Fatal Progression of Mutated TP53-Associated Clonal Hematopoiesis following Anti-CD19 CAR-T Cell Therapy
Abstract
:1. Introduction
2. Case
3. Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Fried, S.; Avigdor, A.; Bielorai, B.; Meir, A.; Besser, M.J.; Schachter, J.; Shimoni, A.; Nagler, A.; Toren, A.; Jacoby, E. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplant. 2019, 54, 1643–1650. [Google Scholar] [CrossRef] [PubMed]
- Jain, T.; Knezevic, A.; Pennisi, M.; Chen, Y.; Ruiz, J.D.; Purdon, T.J.; Devlin, S.M.; Smith, M.; Shah, G.L.; Halton, E.; et al. Hematopoietic recovery in patients receiving chimeric antigen receptor T-cell therapy for hematologic malignancies. Blood Adv. 2020, 4, 3776–3787. [Google Scholar] [CrossRef]
- Chakraborty, R.; Hill, B.T.; Majeed, A.; Majhail, N.S. Late Effects after Chimeric Antigen Receptor T Cell Therapy for Lymphoid Malignancies. Transpl. Cell. Ther. 2020, 27, 222–229. [Google Scholar] [CrossRef]
- Hansen, D.K.; Dam, M.; Faramand, R.G. Toxicities associated with adoptive cellular therapies. Best Pract. Res. Clin. Haematol. 2021, 34, 101287. [Google Scholar] [CrossRef]
- Schubert, M.-L.; Schmitt, M.; Wang, L.; Ramos, C.; Jordan, K.; Müller-Tidow, C.; Dreger, P. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann. Oncol. 2020, 32, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Reagan, P.M.; Liesveld, J.L. Cytopenia after CAR-T Cell Therapy—A Brief Review of a Complex Problem. Cancers 2022, 14, 1501. [Google Scholar] [CrossRef]
- Taneja, A.; Jain, T. CAR-T-OPENIA: Chimeric antigen receptor T-cell therapy-associated cytopenias. Ejhaem 2021, 3, 32–38. [Google Scholar] [CrossRef]
- Miller, P.G.; Sperling, A.S.; Brea, E.J.; Leick, M.B.; Fell, G.G.; Jan, M.; Gohil, S.H.; Tai, Y.-T.; Munshi, N.C.; Wu, C.J.; et al. Clonal hematopoiesis in patients receiving chimeric antigen receptor T-cell therapy. Blood Adv. 2021, 5, 2982–2986. [Google Scholar] [CrossRef]
- Saini, N.Y.; Swoboda, D.M.; Greenbaum, U.; Ma, J.; Patel, R.D.; Devashish, K.; Das, K.; Tanner, M.R.; Strati, P.; Nair, R.; et al. Clonal Hematopoiesis Is Associated with Increased Risk of Severe Neurotoxicity in Axicabtagene Ciloleucel Therapy of Large B-Cell Lymphoma. Blood Cancer Discov. 2022, 3, 385–393. [Google Scholar] [CrossRef]
- Teipel, R.; Kroschinsky, F.P.; Kramer, M.; Kretschmann, T.; Egger-Heidrich, K.; Krüger, T.; Ruhnke, L.; Herold, S.; Stasik, S.; Sockel, K.; et al. Prevalence and variation of CHIP in patients with aggressive lymphomas undergoing CD19-directed CAR T-cell treatment. Blood Adv. 2022, 6, 1941–1946. [Google Scholar] [CrossRef] [PubMed]
- Uslu, U.; June, C.H. CAR T-cell Therapy Meets Clonal Hematopoiesis. Blood Cancer Discov. 2022, 3, 382–384. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.; Acha, P.; Ganster, C.; Palomo, L.; Dierks, S.; Fuster-Tormo, F.; Mallo, M.; Ademà, V.; Gómez-Marzo, P.; De Haro, N.; et al. Targeted deep sequencing of CD34+ cells from peripheral blood can reproduce bone marrow molecular profile in myelodysplastic syndromes. Am. J. Hematol. 2018, 93, E152–E154. [Google Scholar] [CrossRef]
