.; Sautina, L.; Zharikov, S.I.; Segal, M.S. Mitomycin- and calcineurin-associated HUS, endothelial dysfunction and endothelial repair: A new paradigm for the puzzle? Nephrol. Dial. Transplant. 2007, 22, 617–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gundappa, R.K.; Sud, K.; Kohli, H.S.; Gupta, K.L.; Joshi, K.; Sakhuja, V. Mitomycin-C induced hemolytic uremic syndrome: A case report. Ren. Fail. 2002, 24, 373–377. [Google Scholar] [CrossRef]
- Koźmiński, P.; Halik, P.K.; Chesori, R.; Gniazdowska, E. Overview of Dual-Acting Drug Methotrexate in Different Neurological Diseases, Autoimmune Pathologies and Cancers. Int. J. Mol. Sci. 2020, 21, 3483. [Google Scholar] [CrossRef]
- Ramalanjaona, B.; Hevroni, G.; Cham, S.; Page, C.; Salifu, M.O.; McFarlane, S.I. Nephrotoxicity Associated with Low-dose Methotrexate and Outpatient Parenteral Microbial Therapy: A Case Report, Review of the Literature and Pathophysiologic Insights. Am. J. Med. Case Rep. 2020, 8, 400–404. [Google Scholar] [CrossRef]
- Taylor, Z.L.; Vang, J.; Lopez-Lopez, E.; Oosterom, N.; Mikkelsen, T.; Ramsey, L.B. Systematic Review of Pharmacogenetic Factors That Influence High-Dose Methotrexate Pharmacokinetics in Pediatric Malignancies. Cancers 2021, 13, 2837. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Tian, J.; Wang, Z. Renal Function and Plasma Methotrexate Concentrations Predict Toxicities in Adults Receiving High-Dose Methotrexate. Med. Sci. Monit. 2018, 24, 7719–7726. [Google Scholar] [CrossRef]
- May, J.; Carson, K.R.; Butler, S.; Liu, W.; Bartlett, N.L.; Wagner-Johnston, N.D. High Incidence of Methotrexate Associated Renal Toxicity in Patients with Lymphoma: A Retrospective Analysis. Leuk. Lymphoma 2014, 55, 1345. [Google Scholar] [CrossRef]
- Sharbaf, F.G.; Farhangi, H.; Assadi, F. Prevention of Chemotherapy-Induced Nephrotoxicity in Children with Cancer. Int. J. Prev. Med. 2017, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Widemann, B.C.; Adamson, P.C. Understanding and managing methotrexate nephrotoxicity. Oncologist 2006, 11, 694–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adjei, A.A. Pharmacology and mechanism of action of pemetrexed. Clin. Lung Cancer 2004, 5, S51–S55. [Google Scholar] [CrossRef] [PubMed]
- Kutuk, T.; Appel, H.; Avendano, M.C.; Albrecht, F.; Kaywin, P.; Ramos, S.; Suarez-Murias, M.E.; Mehta, M.P.; Kotecha, R. Feasibility of Tumor Treating Fields with Pemetrexed and Platinum-Based Chemotherapy for Unresectable Malignant Pleural Mesothelioma: Single-Center, Real-World Data. Cancers 2022, 14, 2020. [Google Scholar] [CrossRef] [PubMed]
- Zattera, T.; Londrino, F.; Trezzi, M.; Palumbo, R.; Granata, A.; Tatangelo, P.; Corbani, V.; Falqui, V.; Chiappini, N.; Mathiasen, L.; et al. Pemetrexed-induced acute kidney failure following irreversible renal damage: Two case reports and literature review. J. Nephropathol. 2017, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Zajjari, Y.; Azizi, M.; Sbitti, Y.; El Kabbaj, D. Nephrotoxicity in a Patient Treated with Pemetrexed. Indian J. Nephrol. 2017, 27, 243. [Google Scholar] [CrossRef]
- Assayag, M.; Rouvier, P.; Gauthier, M.; Costel, G.; Cluzel, P.; Mercadal, L.; Deray, G.; Isnard Bagnis, C. Renal failure during chemotherapy: Renal biopsy for assessing subacute nephrotoxicity of pemetrexed. BMC Cancer 2017, 17, 770. [Google Scholar] [CrossRef] [Green Version]
- Muraki, K.; Koyama, R.; Honma, Y.; Yagishita, S.; Shukuya, T.; Ohashi, R.; Takahashi, F.; Kido, K.; Iwakami, S.I.; Sasaki, S.; et al. Hydration with magnesium and mannitol without furosemide prevents the nephrotoxicity induced by cisplatin and pemetrexed in patients with advanced non-small cell lung cancer. J. Thorac. Dis. 2012, 4, 562–568. [Google Scholar] [CrossRef]
- Perazella, M.A.; Izzedine, H. New drug toxicities in the onco-nephrology world. Kidney Int. 2015, 87, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Samodelov, S.L.; Gai, Z.; Kullak-Ublick, G.A.; Visentin, M. Renal Reabsorption of Folates: Pharmacological and Toxicological Snapshots. Nutrients 2019, 11, 2353. [Google Scholar] [CrossRef]
