Current and Emerging Role of Monoclonal Antibody-Based First-Line Treatment in Advanced Gastro-Esophageal and Gastric Cancer
Abstract
:1. Introduction
2. Anti-HER2 Receptor
3. Anti-VEGF
4. Anti-PD-1/PD-L1
Trial | Agent | Experimental Arm | Control Arm | Primary Endpoints | Results (Experimental vs. Control) | Reference in the Text |
---|---|---|---|---|---|---|
CheckMate-649 | Nivolumab | Nivolumab + chemotherapy (XELOX or FOLFOX) | XELOX or FOLFOX | OS and PFS in patients with CPS ≥ 5 | OS: 14.4 vs. 11.1 months (HR 0.71; 98.4% CI 0.59–0.86) PFS: 7.7 vs. 6.05 months (HR 0.68; 98% CI 0.56–0.81) | [37] |
ORIENT-16 | Sintilimab | Sintilimab + chemotherapy (CAPOX) | CAPOX | OS in patients with CPS ≥ 5 and OS in all patients | OS in patients with CPS ≥ 5: 18.4 vs. 12.9 months (HR 0.660; 95% CI 0.505–0.864) OS in all patients: 15.2 vs. 12.3 months (HR 0.766; 95% CI 0.626–0.936) | [39] |
RATIONALE 305 | Tislelizumab | Tislelizumab + chemotherapy (CAPOX or cisplatin + 5-FU) | CAPOX or cisplatin + 5-FU | OS | OS: 17.2 vs. 12.6 months (HR 0.74; 95% CI 0.59–0.94) | [40] |
ATTRACTION-4 | Nivolumab | Nivolumab + chemotherapy (SOX or CAPOX) | SOX or CAPOX | PFS and OS | PFS: 10.45 vs. 8.34 months (HR 0.68; 98.51% CI 0.51–0.90) OS: 17.45 vs. 17.15 months (HR 0.90; 95% CI 15.67–20.83) | [41] |
KEYNOTE-859 | Pembrolizumab | Pembrolizumab + chemotherapy (cisplatin + 5-FU or CAPOX) | Cisplatin + 5-FU or CAPOX | OS | OS: 12.9 vs. 11.5 months (HR 0.78; 95% CI 0.70–0.87) | [42] |
KEYNOTE-062 | Pembrolizumab | Pembrolizumab or pembrolizumab + chemotherapy (cisplatin + 5-FU or cisplatin + capecitabine) | Cisplatin + 5-FU or cisplatin + capecitabine | OS and PFS in patients with CPS ≥ 1 | Pembrolizumab vs. chemotherapy OS: 10.6 vs. 11.1 months (HR 0.91; 99.2% CI 0.69–1.18) PFS: 2.0 vs. 6.4 months (HR 1.66; 95% CI 1.37–2.01) Pembrolizumab + chemotherapy vs. chemotherapy: OS: 12.5 vs. 11.1 months (HR 0.85; 95% CI 0.70–1.03) PFS: 6.9 vs. 6.4 months (HR 0.84; 95% CI 0.70–1.02) | [43] |
KEYNOTE-811 | Trastuzumab + pembrolizumab | Trastuzumab + pembrolizumab + chemotherapy (cisplatin + 5-FU or CAPOX) | Cisplatin + 5-FU or CAPOX | OS and PFS | Interim results ORR: 74.4% vs. 51.9% | [48] |
5. Anti-Claudin 18.2
6. Conclusions
- (1)
- HER2-positive patients should be offered trastuzumab with cytotoxic chemotherapy (fluoropyrimidine and oxaliplatin-based regimen); adding pembrolizumab is an option but not yet widely available;
- (2)
- HER2-negative patients with a PD-L1 CPS ≥ 5% should be offered nivolumab, or pembrolizumab for PD-L1 CPS ≥ 10%, in combination with cytotoxic chemotherapy (fluoropyrimidine and platinum-based regimen);
- (3)
- HER2-negative patients with a PD-L1 CPS 1–5 should be offered cytotoxic chemotherapy (fluoropyrimidine and platinum-based regimen), as well as considered for the addition of nivolumab;
Author Contributions
Funding
Conflicts of Interest
References
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Jim, M.A.; Pinheiro, P.S.; Carreira, H.; Espey, D.K.; Wiggins, C.L.; Weir, H.K. Stomach cancer survival in the United States by race and stage (2001–2009): Findings from the CONCORD-2 study. Cancer 2020, 123 (Suppl. 24), 4994–5013. [Google Scholar] [CrossRef] [PubMed]
- Thrift, A.P.; El-Serag, H.B. Burden of Gastric Cancer. Clin. Gastroenterol. Hepatol. 2020, 18, 534–542. [Google Scholar] [CrossRef]
