The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence
Abstract
:Highlights
- Deregulation in MMR mechanism and miR-21, miR-155 and miR-451a are caused by chronic exposure to N-Nitrosamines, NNK and NDEA, and nicotine.
- Reduced hMSH2 and hMLH1 gene expression profiles and miRNA deregulations can be detected both at early stages of tobacco smoke-related carcinogenesis and in invasive cancers of the upper aerodigestive tract in smokers.
- MMR gene expression phenotypes are strongly linked to deregulated specific miRNAs, such as miR-21, miR-155, miR-34a and miR-451a.
- The activation of NF-κB may play a role in tobacco smoke-induced MMR dysfunction and carcinogenesis in the upper aerodigestive tract.
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Model
2.2. Histopathologic Evaluation
2.3. Immunohistochemical Staining (IHC)
2.3.1. Chromogenic Staining
2.3.2. Immunofluorescence (IF) Staining
2.4. Human Specimens
2.5. Quantitative Real-Time PCR (qPCR) Analysis
2.6. MicroRNA Analysis
2.7. Statistical Analysis
3. Results
3.1. Chronic Exposure to TS Components Decreases MMR Protein Levels and Promotes Dysplasia in Exposed Hypopharyngeal Mucosa
3.2. Chronic Exposure to TS Components Downregulates MMR Gene Expression and Deregulates Cancer-Related miRNA Markers in Exposed Hypopharyngeal Mucosa
3.3. TS Components Induce Activation of NF-κB That Correlates with MSH2 and miRNA Expression in Hypopharyngeal Mucosa
3.4. Downregulation of hMSH2 and hMLH1 Genes in Human HSCC Tumor Specimens from Tobacco Smokers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Centers for Disease Control and Prevention (CDC). Current Cigarette Smoking among Adults in the United States. 2020. Available online: https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/index.htm (accessed on 17 March 2022).
- World Health Organization (WHO). 2021. Available online: https://apps.who.int/gho/data/node.sdg.3-a-viz?lang=en (accessed on 23 March 2018).
- Centers for Disease Control and Prevention (US); National Center for Chronic Disease Prevention and Health Promotion (US); Office on Smoking and Health (US). How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US); 2010. 1, Introduction, Evaluation of Evidence on Mechanisms of Disease Production, and Summary. Available online: https://www.ncbi.nlm.nih.gov/books/NBK53019/ (accessed on 18 June 2022).
- Cook, M.B.; Shaheen, N.J.; Anderson, L.A.; Giffen, C.; Chow, W.H.; Vaughan, T.L.; Whiteman, D.C.; Corley, D.A. Cigarette smoking increases risk of Barrett’s esophagus: An analysis of the Barrett’s and Esophageal Adenocarcinoma Consortium. Gastroenterology 2012, 142, 744–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Cancer Society. Survival Rates for Laryngeal and Hypopharyngeal Cancers. Available online: https://www.cancer.org/cancer/laryngeal-and-hypopharyngeal-cancer/detection-diagnosis-staging/survival-rates.html (accessed on 1 March 2022).
- Vageli, D.P.; Doukas, P.G.; Doukas, S.G.; Tsatsakis, A.; Judson, B.L. Noxious Combination of Tobacco Smoke Nitrosamines with Bile, Deoxycholic Acid, Promotes Hypopharyngeal Squamous Cell Carcinoma, via NFκB, In Vivo. Cancer Prev. Res. 2022, 15, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Yang, S.; Seng, S. Mechanisms of Cancer Induction by Tobacco-Specific NNK and NNN. Cancers 2014, 6, 1138–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veena, S.; Rashmi, S. A Review on Mechanism of Nitrosamine Formation, Metabolism and Toxicity in In Vivo. (Review). IJTPR 2014, 6, 86–96. Available online: http://ijtpr.com/volume6issue4/ (accessed on 18 June 2022).
