Pretreatment Modified Albumin–Bilirubin Grade Is an Important Predictive Factor Associated with the Therapeutic Response and the Continuation of Atezolizumab plus Bevacizumab Combination Therapy for Patients with Unresectable Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Study Design
2.3. Study Endpoint
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Therapeutic Efficacy and Factors Associated with Therapeutic Response
3.3. Overall Survival and Progression-Free Survival
3.4. Factors Associated with Treatment Discontinuation
3.5. Safety and AEs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef]
- Bouattour, M.; Mehta, N.; He, A.R.; Cohen, E.I.; Nault, J.C. Systemic Treatment for Advanced Hepatocellular Carcinoma. Liver Cancer 2019, 8, 341–358. [Google Scholar] [CrossRef]
- Rimassa, L.; Pressiani, T.; Merle, P. Systemic Treatment Options in Hepatocellular Carcinoma. Liver Cancer 2019, 8, 427–446. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Zhu, A.X.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Kudo, M. Ramucirumab in advanced hepatocellular carcinoma in REACH-2: The true value of α-fetoprotein. Lancet Oncol. 2019, 20, e191. [Google Scholar] [CrossRef] [Green Version]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef]
- Weinmann, A.; Galle, P.R. Role of immunotherapy in the management of hepatocellular carcinoma: Current standards and future directions. Curr. Oncol. 2020, 27, S152–S164. [Google Scholar] [CrossRef]
- Gordan, J.D.; Kennedy, E.B.; Abou-Alfa, G.K.; Beg, M.S.; Brower, S.T.; Gade, T.P.; Goff, L.; Gupta, S.; Guy, J.; Harris, W.P.; et al. Systemic Therapy for Advanced Hepatocellular Carcinoma: ASCO Guideline. J. Clin. Oncol. 2020, 38, 4317–4345. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, N.; Hillan, K.J.; Novotny, W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem. Biophys. Res. Commun. 2005, 333, 328–335. [Google Scholar] [CrossRef]
- Finn, R.S.; Bentley, G.; Britten, C.D.; Amado, R.; Busuttil, R.W. Targeting vascular endothelial growth factor with the monoclonal antibody bevacizumab inhibits human hepatocellular carcinoma cells growing in an orthotopic mouse model. Liver Int. 2009, 29, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, H.; Shimose, S.; Noda, Y.; Shirono, T.; Niizeki, T.; Nakano, M.; Okamura, S.; Kamachi, N.; Suzuki, H.; Sakai, M.; et al. Initial Experience of Atezolizumab Plus Bevacizumab for Unresectable Hepatocellular Carcinoma in Real-World Clinical Practice. Cancers 2021, 13, 2786. [Google Scholar] [CrossRef]
- Hiraoka, A.; Kumada, T.; Tada, T.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; Fukunishi, S.; et al. Atezolizumab plus bevacizumab treatment for unresectable hepatocellular carcinoma: Early clinical experience. Cancer Rep. 2022, 5, e1464. [Google Scholar] [CrossRef]
- Sho, T.; Suda, G.; Ogawa, K.; Kimura, M.; Kubo, A.; Tokuchi, Y.; Kitagataya, T.; Maehara, O.; Ohnishi, S.; Shigesawa, T.; et al. Early response and safety of atezolizumab plus bevacizumab for unresectable hepatocellular carcinoma in patients who do not meet IMbrave150 eligibility criteria. Hepatol. Res. 2021, 51, 979–989. [Google Scholar] [CrossRef]
- Yamada, T.; Minami, T.; Tateishi, R.; Koike, K. Limited efficacy of atezolizumab and bevacizumab for hepatocellular carcinoma previously treated with tyrosine kinase inhibitor. Liver Int. 2021, 41, 2233–2234. [Google Scholar] [CrossRef]
- Ando, Y.; Kawaoka, T.; Kosaka, M.; Shirane, Y.; Johira, Y.; Miura, R.; Murakami, S.; Yano, S.; Amioka, K.; Naruto, K.; et al. Early Tumor Response and Safety of Atezolizumab Plus Bevacizumab for Patients with Unresectable Hepatocellular Carcinoma in Real-World Practice. Cancers 2021, 13, 3958. [Google Scholar] [CrossRef]