- Luebke, T.; Baldus, S.E.; Grass, G.; Bollschweiler, E.; Thiele, J.; Dienes, H.P.; Hoelscher, A.H.; Moenig, S.P. Histological grading in gastric cancer by Ming classification: Correlation with histopathological subtypes, metastasis, and prognosis. World J. Surg. 2005, 29, 1422–1427. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Puliga, E.; Corso, S.; Pietrantonio, F.; Giordano, S. Microsatellite instability in Gastric Cancer: Between lights and shadows. Cancer Treat. Rev. 2021, 95, 102175. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Luo, H.; Huang, L.; Luo, H.; Zhu, X. Microsatellite instability: A review of what the oncologist should know. Cancer Cell Int. 2020, 20, 16. [Google Scholar] [CrossRef]
- Cristescu, R.; Lee, J.; Nebozhyn, M.; Kim, K.M.; Ting, J.C.; Wong, S.S.; Liu, J.; Yue, Y.G.; Wang, J.; Yu, K.; et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 2015, 21, 449–456. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Miceli, R.; Raimondi, A.; Kim, Y.W.; Kang, W.K.; Langley, R.E.; Choi, Y.Y.; Kim, K.M.; Nankivell, M.G.; Morano, F.; et al. Individual patient data meta-analysis of the value of microsatellite instability as a biomarker in gastric cancer. J. Clin. Oncol. 2019, 37, 3392–3400. [Google Scholar] [CrossRef]
- Gravalos, C.; Jimeno, A. HER2 in gastric cancer: A new prognostic factor and a novel therapeutic target. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2008, 19, 1523–1529. [Google Scholar] [CrossRef]
- Cho, E.Y.; Park, K.; Do, I.; Cho, J.; Kim, J.; Lee, J.; Kim, S.; Kim, K.M.; Sohn, T.S.; Kang, W.K.; et al. Heterogeneity of ERBB2 in gastric carcinomas: A study of tissue microarray and matched primary and metastatic carcinomas. Mod. Pathol. 2013, 26, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Chu, J.; Kim, B.; Ha, S.Y.; Kim, S.T.; Lee, J.; Kang, W.K.; Han, H.; Sohn, I.; Kim, K.M. Tumor Heterogeneity Index to Detect Human Epidermal Growth Factor Receptor 2 Amplification by Next-Generation Sequencing: A Direct Comparison Study with Immunohistochemistry. J. Mol. Diagn. 2019, 21, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Iqbal, N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol. Biol. Int. 2014, 2014, 852748. [Google Scholar] [CrossRef]
- Yan, M.; Schwaederle, M.; Arguello, D.; Millis, S.Z.; Gatalica, Z.; Kurzrock, R. HER2 expression status in diverse cancers: Review of results from 37,992 patients. Cancer Metastasis Rev. 2015, 34, 157. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.J.; van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Jørgensen, J.T.; Hersom, M. HER2 as a Prognostic Marker in Gastric Cancer—A Systematic Analysis of Data from the Literature. J. Cancer 2012, 3, 137. [Google Scholar] [CrossRef]
- Allgayer, H.; Babic, R.; Gruetzner, K.U.; Tarabichi, A.; Schildberg, F.W.; Heiss, M.M. c-erbB-2 is of independent prognostic relevance in gastric cancer and is associated with the expression of tumor-associated protease systems. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2000, 18, 2201–2209. [Google Scholar] [CrossRef]
- Tanner, M.; Hollmén, M.; Junttila, T.T.; Kapanen, A.I.; Tommola, S.; Soini, Y.; Helin, H.; Salo, J.; Joensuu, H.; Sihvo, E.; et al. Amplification of HER-2 in gastric carcinoma: Association with Topoisomerase IIα gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann. Oncol. 2005, 16, 273–278. [Google Scholar] [CrossRef]
- Choi, S.; Park, S.; Kim, H.; Kang, S.Y.; Ahn, S.; Kim, K.M. Gastric Cancer: Mechanisms, Biomarkers, and Therapeutic Approaches. Biomedicines 2022, 10, 543. [Google Scholar] [CrossRef]
