Cancer Premature Mortality Costs in Europe in 2020: A Comparison of the Human Capital Approach and the Friction Cost Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mortality Data and Approach
2.1.1. Human Capital Approach (HCA)
2.1.2. Friction Cost Approach
- V = stock of unfilled vacancies
- M = flows of filled vacancies
2.2. Sensitivity Analysis
3. Results
3.1. Cancer Mortality and Years of Potential Productive Life Lost (YPPLL) in Europe
3.2. Total Premature Mortality Costs by Region and Country
3.3. Premature Mortality Costs per Cancer Death by Region and Country
3.4. Premature Mortality Costs by Gender, by Region and Country
3.5. Premature Mortality Costs by Cancer Site
3.6. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2020; Available online: https://gco.iarc.fr/today (accessed on 15 February 2022).
- Hofmarcher, T.; Lindgren, P.; Wilking, N.; Jönsson, B. The cost of cancer in Europe 2018. Eur. J. Cancer 2020, 129, 41–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pike, J.; Grosse, S.D. Friction Cost Estimates of Productivity Costs in Cost-of-Illness Studies in Comparison with Human Capital Estimates: A Review. Appl. Health Econ. Health Policy 2018, 16, 765–778. [Google Scholar] [CrossRef] [PubMed]
- Krol, M.; Brouwer, W.; Rutten, F. Productivity costs in economic evaluations: Past, present, future. Pharmacoeconomics 2013, 31, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Kigozi, J.; Jowett, S.; Lewis, M.; Barton, P.; Coast, J. Estimating productivity costs using the friction cost approach in practice: A systematic review. Eur. J. Health Econ. 2016, 17, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Hanly, P.; Pearce, A.; Sharp, L. The cost of premature cancer-related mortality: A review and assessment of the evidence. Expert Rev. Pharmacoecon. Outcomes Res. 2014, 14, 355–377. [Google Scholar] [CrossRef] [PubMed]
- Hanly, P.; Timmons, A.; Walsh, P.M.; Sharp, L. Breast and prostate cancer productivity costs: A comparison of the human capital approach and the friction cost approach. Value Health 2012, 15, 429–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, A.M.; Hanly, P.; Timmons, A.; Walsh, P.M.; O’Neill, C.; O’Sullivan, E.; Gooberman-Hill, R.; Thomas, A.A.; Gallagher, P.; Sharp, L. Productivity Losses Associated with Head and Neck Cancer Using the Human Capital and Friction Cost Approaches. Appl. Health Econ. Health Policy 2015, 13, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Oliva, J.; Lobo, F.; López-Bastida, J.; Zozaya, N.; Romay, R. Indirect costs of cervical and breast cancers in Spain. Eur. J. Health Econ. 2005, 6, 309–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega-Ortega, M.; Oliva-Moreno, J.; Jiménez-Aguilera, J.D.D.; Romero-Aguilar, A.; Espigado-Tocino, I. Productivity loss due to premature mortality caused by blood cancer: A study based on patients undergoing stem cell transplantation. Gac. Sanit. 2015, 29, 178–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega-Ortega, M.; Hanly, P.; Pearce, A.; Soerjomataram, I.; Sharp, L. Paid and unpaid productivity losses due to premature mortality from cancer in Europe in 2018. Int. J. Cancer 2022, 150, 580–593. [Google Scholar] [CrossRef] [PubMed]
- Hanly, P.; Soerjomataram, I.; Sharp, L. Measuring the societal burden of cancer: The cost of lost productivity due to premature cancer-related mortality in Europe. Int. J. Cancer 2015, 136, E136–E145. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Mean Annual Earnings by Sex, Age and Economic Activity (earn_ses18_27). 2018. Available online: https://ec.europa.eu/eurostat/databrowser/view/earn_ses18_27/default/table?lang=en (accessed on 12 January 2022).