- Koimtzis, G.; Alexandrou, V.; Chalklin, C.G.; Carrington-Windo, E.; Ramsden, M.; Karakasis, N.; Lam, K.W.; Tsakaldimis, G. The Role of Adjuvant Single Postoperative Instillation of Gemcitabine for Non-Muscle-Invasive Bladder Cancer: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 1154. [Google Scholar] [CrossRef]
- Amrutkar, M.; Gladhaug, I.P. Pancreatic Cancer Chemoresistance to Gemcitabine. Cancers 2017, 9, 157. [Google Scholar] [CrossRef] [Green Version]
- Garrido, M.P.; Fredes, A.N.; Lobos-González, L.; Valenzuela-Valderrama, M.; Vera, D.B.; Romero, C. Current Treatments and New Possible Complementary Therapies for Epithelial Ovarian Cancer. Biomedicines 2021, 10, 770. [Google Scholar] [CrossRef]
- Hayashi, H.; Kurata, T.; Nakagawa, K. Gemcitabine: Efficacy in the Treatment of Advanced Stage Nonsquamous Non-Small Cell Lung Cancer. Clin. Med. Insights. Oncol. 2011, 5, 177. [Google Scholar] [CrossRef]
- Lee, H.W.; Chung, M.J.; Kang, H.; Choi, H.; Choi, Y.J.; Lee, K.J.; Lee, S.W.; Han, S.H.; Kim, J.S.; Song, S.Y. Gemcitabine-Induced Hemolytic Uremic Syndrome in Pancreatic Cancer: A Case Report and Review of the Literature. Gut Liver 2014, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Hertig, A.; Ridel, C.; Rondeau, É. [Hemolytic uremic syndrome in adults]. Nephrol. Ther. 2010, 6, 258–271. [Google Scholar] [CrossRef]
- Kakishita, E. Pathophysiology and treatment of thrombotic thrombocytopenic purpura/hemolytic uremic syndrome (TTP/HUS). Int. J. Hematol. 2000, 71, 320–327. [Google Scholar]
- Liu, X.Y.; Zhang, F.R.; Shang, J.Y.; Liu, Y.Y.; Lv, X.F.; Yuan, J.N.; Zhang, T.T.; Li, K.; Lin, X.C.; Liu, X.; et al. Renal inhibition of miR-181a ameliorates 5-fluorouracil-induced mesangial cell apoptosis and nephrotoxicity. Cell Death Dis. 2018, 9, 610. [Google Scholar] [CrossRef]
- Rashid, S.; Ali, N.; Nafees, S.; Hasan, S.K.; Sultana, S. Mitigation of 5-Fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in wistar rats. Food Chem. Toxicol. 2014, 66, 185–193. [Google Scholar] [CrossRef]
- Badawoud, M.H.; Elshal, E.B.; Zaki, A.I.; Amin, H.A. The possible protective effect of L-arginine against 5-fluorouracil-induced nephrotoxicity in male albino rats. Folia Morphol. 2017, 76, 608–619. [Google Scholar] [CrossRef] [Green Version]
- Akindele, A.J.; Oludadepo, G.O.; Amagon, K.I.; Singh, D.; Osiagwu, D.D. Protective effect of carvedilol alone and coadministered with diltiazem and prednisolone on doxorubicin and 5-fluorouracil-induced hepatotoxicity and nephrotoxicity in rats. Pharmacol. Res. Perspect. 2018, 6, e00381. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobosz, P.; Dzieciątkowski, T. The Intriguing History of Cancer Immunotherapy. Front. Immunol. 2019, 10, 2965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haanen, J.B.A.G.; Carbonnel, F.; Robert, C.; Kerr, K.M.; Peters, S.; Larkin, J.; Jordan, K. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv119–iv142. [Google Scholar] [CrossRef]
- Lameire, N. Nephrotoxicity of recent anti-cancer agents. Clin. Kidney J. 2014, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Jhaveri, K.D.; Wanchoo, R.; Sakhiya, V.; Ross, D.W.; Fishbane, S. Adverse Renal Effects of Novel Molecular Oncologic Targeted Therapies: A Narrative Review. Kidney Int. Rep. 2017, 2, 108. [Google Scholar] [CrossRef] [Green Version]
- McSweeney, K.R.; Gadanec, L.K.; Qaradakhi, T.; Ali, B.A.; Zulli, A.; Apostolopoulos, V. Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. Cancers 2021, 13, 1572. [Google Scholar] [CrossRef]
- Patschan, D.; Müller, G.A. Acute kidney injury. J. Inj. Violence Res. 2015, 7, 19. [Google Scholar]
- Cruz-Whitley, J.; Giehl, N.; Jen, K.Y.; Young, B. Membranoproliferative Glomerulonephritis Associated with Nivolumab Therapy. Case Rep. Nephrol. 2020, 2020, 2638283. [Google Scholar] [CrossRef]
