Reducing Unnecessary Biopsies Using Digital Breast Tomosynthesis and Ultrasound in Dense and Nondense Breasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nelson, H.D.; Tyne, K.; Naik, A.; Bougatsos, C.; Chan, B.K.; Humphrey, L.; U.S. Preventive Services Task Force. Screening for breast cancer: An update for the U.S. Preventive Services Task Force. Ann. Intern Med. 2009, 151, 727–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond-Smith, D.; Stone, J. Methodological Challenges and Updated Findings from a Meta-analysis of the Association between Mammographic Density and Breast Cancer. Cancer Epidemiol. Biomark. Prev. 2019, 28, 22–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerlikowske, K.; Hubbard, R.A.; Miglioretti, D.L.; Geller, B.M.; Yankaskas, B.C.; Lehman, C.D.; Taplin, S.H.; Sickles, E.A.; Breast Cancer Surveillance Consortium. Comparative effectiveness of digital versus film-screen mammography in community practice in the United States: A cohort study. Ann. Intern Med. 2011, 155, 493–502. [Google Scholar] [CrossRef]
- Posso, M.; Louro, J.; Sánchez, M.; Román, M.; Vidal, C.; Sala, M.; Baré, M.; Castells, X. Mammographic breast density: How it affects performance indicators in screening programmes? Eur. J. Radiol. 2019, 110, 81–87. [Google Scholar] [CrossRef]
- Ekpo, E.U.B.; Egbe, N.O.P.; Egom, A.E.B.; McEntee, M.F.P. Mammographic Breast Density: Comparison Across Women with Conclusive and Inconclusive Mammography Reports. J. Med. Imaging Radiat. Sci. 2015, 47, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Song, S.Y.; Park, B.; Suh, M.; Choi, K.S.; Jung, S.E.; Kim, M.J.; Lee, E.H.; Lee, C.W.; Jun, J.K. Effect of Digital Mammography for Breast Cancer Screening: A Comparative Study of More than 8 Million Korean Women. Radiology 2020, 294, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Berg, W.A.; Zhang, Z.; Lehrer, D.; Jong, R.A.; Pisano, E.D.; Barr, R.G.; Böhm-Vélez, M.; Mahoney, M.C.; Evans, W.P.; Larsen, L.H. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA 2012, 307, 1394–1404. [Google Scholar]
- Pisano, E.D.; Hendrick, R.E.; Yaffe, M.J.; Baum, J.K.; Acharyya, S.; Cormack, J.B.; Hanna, L.A.; Conant, E.F.; Fajardo, L.L.; Bassett, L.W.; et al. Diagnostic Accuracy of Digital versus Film Mammography: Exploratory Analysis of Selected Population Subgroups in DMIST. Radiology 2008, 246, 376–383. [Google Scholar] [CrossRef] [Green Version]
- McDonald, E.S.; McCarthy, A.M.; Akhtar, A.L.; Synnestvedt, M.B.; Schnall, M.; Conant, E.F. Baseline screening mammography: Performance of full-field digital mammography versus digital breast tomosynthesis. Am. J. Roentgenol. 2015, 205, 1143–1148. [Google Scholar] [CrossRef]
- Gilbert, F.J.; Tucker, L.; Gillan, M.G.C.; Willsher, P.; Cooke, J.; Duncan, K.A.; Michell, M.J.; Dobson, H.M.; Lim, Y.Y.; Suaris, T.; et al. Accuracy of Digital Breast Tomosynthesis for Depicting Breast Cancer Subgroups in a UK Retrospective Reading Study (TOMMY Trial). Radiology 2015, 277, 697–706. [Google Scholar] [CrossRef]
- Brewer, N.T.; Salz, T.; Lillie, S.E. Systematic review: The long-term effects of false-positive mammograms. Ann. Intern Med. 2007, 146, 502–510. [Google Scholar] [CrossRef]
- Zappa, M.; Spagnolo, G.; Ciatto, S.; Giorgi, D.; Paci, E.; Rosseli del Turco, M. Measurement of the costs in two mammographic screening programmes in the province of Florence, Italy. J. Med. Screen 1995, 2, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Peppard, H.R.; Nicholson, B.E.; Rochman, C.M.; Merchant, J.K.; Mayo, R.C., III; Harvey, J.A. Digital Breast Tomosynthesis in the Diagnostic Setting: Indications and Clinical Applications. RadioGraphics 2015, 35, 975–990. [Google Scholar] [CrossRef] [PubMed]
- Rafferty, E.A. Digital Mammography: Novel Applications. Radiol. Clin. N. Am. 2007, 45, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Guirguis, M.S.; Adrada, B.; Santiago, L.; Candelaria, R.; Arribas, E. Mimickers of breast malignancy: Imaging findings, pathologic concordance and clinical management. Insights Imaging 2021, 12, 53. [Google Scholar] [CrossRef]