- Eurostat. HICP—Annual Data (Average Index and Rate of Change) (prc_hicp_aind). 2022. Available online: https://ec.europa.eu/eurostat/databrowser/view/prc_hicp_aind/default/table?lang=en (accessed on 13 January 2022).
- Eurostat. Unemployment by Sex and Age—Annual Data (une_rt_a). 2022. Available online: https://ec.europa.eu/eurostat/databrowser/view/une_rt_a/default/table?lang=en (accessed on 12 January 2022).
- Eurostat. Active Population by Sex, Age and Citizenship (1 000) (lfsa_agan). 2022. Available online: https://ec.europa.eu/eurostat/databrowser/view/lfsa_agan/default/table?lang=en (accessed on 12 January 2022).
- Eurostat. GDP and Main Components (Output, Expenditure and Income) [NAMA_10_GDP$DEFAULTVIEW]. 2022. Available online: https://ec.europa.eu/eurostat/databrowser/view/NAMA_10_GDP/default/table (accessed on 20 January 2022).
- Hanly, P.; Ortega Ortega, M.; Pearce, A.; Soerjomataram, I.; Sharp, L. Advances in the methodological approach to friction period estimation: A European perspective. Soc. Sci. Med. 2020, 264, 113289. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Job Vacancies in Number and %—NACE Rev. 2, B-S, Quarterly Data [TPS00172__custom_2179636]. 2022. Available online: https://ec.europa.eu/eurostat/databrowser/view/TPS00172__custom_2179636/default/table (accessed on 14 January 2022).
- Eurostat. Job Vacancy Statistics by NACE Rev. 2 Activity, Occupation and NUTS 2 Regions—Quarterly Data [JVS_Q_ISCO_R2__custom_2179956]. 2022. Available online: https://ec.europa.eu/eurostat/databrowser/view/JVS_Q_ISCO_R2__custom_2179956/default/table (accessed on 14 January 2022).
- Eurostat. Newly Employed [TESEM200]. 2022. Available online: https://ec.europa.eu/eurostat/databrowser/product/view/LFSA_ENEWASN (accessed on 14 January 2022).
- Johannesson, M.; Karlsson, G. The friction cost method: A comment. J. Health Econ. 1997, 16, 249–255. [Google Scholar] [CrossRef]
- Liljas, B. How to calculate indirect costs in economic evaluations. Pharmacoeconomics 1998, 13, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tranmer, J.E.; Guerriere, D.N.; Ungar, W.J.; Coyte, P.C. Valuing patient and caregiver time: A review of the literature. Pharmacoeconomics 2005, 23, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Koopmanschap, M.A.; Rutten, F.F.; van Ineveld, B.M.; van Roijen, L. The friction cost method for measuring indirect costs of disease. J. Health Econ. 1995, 14, 171–189. [Google Scholar] [CrossRef]