- Tabernero, J.; Hoff, P.M.; Shen, L.; Ohtsu, A.; Shah, M.A.; Siddiqui, A.; Heeson, S.; Kiermaier, A.; Macharia, H.; Restuccia, E.; et al. Pertuzumab, trastuzumab, and chemotherapy in HER2-positive gastric/gastroesophageal junction cancer: End-of-study analysis of the JACOB phase III randomized clinical trial. Gastric Cancer 2023, 26, 123. [Google Scholar] [CrossRef]
- Hecht, J.R.; Bang, Y.J.; Qin, S.K.; Chung, H.C.; Xu, J.M.; Park, J.O.; Jeziorski, K.; Shparyk, Y.; Hoff, P.M.; Sobrero, A.; et al. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: TRIO-013/LOGiC—A randomized phase III trial. J. Clin. Oncol. 2016, 34, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Ohtsu, A.; Shah, M.A.; van Cutsem, E.; Rha, S.Y.; Sawaki, A.; Park, S.R.; Lim, H.Y.; Yamada, Y.; Wu, J.; Langer, B.; et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: A randomized, double-blind, placebo-controlled phase III study. J. Clin. Oncol. 2011, 29, 3968–3976. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.S.; Shitara, K.; di Bartolomeo, M.; Lonardi, S.; Al-Batran, S.E.; van Cutsem, E.; Ilson, D.H.; Alsina, M.; Chau, I.; Lacy, J.; et al. Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma (RAINFALL): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 420–435. [Google Scholar] [CrossRef]
- van Cutsem, E.; di Bartolomeo, M.; Smyth, E.; Chau, I.; Park, H.; Siena, S.; Lonardi, S.; Wainberg, Z.A.; Ajani, J.; Chao, J.; et al. Trastuzumab deruxtecan in patients in the USA and Europe with HER2-positive advanced gastric or gastroesophageal junction cancer with disease progression on or after a trastuzumab-containing regimen (DESTINY-Gastric02): Primary and updated analyses from a single-arm, phase 2 study. Lancet Oncol. 2023, 24, 744–756. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef]
- Ferrara, N.; Hillan, K.J.; Novotny, W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem. Biophys. Res. Commun. 2005, 333, 328–335. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- di Bartolomeo, M.; Niger, M.; Tirino, G.; Petrillo, A.; Berenato, R.; Laterza, M.M.; Pietrantonio, F.; Morano, F.; Antista, M.; Lonardi, S.; et al. Ramucirumab as Second-Line Therapy in Metastatic Gastric Cancer: Real-World Data from the RAMoss Study. Target. Oncol. 2018, 13, 227–234. [Google Scholar] [CrossRef]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020, 10, 727. [Google Scholar]
- Shiravand, Y.; Khodadadi, F.; Kashani SM, A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044. [Google Scholar] [CrossRef]
- Chan, W.L.; Lam, K.O.; So, T.H.; Lee, V.H.F.; Kwong, L.W.D. Third-line systemic treatment in advanced/metastatic gastric cancer: A comprehensive review. Ther. Adv. Med. Oncol. 2019, 11, 1758835919859990. [Google Scholar] [CrossRef]
- Akhtar, M.; Rashid, S.; Al-Bozom, I.A. PD−L1 immunostaining: What pathologists need to know. Diagn. Pathol. 2021, 16, 94. [Google Scholar] [CrossRef]
- Fusco, M.J.; West, H.J.; Walko, C.M. Tumor Mutation Burden and Cancer Treatment. JAMA Oncol. 2021, 7, 316. [Google Scholar] [CrossRef] [PubMed]