- Kuzuya, T.; Kawabe, N.; Hashimoto, S.; Miyahara, R.; Nakano, T.; Nakaoka, K.; Tanaka, H.; Miyachi, Y.; Mii, A.; Tanahashi, Y.; et al. Initial experience of atezolizumab plus bevacizumab for advanced hepatocellular carcinoma in clinical practice. Cancer Diagn. Progn. 2021, 1, 83–88. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Esmail, A.; Umoru, G.; Westhart, K.; Abudayyeh, A.; Saharia, A.; Ghobrial, R.M. Immunotherapy as a Neoadjuvant Therapy for a Patient with Hepatocellular Carcinoma in the Pretransplant Setting: A Case Report. Curr. Oncol. 2022, 29, 4267–4273. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Ricci, A.D. PD-L1, TMB, and other potential predictors of response to immunotherapy for hepatocellular carcinoma: How can they assist drug clinical trials? Expert Opin. Investig. Drugs 2022, 31, 415–423. [Google Scholar] [CrossRef]
- European Association for The Study of The Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach—The ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef]
- Hiraoka, A.; Michitaka, K.; Kumada, T.; Izumi, N.; Kadoya, M.; Kokudo, N.; Kubo, S.; Matsuyama, Y.; Nakashima, O.; Sakamoto, M.; et al. Validation and Potential of Albumin-Bilirubin Grade and Prognostication in a Nationwide Survey of 46,681 Hepatocellular Carcinoma Patients in Japan: The Need for a More Detailed Evaluation of Hepatic Function. Liver Cancer 2017, 6, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Tovoli, F.; Renzulli, M.; Negrini, G.; Brocchi, S.; Ferrarini, A.; Andreone, A.; Benevento, F.; Golfieri, R.; Morselli-Labate, A.M.; Mastroroberto, M.; et al. Inter-operator variability and source of errors in tumour response assessment for hepa-tocellular carcinoma treated with sorafenib. Eur. Radiol. 2018, 28, 3611–3620. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef]
- Hiraoka, A.; Kumada, T.; Tsuji, K.; Takaguchi, K.; Itobayashi, E.; Kariyama, K.; Ochi, H.; Tajiri, K.; Hirooka, M.; Shimada, N.; et al. Validation of Modified ALBI Grade for More Detailed Assessment of Hepatic Function in Hepatocellular Carcinoma Patients: A Multicenter Analysis. Liver Cancer 2019, 8, 121–129. [Google Scholar] [CrossRef]
- Chuma, M.; Uojima, H.; Hattori, N.; Arase, Y.; Fukushima, T.; Hirose, S.; Kobayashi, S.; Ueno, M.; Tezuka, S.; Iwasaki, S.; et al. Safety and efficacy of atezolizumab plus bevacizumab in patients with unresectable hepatocellular carcinoma in early clinical practice: A multicenter analysis. Hepatol. Res. 2022, 52, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Eso, Y.; Takeda, H.; Taura, K.; Takai, A.; Takahashi, K.; Seno, H. Pretreatment Neutrophil-to-Lymphocyte Ratio as a Predictive Marker of Response to Atezolizumab Plus Bevacizumab for Hepatocellular Carcinoma. Curr. Oncol. 2021, 28, 4157–4166. [Google Scholar] [CrossRef] [PubMed]
- Forrest, L.M.; McMillan, D.C.; McArdle, C.S.; Angerson, W.J.; Dunlop, D.J. Evaluation of cumulative prognostic scores based on the systemic inflammatory response in patients with inoperable non-small-cell lung cancer. Br. J. Cancer 2003, 89, 1028–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valero, C.; Lee, M.; Hoen, D.; Weiss, K.; Kelly, D.W.; Adusumilli, P.S.; Paik, P.K.; Plitas, G.; Ladanyi, M.; Postow, M.A.; et al. Pretreatment neutrophil-to-lymphocyte ratio and mutational burden as biomarkers of tumor response to immune checkpoint inhibitors. Nat. Commun. 2021, 12, 729. [Google Scholar] [CrossRef] [PubMed]