- Hanly, P.; Koopmanschap, M.; Sharp, L. Valuing productivity costs in a changing macroeconomic environment: The estimation of colorectal cancer productivity costs using the friction cost approach. Eur. J. Health Econ. 2016, 17, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, A.; Yonemoto, N.; LoPresti, M.; Ikeda, S. Use of Productivity Loss/Gain in Cost-Effectiveness Analyses for Drugs: A Systematic Review. Pharmacoeconomics 2021, 39, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Krol, M.; Papenburg, J.; Tan, S.S.; Brouwer, W.; Hakkaart, L. A noticeable difference? Productivity costs related to paid and unpaid work in economic evaluations on expensive drugs. Eur. J. Health Econ. 2016, 17, 391–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Region/Country | Deaths | Average Age at Death | YPPLL | HCA PMC (EUR Millions) | FCA PMC (EUR Millions) | HCA PMC per Death | FCA PMC per Death | HCA/FCA Ratio |
---|---|---|---|---|---|---|---|---|
Central-Eastern Europe | 80,970 | 55.7 | 676,240 | 5045 | 162 | 62,358 | 2001 | 31.1 |
Bulgaria | 6426 | 54.80 | 59,082 | 299 | 6 | 46,526 | 988 | 47.1 |
Czechia | 6776 | 55.9 | 54,962 | 620 | 56 | 91,404 | 8231 | 11.1 |
Hungary | 9963 | 56.0 | 80,037 | 656 | 26 | 65,896 | 2563 | 25.7 |
Poland | 33,901 | 56.0 | 270,324 | 2152 | 42 | 63,608 | 1236 | 51.4 |
Romania | 19,119 | 55.0 | 172,433 | 941 | 25 | 49,208 | 1291 | 38.1 |
Slovakia | 4785 | 55.8 | 39,401 | 377 | 8 | 78,808 | 1620 | 48.6 |
Northern Europe | 51,592 | 55.5 | 442,349 | 11,165 | 280 | 216,377 | 5419 | 39.9 |
Denmark | 3460 | 56.1 | 27,179 | 1041 | 27 | 300,750 | 7855 | 38.3 |
Estonia | 900 | 56.3 | 6945 | 77 | 2 | 85,475 | 1748 | 48.9 |
Finland | 2445 | 56.1 | 19,403 | 536 | 14 | 219,013 | 5597 | 39.2 |
Iceland | 133 | 56.2 | 1040 | 38 | 1 | 281,944 | 7608 | 37.1 |
Ireland | 2274 | 55.0 | 20,491 | 617 | 10 | 271,122 | 4205 | 64.5 |
Latvia | 1677 | 55.7 | 13,987 | 127 | 4 | 75,658 | 2182 | 34.7 |
Lithuania | 2529 | 55.6 | 21,332 | 163 | 3 | 64,394 | 1138 | 56.6 |
Norway | 2354 | 55.6 | 19,892 | 597 | 18 | 253,538 | 7588 | 33.4 |
Sweden | 3919 | 55.7 | 32,417 | 1010 | 25 | 257,651 | 6400 | 40.3 |
United Kingdom | 31,901 | 55.2 | 279,663 | 6960 | 177 | 218,175 | 5551 | 39.3 |
Southern Europe | 80,032 | 55.4 | 692,801 | 10,620 | 213 | 132,682 | 2660 | 49.9 |
Croatia | 3659 | 56.1 | 28,829 | 185 | 5 | 50,441 | 1370 | 36.9 |
Cyprus | 593 | 54.9 | 5374 | 81 | 2 | 136,034 | 2875 | 47.3 |
Greece | 6776 | 55.7 | 56,208 | 620 | 11 | 91,436 | 1600 | 57.2 |
Italy | 32,527 | 55.3 | 283,892 | 5190 | 120 | 159,589 | 3687 | 43.3 |