- Kim, M.Y.; Song, K.S.; Park, G.H.; Chang, S.H.; Kim, H.W.; Park, J.H.; Jin, H.; Eu, K.J.; Cho, H.S.; Kang, G.; et al. B6C3F1 mice exposed to ozone with 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone and/or dibutyl phthalate showed toxicities through alterations of NF-kappaB, AP-1, Nrf2, and osteopontin. J. Vet. Sci. 2004, 5, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Tsurutani, J.; Castillo, S.S.; Brognard, J.; Granville, C.A.; Zhang, C.; Gills, J.J.; Sayyah, J.; Dennis, P.A. Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells. Carcinogenesis 2005, 26, 1182–1195. [Google Scholar] [CrossRef] [Green Version]
- Sanner, T.; Grimsrud, T.K. Nicotine: Carcinogenicity and Effects on Response to Cancer Treatment-A Review. Front. Oncol. 2015, 5, 196. [Google Scholar] [CrossRef] [Green Version]
- Li, G.M. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008, 18, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Alhmoud, J.F.; Woolley, J.F.; Al Moustafa, A.E.; Malki, M.I. DNA Damage/Repair Management in Cancers. Cancers 2020, 12, 1050. [Google Scholar] [CrossRef]
- Cilona, M.; Locatello, L.G.; Novelli, L.; Gallo, O. The Mismatch Repair System (MMR) in Head and Neck Carcinogenesis and Its Role in Modulating the Response to Immunotherapy: A Critical Review. Cancers 2020, 12, 3006. [Google Scholar] [CrossRef]
- Mohr, A.M.; Mott, J.L. Overview of microRNA biology. Semin. Liver Dis. 2015, 35, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Momi, N.; Kaur, S.; Rachagani, S.; Ganti, A.K.; Batra, S.K. Smoking and microRNA dysregulation: A cancerous combination. Trends Mol. Med. 2014, 20, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Doukas, S.G.; Vageli, D.P.; Lazopoulos, G.; Spandidos, D.A.; Sasaki, C.T.; Tsatsakis, A. The Effect of NNK, A Tobacco Smoke Carcinogen, on the miRNA and Mismatch DNA Repair Expression Profiles in Lung and Head and Neck Squamous Cancer Cells. Cells 2020, 9, 1031. [Google Scholar] [CrossRef] [Green Version]
- Vageli, D.; Doukas, S.G.; Kerenidi, T.; Koukoulis, G.K.; Gourgoulianis, K.I.; Daniil, Z. Correlation of miR-422a, miR-21 and miR-155 analysis with hMSH2 and hMLH1 mRNA expression profiles in non-small cell lung carcinomas and their adjacent normal tissues. Eur. Respir. J. 2013, 42 (Suppl. 57), 4639. Available online: https://erj.ersjournals.com/content/42/Suppl_57/4639 (accessed on 25 July 2014).
- Sasaki, C.T.; Vageli, D.P. miR-21, miR-155, miR-192, and miR-375 Deregulations Related to NF-kappaB Activation in Gastroduodenal Fluid-Induced Early Preneoplastic Lesions of Laryngeal Mucosa In Vivo. Neoplasia 2016, 18, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Hu, A.; Huang, J.J.; Xu, W.H.; Jin, X.J.; Li, J.P.; Tang, Y.J.; Huang, X.F.; Cui, H.J.; Sun, G.B. miR-21 and miR-375 microRNAs as candidate diagnostic biomarkers in squamous cell carcinoma of the larynx: Association with patient survival. Am. J. Transl. Res. 2014, 6, 604–613. Available online: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4212934/ (accessed on 11 October 2014).