- Valero, C.; Zanoni, D.K.; McGill, M.R.; Ganly, I.; Morris, L.G.T.; Quer, M.; Shah, J.P.; Wong, R.J.; León, X.; Patel, S.G. Pretreatment peripheral blood leukocytes are independent predictors of survival in oral cavity cancer. Cancer 2020, 126, 994–1003. [Google Scholar] [CrossRef]
- Hung, H.C.; Lee, J.C.; Wang, Y.C.; Cheng, C.H.; Wu, T.H.; Lee, C.F.; Wu, T.J.; Chou, H.S.; Chan, K.M.; Lee, W.C. Response Prediction in Immune Checkpoint Inhibitor Immunotherapy for Advanced Hepatocellular Carcinoma. Cancers 2021, 13, 1607. [Google Scholar] [CrossRef]
Characteristics | Values (n = 28) |
---|---|
Age (years) † | 73.5 (56, 89) |
Sex * | |
Male/Female | 22 (79)/6 (21) |
Etiology * | |
HBV/HCV/non-viral | 1 (4)/12 (43)/15 (53) |
ECOG PS * | |
0/1/2 | 25 (89)/2 (7)/1 (4) |
Child–Pugh score * | |
5/6/7 | 14 (50)/7 (25)/7 (25) |
mALBI grade * | |
1/2a/2b/3 | 8 (28)/7 (25)/12 (43)/1 (4) |
Naïve HCC * | |
Yes/No | 13 (46)/15 (54) |
BCLC stage * | |
A/B/C | 3 (11)/10 (36)/15 (53) |
Size of tumor (cm) † | 5.3 (0.5, 18.5) |
Number of tumor † | 2 (1, 50) |
Portal vain invasion * | |
Yes/No | 7 (25)/21 (75) |
Metastasis to other organs * | |
Yes/No | 9 (32)/19 (68) |
AFP (ng/mL) † | 310 (0.5, 769,600) |
DCP (mAU/mL) † | 547 (14, 136,617) |
NLR † | 3.13 (1.19, 25.7) |
Characteristics | OR (n = 13) | Non-OR (n = 11) | p Value |
---|---|---|---|
Age (years) | 73 (59, 84) | 72 (56, 89) | 0.331 † |
Sex: Male/Female | 9/4 | 9/2 | 0.410 * |
Etiology: HBV and HCV/Non-viral | 5/8 | 7/4 | 0.207 * |
ECOG PS: 0/≥1 | 13/0 | 9/2 | 0.199 * |
Naïve/recurrence HCC | 6/7 | 4/7 | 0.473 * |
Child Pugh score: 5/≥6 | 9/4 | 4/7 | 0.115 * |
mALBI grade: 1 and 2a/2b and 3 | 10/3 | 3/8 | 0.021 * |
BCLC stage: A and B/C | 4/9 | 7/4 | 0.115 * |
Portal vein invasion: Yes/No | 5/8 | 2/9 | 0.264 * |
Metastasis other organs: Yes/No | 5/8 | 2/9 | 0.264 * |
AFP (ng/mL) | 261 (0.7, 14,705) | 764 (9.1, 769,600) | 0.170 † |
DCP (mAU/mL) | 403 (14, 136,617) | 447 (29, 33,381) | 0.172 † |
NLR | 3.00 (1.19, 6.52) | 3.10 (1.41, 25.7) | 0.214 † |
Characteristics | Continuation (n = 11) | Discontinuation (n = 17) | p Value |
---|---|---|---|
Age (years) | 71 (58, 87) | 76 (56, 89) | 0.085 † |
Sex: Male/Female | 10/1 | 12/5 | 0.160 * |
Etiology: HBV and HCV/non-viral | 5/6 | 8/9 | 0.479 * |
ECOG PS: 0/≥1 | 11/0 | 14/3 | 0.171 * |
Naïve/recurrence HCC | 3/8 | 10/7 | 0.106 * |
Child–Pugh score: 5/≥6 | 9/2 | 5/12 | 0.009 * |
mALBI grade: 1 and 2a/2b and 3 | 9/2 | 6/11 | 0.020 * |
BCLC stage: A and B/C | 3/8 | 10/7 | 0.106 * |
Portal vein invasion: Yes/No | 4/7 | 3/14 | 0.250 * |
Metastasis other organs: Yes/No | 3/8 | 5/12 | 0.624 * |
AFP (ng/mL) | 40 (0.7, 17,483) | 590 (1.4, 769,600) | 0.166 † |
DCP (mAU/mL) | 419 (14, 28,256) | 651 (41, 136,617) | 0.076 † |
NLR | 3.18 (1.63, 6.52) | 3.07 (1.19, 25.7) | 0.101 † |
Adverse Events | Grade 1 or 2 | Grade 3 | Any Grade (%) |
---|---|---|---|
Pyrexia | 12 | 0 | 12 (42.9) |
Fatigue | 4 | 5 | 9 (32.1) |
Increased TSH | 7 | 0 | 7 (25.0) |
Liver disfunction | 6 | 1 * | 7 (25.0) |
Renal disfunction | 6 | 0 | 6 (21.4) |
Rash | 4 | 1 * | 5 (17.9) |
Proteinuria | 3 | 1 | 4 (14.3) |
Decreased appetite | 3 | 1 | 4 (14.3) |
Hypertension | 3 | 1 | 4 (14.3) |
Stomatitis | 3 | 0 | 3 (10.7) |
Ascites | 3 | 0 | 3 (10.7) |
Edema | 3 | 0 | 3 (10.7) |
Diarrhea | 2 | 1 | 3 (10.7) |
Dicreased TSH | 2 | 0 | 2 (7.1) |
Palmar–plantar erythrodysesthesia | 2 | 0 | 2 (7.1) |
Oral mucositis | 0 | 2 * | 2 (7.1) |
Heart failure | 1 | 0 | 1 (3.6) |
Infusion reaction | 1 | 0 | 1 (3.6) |
Acute adrenal insufficiency | 0 | 1 * | 1 (3.6) |
Hemophagocytic syndrome | 0 | 1 * | 1 (3.6) |
Case Number | Adverse Events | Pyrexia | Discontinuation | After Discontinuation |