- Sharma, N.; McMahon, M.; Haigh, I.; Chen, Y.; Dall, B.J.G. The Potential Impact of Digital Breast Tomosynthesis on the Benign Biopsy Rate in Women Recalled within the UK Breast Screening Programme. Radiology 2019, 291, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Tohno, E.; Umemoto, T.; Sasaki, K.; Morishima, I.; Ueno, E. Effect of adding screening ultrasonography to screening mammography on patient recall and cancer detection rates: A retrospective study in Japan. Eur. J. Radiol. 2013, 82, 1227–1230. [Google Scholar] [CrossRef]
- Stavros, A.T.; Thickman, D.; Rapp, C.L.; Dennis, M.A.; Parker, S.H.; Sisney, G.A. Solid breast nodules: Use of sonography to distinguish between benign and malignant lesions. Radiology 1995, 196, 123–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagliafico, A.S.; Calabrese, M.; Mariscotti, G.; Durando, M.; Tosto, S.; Monetti, F.; Airaldi, S.; Bignotti, B.; Nori, J.; Bagni, A.; et al. Adjunct Screening With Tomosynthesis or Ultrasound in Women With Mammography-Negative Dense Breasts: Interim Report of a Prospective Comparative Trial. J. Clin. Oncol. 2016, 34, 1882–1888. [Google Scholar] [CrossRef]
- Tagliafico, A.S.; Mariscotti, G.; Valdora, F.; Durando, M.; Nori, J.; La Forgia, D.; Rosenberg, I.; Caumo, F.; Gandolfo, N.; Sormani, M.P. A prospective comparative trial of adjunct screening with tomosynthesis or ultrasound in women with mammography-negative dense breasts (ASTOUND-2). Eur. J. Cancer 2018, 104, 39–46. [Google Scholar] [CrossRef]
- Yi, A.; Jang, M.J.; Yim, D.; Kwon, B.R.; Shin, S.U.; Chang, J.M. Addition of Screening Breast US to Digital Mammography and Digital Breast Tomosynthesis for Breast Cancer Screening in Women at Average Risk. Radiology 2021, 298, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Castells, X.; Torá-Rocamora, I.; Posso, M.; Román, M.; Vernet-Tomas, M.; Rodríguez-Arana, A.; Domingo, L.; Vidal, C.; Baré, M.; Ferrer, J.; et al. Risk of Breast Cancer in Women with False-Positive Results according to Mammographic Features. Radiology 2016, 280, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Ekpo, E.U.; Alakhras, M.; Brennan, P. Errors in Mammography Cannot be Solved Through Technology Alone. Asian Pac. J. Cancer Prev. 2018, 19, 291–301. [Google Scholar] [CrossRef]
- Corsetti, V.; Houssami, N.; Ghirardi, M.; Ferrari, A.; Speziani, M.; Bellarosa, S.; Remida, G.; Gasparotti, C.; Galligioni, E.; Ciatto, S. Evidence of the effect of adjunct ultrasound screening in women with mammography-negative dense breasts: Interval breast cancers at 1year follow-up. Eur. J. Cancer 2011, 47, 1021–1026. [Google Scholar] [CrossRef]
- Nassar, L.; Baassiri, A.; Salah, F.; Barakat, A.; Najem, E.; Boulos, F.; Berjawi, G. Stromal Fibrosis of the Breast: A Spectrum of Benign to Malignant Imaging Appearances. Radiol. Res. Pract. 2019, 2019, 5045908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farshid, G.; Sullivan, T.; Downey, P.; Gill, P.G.; Pieterse, S. Independent predictors of breast malignancy in screen-detected microcalcifications: Biopsy results in 2545 cases. Br. J. Cancer 2011, 105, 1669–1675. [Google Scholar] [CrossRef] [Green Version]
- Stomper, P.C. The prevalence and distribution of well circumscribed nodules on screening mammography: Analysis of 1500 mammograms. Breast Dis. 1991, 4, 197–203. [Google Scholar]
- Farshid, G.; Walker, A.; Battersby, G.; Sullivan, T.; Gill, P.G.; Pieterse, S.; Downey, P. Predictors of malignancy in screen-detected breast masses with indeterminate/equivocal (grade 3) imaging features. Breast 2011, 20, 56–61. [Google Scholar] [CrossRef]
- Fondrinier, E.; Lorimier, G.; Guerin-Boblet, V.; Bertrand, A.-F.; Mayras, C.; Dauver, N. Breast Microcalcifications: Multivariate Analysis of Radiologicand Clinical Factors for Carcinoma. World J. Surg. 2002, 26, 290–296. [Google Scholar] [CrossRef] [PubMed]
- James, J.J.; Evans, A.J.; Pinder, S.E.; Macmillan, R.D.; Wilson, A.R.M.; Ellis, I.O. Is the Presence of Mammographic Comedo Calcification Really a Prognostic Factor for Small Screen-detected Invasive Breast Cancers? Clin. Radiol. 2003, 58, 54–62. [Google Scholar] [CrossRef]