- Zhao, X.D.; Zhang, W.; Liang, H.J.; Ji, W.Y. Overexpression of miR -155 promotes proliferation and invasion of human laryngeal squamous cell carcinoma via targeting SOCS1 and STAT3. PLoS ONE 2013, 8, e56395. [Google Scholar] [CrossRef]
- Shen, Z.; Zhan, G.; Ye, D.; Ren, Y.; Cheng, L.; Wu, Z.; Guo, J. MicroRNA-34a affects the occurrence of laryngeal squamous cell carcinoma by targeting the antiapoptotic gene survivin. Med. Oncol. 2012, 29, 2473–2480. [Google Scholar] [CrossRef]
- Jamali, Z.; Asl Aminabadi, N.; Attaran, R.; Pournagiazar, F.; Ghertasi Oskouei, S.; Ahmadpour, F. MicroRNAs as prognostic molecular signatures in human head and neck squamous cell carcinoma: A systematic review and meta-analysis. Oral Oncol. 2015, 51, 321–331. [Google Scholar] [CrossRef]
- Edwards, S.H.; Hassink, M.D.; Taylor, K.M.; Watson, C.H.; Kuklenyik, P.; Kimbrell, B.; Wang, L.; Chen, P.; Valentín-Blasini, L. Tobacco-Specific Nitrosamines in the Tobacco and Mainstream Smoke of Commercial Little Cigars. Chem. Res. Toxicol. 2021, 34, 1034–1045. [Google Scholar] [CrossRef]
- Hecht, S.S. Carcinogen derived biomarkers: Applications in studies of human exposure to secondhand tobacco smoke. Tob. Control 2004, 13 (Suppl. 1), i48–i56. [Google Scholar] [CrossRef]
- Sipahimalani, A.T.; Chadha, M.S.; Bhide, S.V.; Pratap, A.I.; Nair, J. Detection of N-nitrosamines in the saliva of habitual chewers of tobacco. Food Chem. Toxicol. 1984, 22, 261–264. [Google Scholar] [CrossRef]
- Calafat, A.M.; Polzin, G.M.; Saylor, J.; Richter, P.; Ashley, D.L.; Watson, C.H. Determination of tar, nicotine, and carbon monoxide yields in the mainstream smoke of selected international cigarettes. Tob. Control 2004, 13, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, D.; Rivenson, A.; Amin, S.; Hecht, S.S. Dose-response study of the carcinogenicity of tobacco-specific N-nitrosamines in F344 rats. J. Cancer Res. Clin. Oncol. 1984, 108, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Balansky, R.M.; Ganchev, G.; D’Agostini, F.; De Flora, S. Effects of N-acetylcysteine in an esophageal carcinogenesis model in rats treated with diethylnitrosamine and diethyldithiocarbamate. Int. J. Cancer 2002, 98, 493–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waddell, W.J. Thresholds in chemical carcinogenesis: What are animal experiments telling us? Toxicol. Pathol. 2003, 31, 260–262. [Google Scholar] [CrossRef]
- Gale, N.; Blagus, R.; El-Mofty, S.K.; Helliwell, T.; Prasad, M.L.; Sandison, A.; Volavšek, M.; Wenig, B.M.; Zidar, N.; Cardesa, A. Evaluation of a new grading system for laryngeal squamous intraepithelial lesions--A proposed unified classification. Histopathology 2014, 65, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Warnakulasuriya, S.; Reibel, J.; Bouquot, J.; Dabelsteen, E. Oral epithelial dysplasia classification systems: Predictive value, utility, weaknesses and scope for improvement. J Oral Pathol. Med. 2008, 37, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Harkema, J.R.; Carey, S.A.; Wagner, J.G.; Dinzis, S.M.; Liggitt, D. Nose, sinus, pharynx, and larynx. In Comparative Anatomy and Histology: A Mouse, Rat, and Human Atlas; Treuting, P.M., Dinzis, S., Montine, K.S., Eds.; Elsevier Science & Technology: London, UK, 2018; pp. 89–114. Available online: https://www.worldcat.org/title/comparative-anatomy-and-histology-a-mouse-rat-and-human-atlas/oclc/1005934785?referer=di&ht=edition (accessed on 18 June 2022).
