Progressing Vulvar Melanoma Caused by Instability in cKIT Juxtamembrane Domain: A Case Report and Review of Literature
Abstract
:1. Introduction
Aim of the Research
2. Materials and Methods
2.1. Clinical Examination
2.2. Molecular Examination
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baderca, F.; Cojocaru, S.; Lazăr, E.; Lăzureanu, C.; Lighezan, R.; Alexa, A.; Raica, M.; Nicola, T. Amelanotic Vulvar Melanoma: Case Report and Review of the Literature. Romanian J. Morphol. Embryol. 2008, 49, 219–228. [Google Scholar]
- Chow, L.; Tsui, B.Q.; Bahrami, S.; Masamed, R.; Memarzadeh, S.; Raman, S.S.; Patel, M.K. Gynecologic Tumor Board: A Radiologist’s Guide to Vulvar and Vaginal Malignancies. Abdom. Radiol. 2021, 46, 5669–5686. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, D.; Gomez-Martinez, R.A. Vulvar Cancer. Obstet. Gynecol. Clin. N. Am. 2019, 46, 125–135. [Google Scholar] [CrossRef]
- Cancer Stat Facts: Vulvar Cancer. Available online: https://seer.cancer.gov/statfacts/html/vulva.html (accessed on 11 November 2021).
- Ottaviano, M.; Giunta, E.F.; Marandino, L.; Tortora, M.; Attademo, L.; Bosso, D.; Cardalesi, C.; Fabbrocini, A.; Rosanova, M.; Silvestri, A.; et al. Anorectal and Genital Mucosal Melanoma: Diagnostic Challenges, Current Knowledge and Therapeutic Opportunities of Rare Melanomas. Biomedicines 2022, 10, 150. [Google Scholar] [CrossRef] [PubMed]
- Dika, E.; Lambertini, M.; Pellegrini, C.; Veronesi, G.; Melotti, B.; Riefolo, M.; Sperandi, F.; Patrizi, A.; Ricci, C.; Mussi, M.; et al. Cutaneous and Mucosal Melanomas of Uncommon Sites: Where Do We Stand Now? J. Clin. Med. 2021, 10, 478. [Google Scholar] [CrossRef] [PubMed]
- Lambertini, M.; Patrizi, A.; Fanti, P.A.; Melotti, B.; Caliceti, U.; Magnoni, C.; Misciali, C.; Baraldi, C.; Ravaioli, G.M.; Dika, E. Oral Melanoma and Other Pigmentations: When to Biopsy? J. Eur. Acad. Dermatol. Venereol. 2018, 32, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, G.; Capone, M.; Ascierto, M.L.; Gentilcore, G.; Stroncek, D.F.; Casula, M.; Sini, M.C.; Palla, M.; Mozzillo, N.; Ascierto, P.A. Main Roads to Melanoma. J. Transl. Med. 2009, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, G.; Ombra, M.; Colombino, M.; Casula, M.; Sini, M.; Manca, A.; Paliogiannis, P.; Ascierto, P.A.; Cossu, A. Multiple Molecular Pathways in Melanomagenesis: Characterization of Therapeutic Targets. Front. Oncol. 2015, 5, 183. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Chiarion-Sileni, V.; Grob, J.-J.; Dummer, R.; Wolchok, J.D.; Schmidt, H.; Hamid, O.; Robert, C.; Ascierto, P.A.; Richards, J.M.; et al. Prolonged Survival in Stage III Melanoma with Ipilimumab Adjuvant Therapy. N. Engl. J. Med. 2016, 375, 1845–1855. [Google Scholar] [CrossRef] [Green Version]
- Eggermont, A.M.M.; Blank, C.U.; Mandalà, M.; Long, G.V.; Atkinson, V.G.; Dalle, S.; Haydon, A.M.; Meshcheryakov, A.; Khattak, A.; Carlino, M.S.; et al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma (EORTC 1325-MG/KEYNOTE-054): Distant Metastasis-Free Survival Results from a Double-Blind, Randomised, Controlled, Phase 3 Trial. Lancet Oncol. 2021, 22, 643–654. [Google Scholar] [CrossRef]