- Nyante, S.J.; Lee, S.S.; Benefield, T.S.; Hoots, T.N.; Henderson, L.M. The association between mammographic calcifications and breast cancer prognostic factors in a population-based registry cohort. Cancer 2017, 123, 219–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graf, O.; Helbich, T.H.; Hopf, G.; Graf, C.; Sickles, E.A. Probably Benign Breast Masses at US: Is Follow-up an Acceptable Alternative to Biopsy? Radiology 2007, 244, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Richard, E.; Sharpe, J.; Venkataraman, S.; Phillips, J.; Dialani, V.; Fein-Zachary, V.J.; Prakash, S.; Slanetz, P.J.; Mehta, T.S. Increased Cancer Detection Rate and Variations in the Recall Rate Resulting from Implementation of 3D Digital Breast Tomosynthesis into a Population-based Screening Program. Radiology 2016, 278, 698–706. [Google Scholar] [CrossRef]
Characteristic | No. (%) |
---|---|
Age (years) | |
40–49 | 69 (12.8) |
50–59 | 222 (41.2) |
60–69 | 163 (30.3) |
≥70 | 84 (15.7) |
Breast Density | |
Almost entirely fatty | 64 (12) |
Scattered areas of fibroglandular density | 152 (28.2) |
Heterogeneously dense | 238 (44.2) |
Extremely dense | 84 (15.6) |
Risk Factor of Breast Cancer (Personal/Family History) | |
Yes | 98 (18.2) |
No | 440 (81.8) |
Breast Density | ||||
---|---|---|---|---|
Radiologic Feature | Nondense Breasts (Number of Benign Lesions) | Dense Breasts (Number of Benign Lesions) | Total | p-Value |
NSD | 26 (16) | 23 (10) | 49 | <0.001 |
Stellate | 51 (5) | 75 (7) | 126 | |
Calcification | 39 (18) | 128 (53) | 167 | |
Discrete mass | 99 (32) | 82 (44) | 181 | |
Architectural distortion | 3 (2) | 24 (10) | 27 | |
Total | 218 (73) | 332 (124) | 550 |
NO. of True Negative (%) | Negative Outcome (Biopsy) | p-Value | NO. of True Negative (%) | Negative Outcome (Biopsy) | p-Value | |
---|---|---|---|---|---|---|
Breast Density | ||||||
Assessment Tools | Nondense Breasts | Dense Breasts | ||||
DBT | 16 (22) | 73 | 0.2 | 20 (16.1) | 124 | <0.001 |
US | 24 (32.8) | 73 | 68 (54.8) | 124 |
Potential Reduction of DBT and Ultrasound to Decrease Unnecessary Biopsies after DM | Estimation Number of Benign Cases that Required Assessment by DBT and Ultrasound to Prevent One Unnecessary Biopsy | |||||
---|---|---|---|---|---|---|
Parameter | Relative Risk (95% CI) | NO. of Cases (ARR%) | ||||
Breast Density | DBT | US | p-Value | DBT | US | p-Value |
BI-RADS A | 0.95 (0.89 to 1) | 0.79 (0.70 to 0.90) | 0.04 | 4.3 (23) | 3.2 (30.7) | 0.65 |
BI-RADS B | 0.9 (0.85 to 0.95) | 0.77 (0.70 to 0.84) | 0.003 | 4.6 (21.7) | 2.6 (66.7) | 0.21 |
BI-RADS C | 0.93 (0.89 to 0.96) | 0.66 (0.60 to 0.73) | <0.001 | 7 (14.1) | 1.8 (55.4) | <0.001 |
BI-RADS D | 0.91 (0.85 to 0.97) | 0.61 (0.51 to 0.72) | <0.001 | 5.1 (18.8) | 1.9 (50) | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadadi, I.; Clarke, J.; Rae, W.; McEntee, M.; Vincent, W.; Ekpo, E. Reducing Unnecessary Biopsies Using Digital Breast Tomosynthesis and Ultrasound in Dense and Nondense Breasts. Curr. Oncol. 2022, 29, 5508-5516. https://doi.org/10.3390/curroncol29080435
Hadadi I, Clarke J, Rae W, McEntee M, Vincent W, Ekpo E. Reducing Unnecessary Biopsies Using Digital Breast Tomosynthesis and Ultrasound in Dense and Nondense Breasts. Current Oncology. 2022; 29(8):5508-5516. https://doi.org/10.3390/curroncol29080435
Chicago/Turabian StyleHadadi, Ibrahim, Jillian Clarke, William Rae, Mark McEntee, Wendy Vincent, and Ernest Ekpo. 2022. "Reducing Unnecessary Biopsies Using Digital Breast Tomosynthesis and Ultrasound in Dense and Nondense Breasts" Current Oncology 29, no. 8: 5508-5516. https://doi.org/10.3390/curroncol29080435
APA StyleHadadi, I., Clarke, J., Rae, W., McEntee, M., Vincent, W., & Ekpo, E. (2022). Reducing Unnecessary Biopsies Using Digital Breast Tomosynthesis and Ultrasound in Dense and Nondense Breasts. Current Oncology, 29(8), 5508-5516. https://doi.org/10.3390/curroncol29080435