- Vageli, D.P.; Prasad, M.L.; Sasaki, C.T. Gastro-duodenal fluid induced nuclear factor-κappaB activation and early premalignant alterations in murine hypopharyngeal mucosa. Oncotarget 2016, 7, 5892–5908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, C.T.; Doukas, S.G.; Costa, J.; Vageli, D.P. The Progressive Mutagenic Effects of Acidic Bile Refluxate in Hypopharyngeal Squamous Cell Carcinogenesis: New Insights. Cancers 2020, 12, 1064. [Google Scholar] [CrossRef]
- Sasaki, C.T.; Doukas, S.G.; Doukas, P.G.; Vageli, D.P. Weakly Acidic Bile Is a Risk Factor for Hypopharyngeal Carcinogenesis Evidenced by DNA Damage, Antiapoptotic Function, and Premalignant Dysplastic Lesions In Vivo. Cancers 2021, 13, 852. [Google Scholar] [CrossRef]
- Sasaki, C.T.; Doukas, S.G.; Costa, J.; Vageli, D.P. Biliary reflux as a causal factor in hypopharyngeal carcinoma: New clinical evidence and implications. Cancer 2019, 125, 3554–3565. [Google Scholar] [CrossRef]
- Sethi, N.; Wright, A.; Wood, H.; Rabbitts, P. MicroRNAs and head and neck cancer: Reviewing the first decade of research. Eur. J. Cancer 2014, 50, 2619–2635. [Google Scholar] [CrossRef] [PubMed]
- Curado, M.P.; Hashibe, M. Recent changes in the epidemiology of head and neck cancer. Curr. Opin. Oncol. 2009, 21, 194–200. [Google Scholar] [CrossRef]
- Pfeifer, G.P.; Denissenko, M.F.; Olivier, M.; Tretyakova, N.; Hecht, S.S.; Hainaut, P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 2002, 21, 7435–7451. [Google Scholar] [CrossRef] [Green Version]
- Doukas, S.G.; Vageli, D.P.; Sasaki, C.T. NF-κB inhibition reverses acidic bile-induced miR-21, miR-155, miR-192, miR-34a, miR-375 and miR-451a deregulations in human hypopharyngeal cells. J. Cell. Mol. Med. 2018, 22, 2922–2934. [Google Scholar] [CrossRef] [Green Version]
- Christmann, M.; Kaina, B. Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents. J Biol. Chem. 2000, 275, 36256–36262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardi, I.; Franchi, A.; De Campora, L.; Passali, G.C.; Gallo, O. Microsatellite instability as an indicator of malignant progression in laryngeal premalignancy. Head Neck 2006, 28, 730–739. [Google Scholar] [CrossRef]
- Landau, D.A.; Slack, F.J. MicroRNAs in mutagenesis, genomic instability, and DNA repair. Semin. Oncol. 2011, 38, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Chao, T.F.; Xiong, H.H.; Liu, W.; Chen, Y.; Zhang, J.X. MiR-21 mediates the radiation resistance of glioblastoma cells by regulating PDCD4 and hMSH2. J. Huazhong Univ. Sci. Technol. Med. Sci. 2013, 33, 525–529. [Google Scholar] [CrossRef]
- Valeri, N.; Gasparini, P.; Braconi, C.; Paone, A.; Lovat, F.; Fabbri, M.; Sumani, K.M.; Alder, H.; Amadori, D.; Patel, T.; et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc. Natl. Acad. Sci. USA 2010, 107, 21098–21103. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Dong, Z.; Yang, L.; Gong, Z. miR-21 induces cell cycle at S phase and modulates cell proliferation by down-regulating hMSH2 in lung cancer. J. Cancer Res. Clin. Oncol. 2012, 138, 1781–1788. [Google Scholar] [CrossRef]
- Yamamoto, H.; Adachi, Y.; Taniguchi, H.; Kunimoto, H.; Nosho, K.; Suzuki, H.; Shinomura, Y. Interrelationship between microsatellite instability and microRNA in gastrointestinal cancer. World J. Gastroenterol. 2012, 18, 2745–2755. [Google Scholar] [CrossRef]