- Folprecht, G. Tumor mutational burden as a new biomarker for PD-1 antibody treatment in gastric cancer. Cancer Commun. 2019, 39, 74. [Google Scholar] [CrossRef]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients with Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.H.; Garrido, M.; Gallardo, C.; Shen, L.; Yamaguchi, K.; Wyrwicz, L.; Skoczylas, T.; Campos Bragagnoli, A.S.; et al. Nivolumab (NIVO) plus chemotherapy (chemo) vs chemo as first-line (1L) treatment for advanced gastric cancer/gastroesophageal junction cancer/esophageal adenocarcinoma (GC/GEJC/EAC): 3-year follow-up from CheckMate 649. J. Clin. Oncol. 2023, 41, 291. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, H.; Pan, Y.; Gu, K.; Cang, S.; Han, L.; Shu, Y.; Li, J.; Zhao, J.; Pan, H.; et al. LBA53 Sintilimab plus chemotherapy (chemo) versus chemo as first-line treatment for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma (ORIENT-16): First results of a randomized, double-blind, phase III study. Ann. Oncol. 2021, 32, S1331. [Google Scholar] [CrossRef]
- Moehler, M.H.; Kato, K.; Arkenau, H.-T.; Oh, D.-Y.; Tabernero, J.; Cruz-Correa, M.; Wang, H.; Xu, H.; Li, J.; Yang, S.; et al. Rationale 305: Phase 3 study of tislelizumab plus chemotherapy vs placebo plus chemotherapy as first-line treatment (1L) of advanced gastric or gastroesophageal junction adenocarcinoma (GC/GEJC). J. Clin. Oncol. 2023, 41, 286. [Google Scholar] [CrossRef]
- Kang, Y.K.; Chen, L.T.; Ryu, M.H.; Oh, D.Y.; Oh, S.C.; Chung, H.C.; Lee, K.W.; Omori, T.; Shitara, K.; Sakuramoto, S.; et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): A randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2022, 23, 234–247. [Google Scholar] [CrossRef]
- Tabernero, J.; Bang, Y.J.; van Cutsem, E.; Fuchs, C.S.; Janjigian, Y.Y.; Bhagia, P.; Li, K.; Adelberg, D.; Qin, S.K. KEYNOTE-859: A Phase III study of pembrolizumab plus chemotherapy in gastric/gastroesophageal junction adenocarcinoma. Future Oncol. 2021, 17, 2847–2855. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; van Cutsem, E.; Bang, Y.J.; Fuchs, C.; Wyrwicz, L.; Lee, K.W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; et al. Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients With First-line, Advanced Gastric Cancer: The KEYNOTE-062 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1571–1580. [Google Scholar] [CrossRef] [PubMed]
- Emens, L.A.; Middleton, G. The Interplay of Immunotherapy and Chemotherapy: Harnessing Potential Synergies. Cancer Immunol. Res. 2015, 3, 436. [Google Scholar] [CrossRef]
- Park, S.G.; Jiang, Z.; Mortenson, E.D.; Deng, L.; Radkevich-Brown, O.; Yang, X.; Sattar, H.; Wang, Y.; Brown, N.K.; Greene, M.; et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 2010, 18, 160–170. [Google Scholar] [CrossRef]
- Stagg, J.; Loi, S.; Divisekera, U.; Ngiow, S.F.; Duret, H.; Yagita, H.; Teng, M.W.; Smyth, M.J. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc. Natl. Acad. Sci. USA 2011, 108, 7142–7147. [Google Scholar] [CrossRef]
- Rha, S.Y.; Lee, C.; Kim, H.S.; Kang, B.; Jung, M.; Kwon, W.S.; Bae, W.K.; Koo, D.-H.; Shin, S.-J.; Jeung, H.-C.; et al. A multi-institutional phase Ib/II trial of first-line triplet regimen (Pembrolizumab, Trastuzumab, Chemotherapy) for HER2-positive advanced gastric and gastroesophageal junction cancer (PANTHERA Trial): Molecular profiling and clinical update. J. Clin. Oncol. 2021, 39, 218. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Yañez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef]
- Tsukita, S.; Furuse, M. The Structure and Function of Claudins, Cell Adhesion Molecules at Tight Junctions. Ann. N. Y. Acad. Sci. 2000, 915, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Krause, G.; Winkler, L.; Mueller, S.L.; Haseloff, R.F.; Piontek, J.; Blasig, I.E. Structure and function of claudins. Biochim. Biophys. Acta (BBA)—Biomembr. 2008, 1778, 631–645. [Google Scholar] [CrossRef]