Malta | 192 | 57.3 | 1287 | 17 | 1 | 86,765 | 2986 | 29.1 |
Portugal | 7310 | 54.8 | 67,191 | 812 | 14 | 111,048 | 1850 | 60.0 |
Slovenia | 1523 | 56.3 | 11,690 | 156 | 5 | 102,168 | 3436 | 29.7 |
Spain | 27,452 | 55.3 | 238,330 | 3560 | 56 | 129,645 | 2043 | 63.5 |
Western Europe | 124,370 | 55.8 | 1,022,535 | 27,184 | 915 | 218,624 | 7353 | 29.7 |
Austria | 5331 | 56.0 | 42,813 | 1154 | 43 | 216,417 | 7983 | 27.1 |
Belgium | 6860 | 55.9 | 55,348 | 1439 | 71 | 209,742 | 10,387 | 20.2 |
France | 42,441 | 55.1 | 376,284 | 7750 | 164 | 182,748 | 3875 | 47.1 |
Germany | 55,029 | 56.2 | 430,726 | 12,330 | 507 | 224,067 | 9221 | 24.3 |
Luxemburg | 279 | 56.3 | 2158 | 77 | 2 | 277,578 | 7936 | 35.0 |
Switzerland | 4082 | 55.7 | 33,859 | 1864 | 38 | 456,884 | 9276 | 49.2 |
The Netherlands | 10,348 | 56.1 | 81,347 | 2570 | 89 | 248,263 | 8576 | 29.0 |
EUROPE-27+ Norway, Switzerland, Iceland, UK | 336,964 | 55.6 | 2,833,925 | 54,015 | 1569 | 160,318 | 4656 | 34.4 |
Males (M) | Females (F) | Sex Ratios | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | HCA PMC (EUR Millions) | FCA PMC (EUR Millions) | HCA/FCA Ratio for PMC | HCA PMC per Death | FCA PMC per Death | HCA PMC (EUR Millions) | FCA PMC (EUR Millions) | HCA/FCA Ratio for PMC | HCA PMC per Death | FCA PMC per Death | M/F Deaths Ratio | M/F YPPLL Ratio | M/F HCA PMC Ratio | M/F FCA PMC Ratio |
Central-Eastern Europe | 3208 | 107 | 29.9 | 67,387 | 2252 | 1837 | 55 | 33.6 | 55,159 | 1642 | 1.4 | 1.3 | 1.7 | 2.0 |
Bulgaria | 179 | 4 | 44.2 | 46,674 | 1059 | 120 | 2 | 52.3 | 46,310 | 883 | 1.5 | 1.2 | 1.5 | 1.8 |
Czechia | 396 | 37 | 10.7 | 99,322 | 9326 | 224 | 19 | 12.0 | 80,113 | 6670 | 1.4 | 1.3 | 1.8 | 2.0 |
Hungary | 408 | 17 | 24.7 | 71,973 | 2918 | 248 | 9 | 27.6 | 57,862 | 2094 | 1.3 | 1.2 | 1.6 | 1.8 |
Poland | 1360 | 28 | 49.3 | 70,653 | 1428 | 792 | 14 | 55.3 | 54,284 | 982 | 1.3 | 1.2 | 1.7 | 1.9 |
Romania | 617 | 17 | 36.9 | 51,683 | 1401 | 324 | 8 | 40.7 | 45,088 | 1109 | 1.7 | 1.5 | 1.9 | 2.1 |
Slovakia | 248 | 5 | 47.0 | 84,601 | 1797 | 129 | 2 | 52.1 | 69,618 | 1340 | 1.6 | 1.4 | 1.9 | 2.1 |
Northern Europe | 6405 | 167 | 38.3 | 240,854 | 6297 | 4761 | 112 | 42.4 | 190,356 | 4485 | 1.1 | 0.9 | 1.3 | 1.5 |
Denmark | 602 | 16 | 36.9 | 339,945 | 9209 | 439 | 11 | 40.4 | 259,699 | 6437 | 1.0 | 0.9 | 1.4 | 1.5 |
Estonia | 45 | 1 | 45.9 | 83,373 | 1816 | 32 | 1 | 54.0 | 88,672 | 1645 | 1.5 | 1.3 | 1.4 | 1.7 |
Finland | 312 | 8 | 38.1 | 236,133 | 6208 | 224 | 5 | 40.8 | 198,926 | 4880 | 1.2 | 1.1 | 1.4 | 1.5 |