- Yang, K.; Oak, A.S.W.; Slominski, R.M.; Brożyna, A.A.; Slominski, A.T. Current Molecular Markers of Melanoma and Treatment Targets. Int. J. Mol. Sci. 2020, 21, 3535. [Google Scholar] [CrossRef] [PubMed]
- Mocellin, S.; Rossi, C.R. The Melanoma Molecular Map Project. Melanoma Res. 2008, 18, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Peeper, D.S. Oncogene-Induced Senescence and Melanoma: Where Do We Stand? Pigment Cell Melanoma Res. 2011, 24, 1107–1111. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Fukunaga-Kalabis, M.; Herlyn, M. Crosstalk in Skin: Melanocytes, Keratinocytes, Stem Cells, and Melanoma. J. Cell Commun. Signal. 2016, 10, 191–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baiocchi, G.; Duprat, J.P.; Neves, R.I.; Fukazawa, E.M.; Landman, G.; Guimarães, G.C.; Valadares, L.J. Vulvar Melanoma: Report on Eleven Cases and Review of the Literature. Sao Paulo Med J. 2010, 128, 38–41. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, V.E.; Chan, J.K.; Shin, J.Y.; Berek, J.S.; Osann, K.; Kapp, D.S. Vulvar Melanoma: A Multivariable Analysis of 644 Patients. Obstet. Gynecol. 2007, 110, 296–301. [Google Scholar] [CrossRef]
- Campaner, A.B.; Fernandes, G.L.; Cardoso, F.d.A.; Veasey, J.V. Vulvar Melanoma: Relevant Aspects in Therapeutic Management. An. Bras. Dermatol. 2017, 92, 398–400. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Tu, C.; Li, S.; Li, Z. Regional Lymph Node Involvement Is Associated with Poorer Survivorship in Patients with Chondrosarcoma: A SEER Analysis. Clin. Orthop. Relat. Res. 2019, 477, 2508–2518. [Google Scholar] [CrossRef]
- Akoz, I.; Ayas, S.; Eren, S.; Bilgic, R. Synchronous Cervical and Vulvar Malign Melanomas: Metastasis or Multifocality of the Disease? A Case Report and Review of the Literature. Int. J. Gynecol. Cancer 2006, 16, 917–920. [Google Scholar] [CrossRef]
- Sinasac, S.E.; Petrella, T.M.; Rouzbahman, M.; Sade, S.; Ghazarian, D.; Vicus, D. Melanoma of the Vulva and Vagina: Surgical Management and Outcomes Based on a Clinicopathologic Reviewof 68 Cases. J. Obstet. Gynaecol. Can. 2019, 41, 762–771. [Google Scholar] [CrossRef]
- Wohlmuth, C.; Wohlmuth-Wieser, I. Vulvar Melanoma: Molecular Characteristics, Diagnosis, Surgical Management, and Medical Treatment. Am. J. Clin. Dermatol. 2021, 22, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Faries, M.B.; Thompson, J.F.; Cochran, A.J.; Andtbacka, R.H.; Mozzillo, N.; Zager, J.S.; Jahkola, T.; Bowles, T.L.; Testori, A.; Beitsch, P.D.; et al. Completion Dissection or Observation for Sentinel-Node Metastasis in Melanoma. N. Engl. J. Med. 2017, 376, 2211–2222. [Google Scholar] [CrossRef] [PubMed]
- Benda, J.A.; Platz, C.E.; Anderson, B. Malignant Melanoma of the Vulva: A Clinical-Pathologic Review of 16 Cases. Int. J. Gynecol. Pathol. 1986, 5, 202–216. [Google Scholar] [CrossRef] [PubMed]