- Bhat, A.A.; Syed, N.; Therachiyil, L.; Nisar, S.; Hashem, S.; Macha, M.A.; Yadav, S.K.; Krishnankutty, R.; Muralitharan, S.; Al-Naemi, H.; et al. Claudin-1, A Double-Edged Sword in Cancer. Int. J. Mol. Sci. 2020, 21, 569. [Google Scholar] [CrossRef] [PubMed]
- Tabariès, S.; Siegel, P.M. The role of claudins in cancer metastasis. Oncogene 2016, 36, 1176–1190. [Google Scholar] [CrossRef]
- Pellino, A.; Brignola, S.; Riello, E.; Niero, M.; Murgioni, S.; Guido, M.; Nappo, F.; Businello, G.; Sbaraglia, M.; Bergamo, F.; et al. Association of CLDN18 Protein Expression with Clinicopathological Features and Prognosis in Advanced Gastric and Gastroesophageal Junction Adenocarcinomas. J. Pers. Med. 2021, 11, 1095. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Kawazoe, A.; Mishima, S.; Nakamura, Y.; Kotani, D.; Kuboki, Y.; Bando, H.; Kojima, T.; Doi, T.; Yoshino, T.; et al. Comprehensive clinical and molecular characterization of claudin 18.2 expression in advanced gastric or gastroesophageal junction cancer. ESMO Open 2023, 8, 100762. [Google Scholar] [CrossRef]
- Sahin, U.; Koslowski, M.; Dhaene, K.; Usener, D.; Brandenburg, G.; Seitz, G.; Huber, C.; Turecil, O. Claudin-18 Splice Variant 2 Is a Pan-Cancer Target Suitable for Therapeutic Antibody Development. Clin. Cancer Res. 2008, 14, 7624–7634. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Türeci Manikhas, G.; Lordick, F.; Rusyn, A.; Vynnychenko, I.; Dudov, A.; Bazin, I.; Bondarenko, I.; Melichar, B.; Dhaene, K.; et al. FAST: A randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann. Oncol. 2021, 32, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Türeci, O.; Sahin, U.; Schulze-Bergkamen, H.; Zvirbule, Z.; Lordick, F.; Koeberle, D.; Thuss-Patience, P.; Ettrich, T.; Arnold, D.; Bassermann, F.; et al. A multicentre, phase IIa study of zolbetuximab as a single agent in patients with recurrent or refractory advanced adenocarcinoma of the stomach or lower oesophagus: The MONO study. Ann. Oncol. 2019, 30, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Rohde, C.; Yamaguchi, R.; Mukhina, S.; Sahin, U.; Itoh, K.; Türeci, Ö. Comparison of Claudin 18.2 expression in primary tumors and lymph node metastases in Japanese patients with gastric adenocarcinoma. Jpn. J. Clin. Oncol. 2019, 49, 870–876. [Google Scholar] [CrossRef]
- Moran, D.; Maurus, D.; Rohde, C.; Arozullah, A. Prevalence of CLDN18.2, HER2 and PD-L1 in gastric cancer samples. Ann. Oncol. 2018, 29, viii32. [Google Scholar] [CrossRef]
- Sahin, U.; Schuler, M.; Richly, H.; Bauer, S.; Krilova, A.; Dechow, T.; Jerling, M.; Utsch, M.; Rohde, C.; Dhaene, K.; et al. A phase I dose-escalation study of IMAB362 (Zolbetuximab) in patients with advanced gastric and gastro-oesophageal junction cancer. Eur. J. Cancer 2018, 100, 17–26. [Google Scholar] [CrossRef]
- Türeci Ӧzlem Mitnacht-Kraus, R.; Wöll, S.; Yamada, T.; Sahin, U. Characterization of zolbetuximab in pancreatic cancer models. Oncoimmunology 2018, 8, e1523096. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Lordick, F.; Bang, Y.J.; Enzinger, P.; Ilson, D.; Shah, M.A.; van Cutsem, E.; Xu, R.H.; Aprile, G.; Xu, J.; et al. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2023, 401, 1655–1668. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Shitara, K.; Ajani, J.A.; Bang, Y.-J.; Enzinger, P.C.; Ilson, D.H.; Lordick, F.; van Cutsem, E.; Gallego Plazas, J.; Huang, J.; et al. Zolbetuximab + CAPOX in 1L claudin-18.2+ (CLDN18.2+)/HER2− locally advanced (LA) or metastatic gastric or gastroesophageal junction (mG/GEJ) adenocarcinoma: Primary phase 3 results from GLOW. J. Clin. Oncol. 2023, 41, 405736. [Google Scholar] [CrossRef]