Iceland | 23 | 1 | 37.1 | 352,591 | 9528 | 14 | 0.4 | 37.1 | 212,352 | 5716 | 1.0 | 0.9 | 1.6 | 1.6 |
Ireland | 349 | 6 | 61.9 | 319,207 | 5162 | 268 | 4 | 68.3 | 226,620 | 3320 | 0.9 | 0.8 | 1.3 | 1.4 |
Latvia | 74 | 2 | 32.5 | 76,248 | 2343 | 53 | 1 | 38.1 | 74,858 | 1962 | 1.4 | 1.1 | 1.4 | 1.6 |
Lithuania | 97 | 2 | 53.5 | 63,219 | 1182 | 66 | 1 | 61.8 | 66,224 | 1071 | 1.6 | 1.3 | 1.5 | 1.7 |
Norway | 341 | 10 | 32.6 | 282,504 | 8672 | 256 | 7 | 34.7 | 223,006 | 6445 | 1.1 | 1.0 | 1.3 | 1.4 |
Sweden | 541 | 14 | 39.0 | 280,267 | 7176 | 469 | 11 | 41.8 | 235,683 | 5646 | 1.0 | 0.9 | 1.2 | 1.2 |
United Kingdom | 4020 | 107 | 37.5 | 248,862 | 6641 | 2940 | 70 | 42.1 | 186,714 | 4434 | 1.0 | 0.9 | 1.4 | 1.5 |
Southern Europe | 6918 | 143 | 48.3 | 150,352 | 3110 | 3702 | 70 | 53.0 | 108,781 | 2051 | 1.4 | 1.2 | 1.9 | 2.1 |
Croatia | 116 | 3 | 35.6 | 52,578 | 1484 | 69 | 2 | 39.4 | 47,226 | 1197 | 1.5 | 1.3 | 1.7 | 1.9 |
Cyprus | 55 | 1 | 47.2 | 159,771 | 3381 | 26 | 1 | 47.3 | 103,013 | 2172 | 1.4 | 1.3 | 2.2 | 2.2 |
Greece | 418 | 8 | 54.3 | 105,722 | 1946 | 202 | 3 | 64.2 | 71,420 | 1115 | 1.4 | 1.1 | 2.1 | 2.4 |
Italy | 3350 | 79 | 42.2 | 192,741 | 4564 | 1840 | 41 | 45.3 | 121,532 | 2680 | 1.1 | 1.0 | 1.8 | 2.0 |
Malta | 11 | 0.4 | 28.4 | 98,140 | 3456 | 6 | 0.2 | 30.4 | 71,504 | 2355 | 1.3 | 1.2 | 1.8 | 2.0 |
Portugal | 553 | 10 | 57.6 | 118,466 | 2059 | 259 | 4 | 66.0 | 97,973 | 1482 | 1.8 | 1.5 | 2.1 | 2.4 |
Slovenia | 95 | 3 | 28.9 | 104,380 | 3609 | 60 | 2 | 31.1 | 98,848 | 3177 | 1.5 | 1.4 | 1.6 | 1.7 |
Spain | 2320 | 38 | 60.5 | 141,091 | 2333 | 1240 | 18 | 70.0 | 112,543 | 1610 | 1.5 | 1.2 | 1.9 | 2.2 |
Western Europe | 17,283 | 602 | 28.7 | 243,344 | 8473 | 9901 | 313 | 31.7 | 185,690 | 5862 | 1.3 | 1.2 | 1.7 | 1.9 |
Austria | 747 | 28 | 26.2 | 250,109 | 9546 | 407 | 14 | 28.9 | 173,548 | 5994 | 1.3 | 1.1 | 1.8 | 2.0 |
Belgium | 856 | 44 | 19.3 | 222,635 | 11,520 | 583 | 27 | 21.6 | 193,291 | 8941 | 1.3 | 1.1 | 1.5 | 1.6 |
France | 5040 | 110 | 45.6 | 198,264 | 4344 | 2710 | 54 | 50.2 | 159,546 | 3174 | 1.5 | 1.3 | 1.9 | 2.0 |
Germany | 7900 | 338 | 23.4 | 252,957 | 10,817 | 4430 | 170 | 26.1 | 186,157 | 7128 | 1.3 | 1.2 | 1.8 | 2.0 |
Luxemburg | 50 | 1 | 34.0 | 297,166 | 8730 | 27 | 1 | 36.8 | 247,484 | 6715 | 1.5 | 1.4 | 1.8 | 2.0 |
Switzerland | 1170 | 24 | 48.0 | 528,034 | 10,987 | 694 | 13 | 51.4 | 372,223 | 7240 | 1.2 | 1.1 | 1.7 | 1.8 |
The Netherlands | 1520 | 55 | 27.6 | 294,706 | 10,657 | 1050 | 34 | 31.1 | 202,017 | 6503 | 1.0 | 0.9 | 1.4 | 1.6 |