- Mao, G.; Lee, S.; Ortega, J.; Gu, L.; Li, G.M. Modulation of microRNA processing by mismatch repair protein MutLα. Cell Res. 2012, 22, 973–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Wang, Y.; Ren, X.; Tsuyada, A.; Li, A.; Liu, L.J.; Wang, S.E. Context-dependent bidirectional regulation of the MutS homolog 2 by transforming growth factor β contributes to chemoresistance in breast cancer cells. Mol. Cancer Res. 2010, 8, 1633–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valeri, N.; Gasparini, P.; Fabbri, M.; Braconi, C.; Veronese, A.; Lovat, F.; Adair, B.; Vannini, I.; Fanini, F.; Bottoni, A.; et al. Modulation of mismatch repair and genomic stability by miR-155. Proc. Natl. Acad. Sci. USA 2010, 107, 6982–6987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukumoto, I.; Kinoshita, T.; Hanazawa, T.; Kikkawa, N.; Chiyomaru, T.; Enokida, H.; Yamamoto, N.; Goto, Y.; Nishikawa, R.; Nakagawa, M.; et al. Identification of tumour suppressive microRNA-451a in hypopharyngeal squamous cell carcinoma based on microRNA expression signature. Br. J. Cancer 2014, 111, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Kalfert, D.; Ludvikova, M.; Pesta, M.; Ludvik, J.; Dostalova, L.; Kholová, I. Multifunctional Roles of miR-34a in Cancer: A Review with the Emphasis on Head and Neck Squamous Cell Carcinoma and Thyroid Cancer with Clinical Implications. Diagnostics 2020, 10, 563. [Google Scholar] [CrossRef]
- Siemens, H.; Neumann, J.; Jackstadt, R.; Mansmann, U.; Horst, D.; Kirchner, T.; Hermeking, H. Correction: Detection of miR-34a Promoter Methylation in Combination with Elevated Expression of c-Met and β-Catenin Predicts Distant Metastasis of Colon Cancer. Clin. Cancer Res. 2022, 28, 1739. [Google Scholar] [CrossRef]
Experimental and Control Groups | Nicotine (NIC) (0.02 μmol/L) | N-Nitrosamines [NNK (0.2 mmol/L) + NDEA (0.004 mmol/L)] | 2% Saccharin in Water |
---|---|---|---|
NIC | * | - | * |
NNK-NDEA | - | * | * |
NNK-NDEA-NIC | * | * | * |
Treated control | - | - | * |
Untreated control | - | - | - |
Target Protein | * NIC | * NNK-NDEA | * NNK-NDEA-NIC |
---|---|---|---|
aMSH2 | −1.4 | −1.6 | −2.1 |
bMLH1 | −1.4 | −1.5 | −1.7 |
† Relative Expression (HSCC/ANT) | ||
---|---|---|
MMR genes | hMSH2 | −48 |
hMLH1 | −3 | |
miRNA markers | miR-21 | 28 |
miR-155 | 23 | |
miR-451a | −80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doukas, S.G.; Vageli, D.P.; Doukas, P.G.; Nikitovic, D.; Tsatsakis, A.; Judson, B.L. The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence. Curr. Oncol. 2022, 29, 5531-5549. https://doi.org/10.3390/curroncol29080437
Doukas SG, Vageli DP, Doukas PG, Nikitovic D, Tsatsakis A, Judson BL. The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence. Current Oncology. 2022; 29(8):5531-5549. https://doi.org/10.3390/curroncol29080437
Chicago/Turabian StyleDoukas, Sotirios G., Dimitra P. Vageli, Panagiotis G. Doukas, Dragana Nikitovic, Aristidis Tsatsakis, and Benjamin L. Judson. 2022. "The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence" Current Oncology 29, no. 8: 5531-5549. https://doi.org/10.3390/curroncol29080437
APA StyleDoukas, S. G., Vageli, D. P., Doukas, P. G., Nikitovic, D., Tsatsakis, A., & Judson, B. L. (2022). The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence. Current Oncology, 29(8), 5531-5549. https://doi.org/10.3390/curroncol29080437