- Shah, M.A.; Kennedy, E.B.; Alarcon-Rozas, A.E.; Alcindor, T.; Bartley, A.N.; Malowany, A.B.; Bhadkamkar, N.A.; Deighton, D.C.; Janjigian, Y.; Karippot, A.; et al. Immunotherapy and Targeted Therapy for Advanced Gastroesophageal Cancer: ASCO Guideline. J. Clin. Oncol. 2023, 41, 1470–1491. [Google Scholar] [CrossRef] [PubMed]
Target | Trial | Agent | Experimental Arm | Control Arm | Primary Endpoints | Results (Experimental vs. Control) | Reference in the Text |
---|---|---|---|---|---|---|---|
HER2 | ToGA | Trastuzumab | Trastuzumab + chemotherapy (cisplatin + 5-FU or cisplatin + capecitabine) | Cisplatin/5-FU or cisplatin/capecitabine | OS | OS: 13.8 vs. 11.1 months (HR 0.74; 95% CI 0.60–0.91) | [15] |
JACOB | Pertuzumab + trastuzumab | Pertuzumab + Trastuzumab + chemotherapy (cisplatin or capecitabine or 5-FU) | Trastuzumab + chemotherapy (cisplatin or capecitabine or 5-FU) | OS | OS: 17.5 vs. 14.2 months (HR 0.84; 95% CI 0.71–1.00) | [20] | |
LOGiC | Lapatinib | Lapatinib + chemotherapy (capecitabine + oxaliplatin) | Capecitabine + oxaliplatin | OS | OS: 12.2 vs. 10.5 months (HR 0.91; 95% CI 0.73–1.12) | [21] | |
VEGF | AVAGAST | Bevacizumab | Bevacizumab + chemotherapy (cisplatin + capecitabine or cisplatin + 5-FU) | Cisplatin + capecitabine or cisplatin + 5-FU | OS | OS: 12.1 vs. 10.1 months (HR 0.87; 95% CI 0.73–1.03) | [22] |
VEGFR-2 | RAINFALL | Ramucirumab | Ramucirumab + chemotherapy (cisplatin + capecitabine or cisplatin + 5-FU) | Cisplatin + capecitabine or cisplatin + 5-FU | PFS | PFS: 6.7 vs. 5.4 months (HR 0.753; 85% CI 0.607–0.935) | [23] |
Trial | Agent | Experimental Arm | Control Arm | Primary Endpoint | Results (Experimental vs. Control) | Reference in the Text |
---|---|---|---|---|---|---|
SPOTLIGHT | Zolbetuximab | Zolbetuximab + chemotherapy (mFOLFOX6) | mFOLFOX6 | PFS | PFS: 10.61 vs. 8.67 months (HR 0.751; 95% CI 0.589–0.941) | [62] |
GLOW | Zolbetuximab | Zolbetuximab + chemotherapy (CAPOX) | CAPOX | PFS | PFS: 8.21 vs. 6.80 months (HR 0.687; 95% CI 0.544–0.866) | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Désilets, A.; Elkhoury, R.; Gebai, A.; Tehfe, M. Current and Emerging Role of Monoclonal Antibody-Based First-Line Treatment in Advanced Gastro-Esophageal and Gastric Cancer. Curr. Oncol. 2023, 30, 9304-9316. https://doi.org/10.3390/curroncol30100672
Désilets A, Elkhoury R, Gebai A, Tehfe M. Current and Emerging Role of Monoclonal Antibody-Based First-Line Treatment in Advanced Gastro-Esophageal and Gastric Cancer. Current Oncology. 2023; 30(10):9304-9316. https://doi.org/10.3390/curroncol30100672
Chicago/Turabian StyleDésilets, Audrey, Reem Elkhoury, Ahmad Gebai, and Mustapha Tehfe. 2023. "Current and Emerging Role of Monoclonal Antibody-Based First-Line Treatment in Advanced Gastro-Esophageal and Gastric Cancer" Current Oncology 30, no. 10: 9304-9316. https://doi.org/10.3390/curroncol30100672
APA StyleDésilets, A., Elkhoury, R., Gebai, A., & Tehfe, M. (2023). Current and Emerging Role of Monoclonal Antibody-Based First-Line Treatment in Advanced Gastro-Esophageal and Gastric Cancer. Current Oncology, 30(10), 9304-9316. https://doi.org/10.3390/curroncol30100672