- Bernard, E.; Nannya, Y.; Hasserjian, R.P.; Devlin, S.M.; Tuechler, H.; Medina-Martinez, J.S.; Yoshizato, T.; Shiozawa, Y.; Saiki, R.; Malcovati, L.; et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020, 26, 1549–1556. [Google Scholar] [CrossRef]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef]
- Strati, P.; Varma, A.; Adkins, S.; Nastoupil, L.J.; Westin, J.; Hagemeister, F.B.; Fowler, N.H.; Lee, H.J.; Fayad, L.E.; Samaniego, F.; et al. Hematopoietic recovery and immune reconstitution after axicabtagene ciloleucel in patients with large B-cell lymphoma. Haematologica 2020, 106, 2667–2672. [Google Scholar] [CrossRef] [PubMed]
- Cappell, K.M.; Sherry, R.M.; Yang, J.C.; Goff, S.L.; Vanasse, D.A.; McIntyre, L.; Rosenberg, S.A.; Kochenderfer, J.N. Long-Term Follow-Up of Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy. J. Clin. Oncol. 2020, 38, 3805–3815. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, A.; Bezerra, E.D.; Hirayama, A.V.; Hill, J.A.; Wu, Q.V.; Voutsinas, J.; Sorror, M.L.; Turtle, C.J.; Maloney, D.G.; Bar, M. Late Events after Treatment with CD19-Targeted Chimeric Antigen Receptor Modified T Cells. Biol. Blood Marrow Transpl. 2019, 26, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Genovese, G.; Kähler, A.K.; Handsaker, R.E.; Lindberg, J.; Rose, S.A.; Bakhoum, S.F.; Chambert, K.; Mick, E.; Neale, B.M.; Fromer, M.; et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. N. Engl. J. Med. 2014, 371, 2477–2487. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef]
- Yan, B.; Wang, H.; Rabbani, Z.N.; Zhao, Y.; Li, W.; Yuan, Y.; Li, F.; Dewhirst, M.W.; Li, C.-Y. Tumor Necrosis Factor-α Is a Potent Endogenous Mutagen that Promotes Cellular Transformation. Cancer Res. 2006, 66, 11565–11570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Côme, C.; Balhuizen, A.; Bonnet, D.; Porse, B.T. Myelodysplastic syndrome patient-derived xenografts: From no options to many. Haematologica 2020, 105, 864–869. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eder, L.N.; Martinovic, D.; Mazzeo, P.; Ganster, C.; Hasenkamp, J.; Thomson, J.; Trummer, A.; Haase, D.; Wulf, G. Fatal Progression of Mutated TP53-Associated Clonal Hematopoiesis following Anti-CD19 CAR-T Cell Therapy. Curr. Oncol. 2023, 30, 1146-1150. https://doi.org/10.3390/curroncol30010087
Eder LN, Martinovic D, Mazzeo P, Ganster C, Hasenkamp J, Thomson J, Trummer A, Haase D, Wulf G. Fatal Progression of Mutated TP53-Associated Clonal Hematopoiesis following Anti-CD19 CAR-T Cell Therapy. Current Oncology. 2023; 30(1):1146-1150. https://doi.org/10.3390/curroncol30010087
Chicago/Turabian StyleEder, Lea Naomi, Danilo Martinovic, Paolo Mazzeo, Christina Ganster, Justin Hasenkamp, Julia Thomson, Arne Trummer, Detlef Haase, and Gerald Wulf. 2023. "Fatal Progression of Mutated TP53-Associated Clonal Hematopoiesis following Anti-CD19 CAR-T Cell Therapy" Current Oncology 30, no. 1: 1146-1150. https://doi.org/10.3390/curroncol30010087
APA StyleEder, L. N., Martinovic, D., Mazzeo, P., Ganster, C., Hasenkamp, J., Thomson, J., Trummer, A., Haase, D., & Wulf, G. (2023). Fatal Progression of Mutated TP53-Associated Clonal Hematopoiesis following Anti-CD19 CAR-T Cell Therapy. Current Oncology, 30(1), 1146-1150. https://doi.org/10.3390/curroncol30010087