- Dummer, R.; Ascierto, P.A.; Gogas, H.J.; Arance, A.; Mandala, M.; Liszkay, G.; Garbe, C.; Schadendorf, D.; Krajsova, I.; Gutzmer, R.; et al. Encorafenib plus Binimetinib versus Vemurafenib or Encorafenib in Patients with BRAF-Mutant Melanoma (COLUMBUS): A Multicentre, Open-Label, Randomised Phase 3 Trial. Lancet Oncol. 2018, 19, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Lasota, J.; Miettinen, M. Clinical Significance of Oncogenic KIT and PDGFRA Mutations in Gastrointestinal Stromal Tumours. Histopathology 2008, 53, 245–266. [Google Scholar] [CrossRef] [PubMed]
- Martinho, O.; Gouveia, A.; Viana-Pereira, M.; Silva, P.; Pimenta, A.; Reis, R.M.; Lopes, J.M. Low Frequency of MAP Kinase Pathway Alterations in KIT and PDGFRA Wild-Type GISTs. Histopathology 2009, 55, 53–62. [Google Scholar] [CrossRef]
- Smalley, K.S.M.; Sondak, V.K.; Weber, J.S. C-KIT Signaling as the Driving Oncogenic Event in Sub-Groups of Melanomas. Histol. Histopathol. 2009, 24, 643–650. [Google Scholar] [CrossRef]
- Beadling, C.; Jacobson-Dunlop, E.; Hodi, F.S.; Le, C.; Warrick, A.; Patterson, J.; Town, A.; Harlow, A.; Cruz, F.; Azar, S.; et al. KIT Gene Mutations and Copy Number in Melanoma Subtypes. Clin. Cancer Res. 2008, 14, 6821–6828. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Castañeda, L.D.; Nova, J.A.; Tovar-Parra, J.D. Frequency of Mutations in BRAF, NRAS, and KIT in Different Populations and Histological Subtypes of Melanoma: A Systemic Review. Melanoma Res. 2020, 30, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Roskoski, R. The Role of Small Molecule Kit Protein-Tyrosine Kinase Inhibitors in the Treatment of Neoplastic Disorders. Pharmacol. Res. 2018, 133, 35–52. [Google Scholar] [CrossRef]
- Terheyden, P.; Houben, R.; Pajouh, P.; Thorns, C.; Zillikens, D.; Becker, J.C. Response to Imatinib Mesylate Depends on the Presence of the V559A-Mutated KIT Oncogene. J. Investig. Dermatol. 2010, 130, 314–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvajal, R.D.; Lawrence, D.P.; Weber, J.S.; Gajewski, T.F.; Gonzalez, R.; Lutzky, J.; O’Day, S.J.; Hamid, O.; Wolchok, J.D.; Chapman, P.B.; et al. Phase II Study of Nilotinib in Melanoma Harboring KIT Alterations Following Progression to Prior KIT Inhibition. Clin. Cancer Res. 2015, 21, 2289–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Carvajal, R.D.; Dummer, R.; Hauschild, A.; Daud, A.; Bastian, B.C.; Markovic, S.N.; Queirolo, P.; Arance, A.; Berking, C.; et al. Efficacy and Safety of Nilotinib in Patients with KIT-Mutated Metastatic or Inoperable Melanoma: Final Results from the Global, Single-Arm, Phase II TEAM Trial. Ann. Oncol. 2017, 28, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yang, Z.; Xie, C.; Zhu, Y.; Shu, X.; Zhang, Z.; Li, N.; Chai, N.; Zhang, S.; Wu, K.; et al. PTEN Lipid Phosphatase Inactivation Links the Hippo and PI3K/Akt Pathways to Induce Gastric Tumorigenesis. J. Exp. Clin. Cancer Res. 2018, 37, 198. [Google Scholar] [CrossRef]
- Chalhoub, N.; Baker, S.J. PTEN and the PI3-Kinase Pathway in Cancer. Annu. Rev. Pathol. Mech. Dis. 2009, 4, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Kim, D.-H.; Singaram, I.; Jeong, H.; Koh, A.; Lee, J.; Cho, W.; Ryu, S.H. Cellular Phosphatase Activity of C1-Ten/Tensin2 Is Controlled by Phosphatidylinositol-3,4,5-Triphosphate Binding through the C1-Ten/Tensin2 SH2 Domain. Cell Signal. 2018, 51, 130–138. [Google Scholar] [CrossRef]