EUROPE-27+ Norway, Switzerland, Iceland, UK | 33,814 | 1020 | 33.2 | 176,787 | 5331 | 20,200 | 549 | 36.8 | 138,686 | 3771 | 1.3 | 1.2 | 1.7 | 1.9 |
Cancer Site | Deaths | Average Age at Death | YPPLL | HCA PMC (EUR Millions) | FCA PMC (EUR Millions) | HCA PMC per Death | FCA PMC per Death | HCA/FCA Ratio |
---|---|---|---|---|---|---|---|---|
Head and neck | 14,605 | 55.5 | 128,508 | 2508 | 72 | 165,007 | 4766 | 34.6 |
Oesophagus | 10,411 | 56.6 | 76,621 | 1833 | 63 | 175,774 | 6039 | 29.2 |
Stomach | 13,091 | 55.0 | 117,265 | 2226 | 60 | 170,057 | 4589 | 37.1 |
Colorectum | 30,806 | 56.1 | 244,755 | 4850 | 144 | 157,278 | 4660 | 33.8 |
Liver | 14,871 | 56.7 | 108,273 | 2249 | 71 | 151,368 | 4741 | 31.9 |
Gallbladder | 1023 | 57.5 | 6658 | 105 | 4 | 102,391 | 3757 | 27.2 |
Pancreas | 22,214 | 57.0 | 155,938 | 3184 | 109 | 143,128 | 4895 | 29.3 |
Larynx | 4515 | 56.6 | 33,252 | 559 | 18 | 123,757 | 4044 | 30.6 |
Lung | 83,917 | 57.2 | 569,038 | 11,080 | 389 | 132,088 | 4631 | 28.5 |
Melanoma skin | 5914 | 52.2 | 70,105 | 1491 | 32 | 252,204 | 5461 | 46.2 |
Breast | 29,213 | 53.4 | 310,803 | 5040 | 120 | 172,549 | 4124 | 41.8 |
Cervix Uteri | 7187 | 51.4 | 90,653 | 1240 | 25 | 172,315 | 3545 | 48.7 |
Corpus Uteri | 3733 | 57.6 | 23,985 | 307 | 11 | 82,197 | 2901 | 28.4 |
Ovary | 9238 | 55.2 | 81,196 | 1180 | 33 | 127,990 | 3605 | 35.4 |
Prostate | 5168 | 59.4 | 23,729 | 508 | 25 | 98,369 | 4776 | 20.6 |
Kidney | 8318 | 56.3 | 64,481 | 1348 | 42 | 162,382 | 5040 | 32.2 |
Bladder | 5730 | 58.0 | 34,632 | 667 | 25 | 116,449 | 4313 | 27.0 |
Brain and Central Nervous System | 17,041 | 52.2 | 201,675 | 4210 | 90 | 247,090 | 5304 | 46.6 |
Thyroid | 894 | 56.0 | 7129 | 140 | 4 | 156,304 | 4665 | 33.5 |
Hodgkin Lymphoma | 885 | 46.8 | 15,338 | 266 | 4 | 298,093 | 4439 | 67.6 |
Non-Hodgkin Lymphoma | 6938 | 54.2 | 68,148 | 1311 | 33 | 188,987 | 4730 | 39.9 |
Multiple Myeloma | 3852 | 57.7 | 24,131 | 482 | 17 | 125,171 | 4521 | 27.7 |
Leukaemia | 7777 | 52.4 | 90,158 | 1611 | 34 | 207,641 | 4398 | 47.1 |
All cancers | 336,964 | 55.6 | 2,833,925 | 54,000 | 1569 | 160,318 | 4656 | 34.4 |
All cancers except non-melanoma skin | 336,070 | 55.6 | 2,826,315 | 53,900 | 1565 | 160,293 | 4656 | 34.4 |
Region | HCA PMC (EUR Millions) | % Change from BC |
---|---|---|
EUROPE. Discount Rate 0% | 67,100 | 24 |
Central-Eastern Europe | 6350 | 26 |
Northern Europe | 14,100 | 26 |
Southern Europe | 13,200 | 25 |
Western Europe | 33,500 | 23 |