- Mamlouk, O.; Abudayyeh, A. Cancer immunotherapy and its renal effects. J. Onco-Nephrol. 2019, 3, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Shirali, A.C.; Perazella, M.A.; Gettinger, S. Association of Acute Interstitial Nephritis with Programmed Cell Death 1 Inhibitor Therapy in Lung Cancer Patients. Am. J. Kidney Dis. 2016, 68, 287–291. [Google Scholar] [CrossRef]
- Saly, D.L.; Perazella, M.A. The adverse kidney effects of cancer immunotherapies. J. Onco-Nephrol. 2018, 2, 56–68. [Google Scholar] [CrossRef]
- Oleas, D.; Bolufer, M.; Agraz, I.; Felip, E.; Muñoz, E.; Gabaldón, A.; Bury, R.; Espinel, E.; Serón, D.; García-Carro, C.; et al. Acute interstitial nephritis associated with immune checkpoint inhibitors: A single-centre experience. Clin. Kidney J. 2020, 14, 1364–1370. [Google Scholar] [CrossRef] [Green Version]
- Spielbauer, K.; Cunningham, L.; Schmitt, N. PD-1 Inhibition Minimally Affects Cisplatin-Induced Toxicities in a Murine Model. Otolaryngol. Head. Neck Surg. 2018, 159, 343–346. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Perazella, M.A. Immune Checkpoint Inhibitors and Immune-Related Adverse Renal Events. Kidney Int. Rep. 2020, 5, 1139. [Google Scholar] [CrossRef]
- CA, C.; TJ, S.; JP, A. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 1997, 7, 885–895. [Google Scholar]
- Tucci, M.; Passarelli, A.; Todisco, A.; Mannavola, F.; Stucci, L.S.; D’Oronzo, S.; Rossini, M.; Taurisano, M.; Gesualdo, L.; Silvestris, F. The mechanisms of acute interstitial nephritis in the era of immune checkpoint inhibitors in melanoma. Ther. Adv. Med. Oncol. 2019, 11, 1758835919875549. [Google Scholar] [CrossRef]
- Murakami, N.; Borges, T.J.; Yamashita, M.; Riella, L.V. Severe acute interstitial nephritis after combination immune-checkpoint inhibitor therapy for metastatic melanoma. Clin. Kidney J. 2016, 9, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Sampathkumar, K.; Ramalingam, R.; Prabakar, A.; Abraham, A. Acute interstitial nephritis due to proton pump inhibitors. Indian J. Nephrol. 2013, 23, 304. [Google Scholar] [CrossRef]
Name of Drug | Mechanism of Action | Indication |
---|---|---|
Ipilimumab | Anti CTLA-4 | Melanoma RCC Mesothelioma Renal cell carcinoma Colorectal cancer MSI-H HCC NSCLC Esophageal cancer |
Nivolumab | Anti PD1 | Melanoma RCC NSCLC and SCLC Head and neck cancer Hodgkin lymphoma HCC Colorectal cancer MSI-H Gastric, Gastroesophageal junction and esophageal cancers Mesothelioma Urothelial carcinoma |
Pembrolizumab | Anti PD1 | Melanoma NSCLC and SCLC Head and neck cancer Hodgkin lymphoma Primary Mediastinal Large B-Cell Lymphoma Urothelial Carcinoma MSI-H Cancer Gastric and Esophageal Cancer Cervical and Endometrial Cancer HCC Merkel cell carcinoma Breast cancer Cutaneous skin cancer MSI-H cancer RCC |
Avelumab | Anti PD1 | Merkel cell carcinoma Urothelial carcinoma RCC |
Atezolizumab | Anti PD-L1 | Urothelial Carcinoma NSCLC and SCLC Melanoma HCC |
Durvalumab | Anti PD-L1 | Urothelial Carcinoma NSCLC Biliary track cancer |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hałka, J.; Spaleniak, S.; Kade, G.; Antosiewicz, S.; Sigorski, D. The Nephrotoxicity of Drugs Used in Causal Oncological Therapies. Curr. Oncol. 2022, 29, 9681-9694. https://doi.org/10.3390/curroncol29120760
Hałka J, Spaleniak S, Kade G, Antosiewicz S, Sigorski D. The Nephrotoxicity of Drugs Used in Causal Oncological Therapies. Current Oncology. 2022; 29(12):9681-9694. https://doi.org/10.3390/curroncol29120760
Chicago/Turabian StyleHałka, Janusz, Sebastian Spaleniak, Grzegorz Kade, Stefan Antosiewicz, and Dawid Sigorski. 2022. "The Nephrotoxicity of Drugs Used in Causal Oncological Therapies" Current Oncology 29, no. 12: 9681-9694. https://doi.org/10.3390/curroncol29120760
APA StyleHałka, J., Spaleniak, S., Kade, G., Antosiewicz, S., & Sigorski, D. (2022). The Nephrotoxicity of Drugs Used in Causal Oncological Therapies. Current Oncology, 29(12), 9681-9694. https://doi.org/10.3390/curroncol29120760