- Nelson, N.; Razeto, A.; Gilardi, A.; Grättinger, M.; Kirchmair, J.; Jücker, M. AKT1 and PTEN Show the Highest Affinities among Phosphoinositide Binding Proteins for the Second Messengers PtdIns(3,4,5)P3 and PtdIns(3,4)P2. Biochem. Biophys. Res. Commun. 2021, 568, 110–115. [Google Scholar] [CrossRef]
- Xu, K.; Liu, P.; Wei, W. MTOR Signaling in Tumorigenesis. Biochim. Biophys. Acta 2014, 1846, 638–654. [Google Scholar] [CrossRef] [Green Version]
- Gremke, N.; Polo, P.; Dort, A.; Schneikert, J.; Elmshäuser, S.; Brehm, C.; Klingmüller, U.; Schmitt, A.; Reinhardt, H.C.; Timofeev, O.; et al. MTOR-Mediated Cancer Drug Resistance Suppresses Autophagy and Generates a Druggable Metabolic Vulnerability. Nat. Commun. 2020, 11, 4684. [Google Scholar] [CrossRef]
- Durham, A.B.; Wong, S.L. Sentinel Lymph Node Biopsy in Melanoma: Controversies and Current Guidelines. Future Oncol. 2014, 10, 429–442. [Google Scholar] [CrossRef]
- Leonardi, G.C.; Falzone, L.; Salemi, R.; Zanghì, A.; Spandidos, D.A.; Mccubrey, J.A.; Candido, S.; Libra, M. Cutaneous Melanoma: From Pathogenesis to Therapy (Review). Int. J. Oncol. 2018, 52, 1071–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poluri, R.T.K.; Audet-Walsh, É. Genomic Deletion at 10q23 in Prostate Cancer: More Than PTEN Loss? Front. Oncol. 2018, 8, 246. [Google Scholar] [CrossRef] [PubMed]
- Aguissa-Touré, A.-H.; Li, G. Genetic Alterations of PTEN in Human Melanoma. Cell. Mol. Life Sci. 2012, 69, 1475–1491. [Google Scholar] [CrossRef]
- Vanni, I.; Tanda, E.T.; Dalmasso, B.; Pastorino, L.; Andreotti, V.; Bruno, W.; Boutros, A.; Spagnolo, F.; Ghiorzo, P. Non-BRAF Mutant Melanoma: Molecular Features and Therapeutical Implications. Front. Mol. Biosci. 2020, 7, 172. [Google Scholar] [CrossRef] [PubMed]
- Ranes, M.; Zaleska, M.; Sakalas, S.; Knight, R.; Guettler, S. Reconstitution of the Destruction Complex Defines Roles of AXIN Polymers and APC in β-Catenin Capture, Phosphorylation, and Ubiquitylation. Mol. Cell 2021, 81, 3246–3261.e11. [Google Scholar] [CrossRef]
- Kitazawa, M.; Hatta, T.; Ogawa, K.; Fukuda, E.; Goshima, N.; Natsume, T. Determination of Rate-Limiting Factor for Formation of Beta-Catenin Destruction Complexes Using Absolute Protein Quantification. J. Proteome Res. 2017, 16, 3576–3584. [Google Scholar] [CrossRef]
- Gavagan, M.; Fagnan, E.; Speltz, E.B.; Zalatan, J.G. The Scaffold Protein Axin Promotes Signaling Specificity within the Wnt Pathway by Suppressing Competing Kinase Reactions. Cell Syst. 2020, 10, 515–525.e5. [Google Scholar] [CrossRef]
- Nong, J.; Kang, K.; Shi, Q.; Zhu, X.; Tao, Q.; Chen, Y.-G. Phase Separation of Axin Organizes the β-Catenin Destruction Complex. J. Cell Biol. 2021, 220, e202012112. [Google Scholar] [CrossRef]
No. | Chr. | Genomic Pos hg19 | Gene Symbol | Type | Amino Acid Alteration | Nucl. Ref. | Nucl. Alt. | Cosmic ID/dbSNP | HGVS |
---|---|---|---|---|---|---|---|---|---|
1 | 4 | 55141052 | PDGFRA | deletion | p.S566Rfs*27 | C | - | - | ENSP00000257290.5: p.Ser566ArgfsTer27 |