---|---|---|---|---|
1 | Liver disfunction * | No | No | |
2 | Fatigue, infusion reaction * | Yes | Yes | BSC |
3 | Fatigue, edema | No | Yes | BSC |
4 | Acute adrenal insufficiency *, increased TSH *, renal disfunction, fatigue | Yes | Yes | Observation |
5 | Fatigue, renal disfunction | No | Yes | BSC |
6 | Liver disfunction *, renal disfunction, stomatitis *, edema | Yes | Yes | ATZ + BV |
7 | Liver disfunction *, decreased TSH *, decreased appetite, fatigue | Yes | No | |
8 | Rash * | No | No | |
9 | Fatigue, proteinuria, increased TSH *, renal disfunction | No | No | |
10 | Diarrhea, ascites, liver disfunction *, proteinuria | Yes | Yes | MTA |
11 | Heart failure, proteinuria | No | Yes | MTA |
12 | None | No | No | |
13 | Rash *, increased TSH * | Yes | Yes | Observation |
14 | Oral mucositis *, rash *, stomatitis *, increased TSH * | No | Yes | Observation |
15 | Fatigue, decreased appetite, stomatitis *, palmar–plantar erythrodysesthesia * | Yes | Yes | BSC |
16 | Proteinuria, renal disfunction, hypertension, increased TSH * | No | Yes | Observation |
17 | Hemophagocytic syndrome *, liver disfunction * | Yes | Yes | MTA |
18 | Fatigue, decreased appetite, liver disfunction * | No | Yes | ATZ + BV |
19 | Rash, renal disfunction, liver disfunction * | No | No | |
20 | Decreased TSH * | No | No | |
21 | Ascites, increased TSH * | No | Yes | Observation |
22 | Fatigue, hypertension | Yes | No | |
23 | Rash *, palmar–plantar erythrodysesthesia *, increased TSH * | Yes | Yes | Observation |
24 | Hypertension | No | No | |
25 | Rash *, fatigue, decreased appetite | Yes | Yes | BSC |
26 | Diarrhea | No | No | |
27 | Oral mucositis * | Yes | Yes | Observation |
28 | None | No | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, T.; Takata, K.; Yokoyama, K.; Fukuda, H.; Yamauchi, R.; Fukunaga, A.; Shakado, S.; Sakisaka, S.; Hirai, F. Pretreatment Modified Albumin–Bilirubin Grade Is an Important Predictive Factor Associated with the Therapeutic Response and the Continuation of Atezolizumab plus Bevacizumab Combination Therapy for Patients with Unresectable Hepatocellular Carcinoma. Curr. Oncol. 2022, 29, 4799-4810. https://doi.org/10.3390/curroncol29070381
Tanaka T, Takata K, Yokoyama K, Fukuda H, Yamauchi R, Fukunaga A, Shakado S, Sakisaka S, Hirai F. Pretreatment Modified Albumin–Bilirubin Grade Is an Important Predictive Factor Associated with the Therapeutic Response and the Continuation of Atezolizumab plus Bevacizumab Combination Therapy for Patients with Unresectable Hepatocellular Carcinoma. Current Oncology. 2022; 29(7):4799-4810. https://doi.org/10.3390/curroncol29070381
Chicago/Turabian StyleTanaka, Takashi, Kazuhide Takata, Keiji Yokoyama, Hiromi Fukuda, Ryo Yamauchi, Atsushi Fukunaga, Satoshi Shakado, Shotaro Sakisaka, and Fumihito Hirai. 2022. "Pretreatment Modified Albumin–Bilirubin Grade Is an Important Predictive Factor Associated with the Therapeutic Response and the Continuation of Atezolizumab plus Bevacizumab Combination Therapy for Patients with Unresectable Hepatocellular Carcinoma" Current Oncology 29, no. 7: 4799-4810. https://doi.org/10.3390/curroncol29070381
APA StyleTanaka, T., Takata, K., Yokoyama, K., Fukuda, H., Yamauchi, R., Fukunaga, A., Shakado, S., Sakisaka, S., & Hirai, F. (2022). Pretreatment Modified Albumin–Bilirubin Grade Is an Important Predictive Factor Associated with the Therapeutic Response and the Continuation of Atezolizumab plus Bevacizumab Combination Therapy for Patients with Unresectable Hepatocellular Carcinoma. Current Oncology, 29(7), 4799-4810. https://doi.org/10.3390/curroncol29070381