EUROPE. Discount Rate 6% | 47,600 | −12 |
Central-Eastern Europe | 4410 | −13 |
Northern Europe | 9770 | −13 |
Southern Europe | 9360 | −12 |
Western Europe | 24,100 | −11 |
EUROPE. Minimum GDP growth of each country | 41,900 | −22 |
Central-Eastern Europe | 3180 | −37 |
Northern Europe | 7850 | −30 |
Southern Europe | 8090 | −24 |
Western Europe | 22,800 | −16 |
EUROPE. Maximum GDP growth of each country | 66,600 | 23 |
Central-Eastern Europe | 8250 | 63 |
Northern Europe | 16,400 | 46 |
Southern Europe | 12,100 | 14 |
Western Europe | 29,900 | 10 |
Region/Country | Friction Periods in Days | FCA PMC (EUR Millions) | % Change from the Base Case | HCA/FCA Ratio |
---|---|---|---|---|
EUROPE. Friction period = 2018 | 79 | 1823 | 16 | 30 |
Central-Eastern Europe | 105.2 | 173 | 7 | 29 |
Northern Europe | 69.2 | 342 | 22 | 33 |
Southern Europe | 61.1 | 225 | 6 | 47 |
Western Europe | 91.7 | 1083 | 18 | 25 |
EUROPE. Minimum friction periods (2008–2018) | 55.8 | 1331 | −15 | 41 |
Central-Eastern Europe | 60.8 | 100 | −38 | 50 |
Northern Europe | 54.6 | 265 | −5 | 42 |
Southern Europe | 44.9 | 204 | −4 | 52 |
Western Europe | 66.7 | 762 | −17 | 36 |
EUROPE. Maximum friction periods (2008–2018) | 85.9 | 1920 | 22 | 28 |
Central-Eastern Europe | 106.4 | 174 | 8 | 29 |
Northern Europe | 74.2 | 346 | 24 | 32 |
Southern Europe | 73.1 | 253 | 19 | 42 |
Western Europe | 92.5 | 1146 | 25 | 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanly, P.; Ortega-Ortega, M.; Soerjomataram, I. Cancer Premature Mortality Costs in Europe in 2020: A Comparison of the Human Capital Approach and the Friction Cost Approach. Curr. Oncol. 2022, 29, 3552-3564. https://doi.org/10.3390/curroncol29050287
Hanly P, Ortega-Ortega M, Soerjomataram I. Cancer Premature Mortality Costs in Europe in 2020: A Comparison of the Human Capital Approach and the Friction Cost Approach. Current Oncology. 2022; 29(5):3552-3564. https://doi.org/10.3390/curroncol29050287
Chicago/Turabian StyleHanly, Paul, Marta Ortega-Ortega, and Isabelle Soerjomataram. 2022. "Cancer Premature Mortality Costs in Europe in 2020: A Comparison of the Human Capital Approach and the Friction Cost Approach" Current Oncology 29, no. 5: 3552-3564. https://doi.org/10.3390/curroncol29050287
APA StyleHanly, P., Ortega-Ortega, M., & Soerjomataram, I. (2022). Cancer Premature Mortality Costs in Europe in 2020: A Comparison of the Human Capital Approach and the Friction Cost Approach. Current Oncology, 29(5), 3552-3564. https://doi.org/10.3390/curroncol29050287