2 | 4 | 55141055 | PDGFRA | deletion | p.P567Mfs*25 | A | - | - | ENSP00000257290.5: p.Pro567MetfsTer25 |
3 | 4 | 153247278 | FBXW7 | SNV | intronic/splice site | T | C | rs147462419 | - |
4 | 5 | 112173894 | APC | deletion | p.N869Ifs*47 | A | - | - | ENSP00000257430.4: p.Asn869IlefsTer47 |
5 | 5 | 149453044 | CSF1R | SNV | p.L301* | A | T | rs121913390, COSV53841262, COSV53842469 | ENSP00000286301.3: p.Leu301Ter |
6 | 17 | 7573993 | TP53 | deletion | p.N345Mfs*25 | T | - | COSV53589460 | ENSP00000269305.4: p.Asn345MetfsTer25 |
7 | 17 | 7578450 | TP53 | SNV | p.M160I | C | A | COSV52849333, COSV53297171, COSV53424484, COSV53438638 | ENSP00000269305.4: p.Met160Ile |
8 | 17 | 7579373 | TP53 | deletion | p.G105Afs*18 | C | - | rs1567555907, COSV52708806, COSV52766179, COSV52793434 | ENSP00000269305.4: p.Gly105AlafsTer18 |
No. | Chr. | Genomic Position hg19 | Gene Symbol | Type | Amino Acid Alteration | Nucl. Ref. | Nucl. Alt. | Cosmic ID/dbSNP | HGVS |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 43815009 | MPL | SNV | p.W515L | G | T | rs121913615, COSV65243776, COSV65245195 | ENSP00000361548.3: p.Trp515Leu |
2 | 2 | 212652796 | ERBB4 | SNV | p.P150P/splice | T | C | rs1450712101 | ENSP00000342235.4: p.Pro170Pro |
3 | 3 | 10183815 | VHL | SNV | p.P95R | C | G | CM092616, COSV56544941, COSV56556284, COSV56567454 | ENSP00000256474.3: p.Pro95Arg |
4 | 3 | 10188260 | VHL | deletion | p.L135Yfs*24 | T | - | - | ENSP00000256474.3: p.Leu135TyrfsTer24 |
5 | 3 | 10188297 | VHL | deletion | p.F148Lfs*11 | T | - | rs869025653, CM982009 | ENSP00000256474.3: p.Phe148LeufsTer11 |
6 | 4 | 1808398 | FGFR3 | SNV | p.C719S | G | C | - | ENSP00000339824.4: p.Cys721Ser |
7 | 4 | 55593594 | KIT | deletion/insertion | p.E550K*10 | G | - | COSV55411322 | ENSP00000288135.6: p.Glu554LysfsTer10 |
8 | 4 | 55593597 | KIT | SNV | p.V551I | G | A | COSV55405668 | ENSP00000288135.6: p.Val551Ile |
9 | 4 | 55593597 | KIT | Deletion/insertion | p.V551Yfs*9 | G | - | COSV55405668 | ENSP00000288135.6: p.Val555TyrfsTer9 |
10 | 4 | 55593601 | KIT | deletion and insertion | p.W557Gfs*7 | T | - | CM005329, COSV55386440, COSV55387014, COSV55389479 | ENSP00000288135.6: p.Trp557GlyfsTer7 |
11 | 4 | 55593610 | KIT | SNV | p.V559A | T | C | rs121913517, CM013551, COSV55386973, COSV55388782, COSV55393324 COSM1255 | ENSP00000288135.6: p.Val559Ala |
12 | 4 | 55962445 | KDR | SNV | p.G893G/splice | A | G | - | NP_002244.1: p.Gly893Gly |
13 | 4 | 55980239 | KDR | SNV | intronic/splice site | C | T | rs7692791 | ENST00000263923.5: c.798 + 54G > A |
14 | 5 | 112175378 | APC | insertion | p.S1364Kfs*11 | A | AA | COSV57337694, COSV57379285 | ENSP00000257430.4: p.Ser1364LysfsTer11 |
15 | 5 | 112175408 | APC | deletion | p.P1373Lfs*42 | C | - | COSV57387710, COSV57395032 | ENSP00000257430.4: p.Pro1373LeufsTer42 |
16 | 5 | 112175600 | APC | deletion | p.T1438Hfs*35 | A | - | COSV57401545 | ENSP00000257430.4: p.Thr1438HisfsTer35 |
17 | 5 | 112175622 | APC | deletion | p.T1445Qfs*28 | A | - | - | ENSP00000257430.4: p.Thr1445GlnfsTer28 |
18 | 5 | 112175756 | APC | deletion | p.L1489Yfs*18 | T | - | COSV57327796 | ENSP00000257430.4: p.Leu1489TyrfsTer18 |
19 | 5 | 112175761 | APC | deletion | p.F1491Lfs*16 | T | - | - | ENSP00000257430.4: p.Phe1491LeufsTer16 |
20 | 5 | 112175766 | APC | deletion | T1493Rfs*14 | C | - | COSV57375363 | ENSP00000257430.4: p.Thr1493ArgfsTer14 |
21 | 5 | 112175772 | APC | deletion | S1495Vfs*12 | A | - | - | ENSP00000257430.4: p.Ser1495ValfsTer12 |
22 | 10 | 89685271 | PTEN | insertion | p.L57Ffs*6 | T | TT | COSV64290332 | ENSP00000361021.3: p.Leu57PhefsTer6 |
23 | 10 | 89685289 | PTEN | deletion and insertion | p.N63Tfs*36 | A | - | rs1554897267, COSV64298134 | ENSP00000361021.3: p.Asn63ThrfsTer36 |
24 | 10 | 89720804 | PTEN | insertion | p.T319Nfs*6 | A | AA | rs786204892, CD972424 | ENSP00000361021.3: p.Thr319AsnfsTer6 |
25 | 10 | 89720812 | PTEN | deletion | p.N323Mfs*21 | A | - | rs121913291 | ENSP00000361021.3: p.Asn323MetfsTer21 |
26 | 12 | 25378647 | KRAS | SNV | p.K117N | T | G | rs770248150, COSV55504752, COSV55545304 | ENSP00000256078.5: p.Lys117Asn |
27 | 12 | 112926961 | PTPN11 | SNV | intronic/splice site | C | T | - | ENSP00000489597.1: p.Arg531Arg |
28 | 17 | 7578280 | TP53 | deletion | p.P190Lfs*57 | G | - | CM161004, COSV52664064, COSV52987047 COSV53313892 | ENSP00000269305.4: p.Pro190LeufsTer57 |
29 | 17 | 7579472 | TP53 | SNV | p.P72H | G | T | rs1042522, CM961374, COSV52666208, COSV53098660 | ENSP00000269305.4: p.Pro72His |
30 | 17 | 37881001 | ERBB2 | SNV | p.V777A | T | C | - | ENSP00000269571.4: p.Val777Ala |
31 | 22 | 24133954 | SMARCB1 | SNV | p.Y35Y/splice | C | T | rs1176990918, CM110285 | ENSP00000340883.6: p.Tyr35Tyr |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Englert-Golon, M.; Budny, B.; Lewandowska, M.; Burchardt, B.; Smolarek, N.; Ziemnicka, K.; Jagodziński, P.P.; Ruchała, M.; Grabowska, M.; Sajdak, S. Progressing Vulvar Melanoma Caused by Instability in cKIT Juxtamembrane Domain: A Case Report and Review of Literature. Curr. Oncol. 2022, 29, 3130-3137. https://doi.org/10.3390/curroncol29050254
Englert-Golon M, Budny B, Lewandowska M, Burchardt B, Smolarek N, Ziemnicka K, Jagodziński PP, Ruchała M, Grabowska M, Sajdak S. Progressing Vulvar Melanoma Caused by Instability in cKIT Juxtamembrane Domain: A Case Report and Review of Literature. Current Oncology. 2022; 29(5):3130-3137. https://doi.org/10.3390/curroncol29050254
Chicago/Turabian StyleEnglert-Golon, Monika, Bartłomiej Budny, Małgorzata Lewandowska, Bartosz Burchardt, Natalia Smolarek, Katarzyna Ziemnicka, Paweł Piotr Jagodziński, Marek Ruchała, Marlena Grabowska, and Stefan Sajdak. 2022. "Progressing Vulvar Melanoma Caused by Instability in cKIT Juxtamembrane Domain: A Case Report and Review of Literature" Current Oncology 29, no. 5: 3130-3137. https://doi.org/10.3390/curroncol29050254
APA StyleEnglert-Golon, M., Budny, B., Lewandowska, M., Burchardt, B., Smolarek, N., Ziemnicka, K., Jagodziński, P. P., Ruchała, M., Grabowska, M., & Sajdak, S. (2022). Progressing Vulvar Melanoma Caused by Instability in cKIT Juxtamembrane Domain: A Case Report and Review of Literature. Current Oncology, 29(5), 3130-3137. https://doi.org/10.3390/curroncol29050254