Multiple Myeloma in 2023 Ways: From Trials to Real Life
Abstract
:1. Introduction
2. Methods
3. Discussion
3.1. Minimal Residual Disease
3.1.1. Focus on Plasma Cells
3.1.2. Focus on the Role of 18f-Fdg Pet/Ct in Defining Mrd
3.2. Excursus on Treatment: At Diagnosis
3.2.1. Transplant-Eligible Patients
3.2.2. Transplant Ineligible Patients
3.3. Excursus on Treatment: Relapse
3.3.1. First Relapse
Real-Life
3.3.2. Beyond the First Relapse
Real-Life
3.3.3. T-Cell-Directed Immune Therapy
3.3.4. Chimeric Antigen Receptor T Cell Therapy
3.3.5. Bispecific Antibodies and the Importance of Sequencing in the Era of Immunotherapy
3.4. Out of the Bone Marrow Microenvironment: A Quest for a Therapeutic Algorithm for the Treatment of Extramedullary Disease
3.4.1. Overview and First-Line Therapy
3.4.2. Trials and Real-Life in Relapsed-Refractory Emd
3.4.3. Recent Updates: What Is Boiling in the Pot?
3.4.4. Current Approaches
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mateos, M.-V.; Weisel, K.; De Stefano, V.; Goldschmidt, H.; Delforge, M.; Mohty, M.; Cavo, M.; Vij, R.; Lindsey-Hill, J.; Dytfeld, D.; et al. LocoMMotion: A prospective, non-interventional, multinational study of real-life current standards of care in patients with relapsed and/or refractory multiple myeloma. Leukemia 2022, 36, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Wester, R.; Sonneveld, P. Innovations in treatment and response evaluation in multiple myeloma. Haematologica 2016, 101, 518–520. [Google Scholar] [CrossRef] [PubMed]
- Harousseau, J.-L.; Avet-Loiseau, H. Minimal Residual Disease Negativity Is a New End Point of Myeloma Therapy. J. Clin. Oncol. 2017, 35, 2863–2865. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.-V.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, H.; Yoroidaka, T.; Fujisawa, M.; Kobori, K.; Hanawa, M.; Yamashita, T.; Murata, R.; Ueda, M.; Nakao, S.; Matsue, K. Comparison of minimal residual disease detection in multiple myeloma by SRL 8-color single-tube and EuroFlow 8-color 2-tube multiparameter flow cytometry. Int. J. Hematol. 2019, 109, 377–381. [Google Scholar] [CrossRef]
- Wallington-Beddoe, C.T.; Mynott, R.L. Prognostic and predictive biomarker developments in multiple myeloma. J. Hematol. Oncol. 2021, 14, 1–15. [Google Scholar] [CrossRef]
- Jelinek, T.; Bezdekova, R.; Zatopkova, M.; Burgos, L.; Simicek, M.; Sevcikova, T.; Paiva, B.; Hajek, R. Erratum: Current applications of multiparameter flow cytometry in plasma cell disorders. Blood Cancer J. 2018, e621. [Google Scholar] [CrossRef]
- Ullah, T.R. The role of CXCR4 in multiple myeloma: Cells’ journey from bone marrow to beyond. J. Bone Oncol. 2019, 17, 100253. [Google Scholar] [CrossRef]
- Rasche, L.; Chavan, S.S.; Stephens, O.W.; Patel, P.H.; Tytarenko, R.; Ashby, C.; Bauer, M.; Stein, C.; Deshpande, S.; Wardell, C.; et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat. Commun. 2017, 8, 268. [Google Scholar] [CrossRef]
- Cavo, M.; Terpos, E.; Nanni, C.; Moreau, P.; Lentzsch, S.; Zweegman, S.; Hillengass, J.; Engelhardt, M.; Usmani, S.Z.; Vesole, D.H.; et al. Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: A consensus statement by the International Myeloma Working Group. Lancet Oncol. 2017, 18, e206–e217. [Google Scholar] [CrossRef]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [PubMed]
- Kraeber-Bodéré, F.; Jamet, B.; Bezzi, D.; Zamagni, E.; Moreau, P.; Nanni, C. New Developments in Myeloma Treatment and Response Assessment. J. Nucl. Med. 2023, 64, 1331–1343. [Google Scholar] [CrossRef] [PubMed]
- Zamagni, E.; Nanni, C.; Mancuso, K.; Tacchetti, P.; Pezzi, A.; Pantani, L.; Zannetti, B.; Rambaldi, I.; Brioli, A.; Rocchi, S.; et al. PET/CT Improves the Definition of Complete Response and Allows to Detect Otherwise Unidentifiable Skeletal Progression in Multiple Myeloma. Clin. Cancer Res. 2015, 21, 4384–4390. [Google Scholar] [CrossRef]
- Rasche, L.; Alapat, D.; Kumar, M.; Gershner, G.; McDonald, J.; Wardell, C.P.; Samant, R.; Van Hemert, R.; Epstein, J.; Williams, A.F.; et al. Combination of flow cytometry and functional imaging for monitoring of residual disease in myeloma. Leukemia 2018, 33, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Pandit-Taskar, N. Functional Imaging Methods for Assessment of Minimal Residual Disease in Multiple Myeloma: Current Status and Novel ImmunoPET Based Methods. Semin. Hematol. 2018, 55, 22–32. [Google Scholar] [CrossRef]
- Santoni, A.; Simoncelli, M.; Franceschini, M.; Ciofini, S.; Fredducci, S.; Caroni, F.; Sammartano, V.; Bocchia, M.; Gozzetti, A. Functional Imaging in the Evaluation of Treatment Response in Multiple Myeloma: The Role of PET-CT and MRI. J. Pers. Med. 2022, 12, 1885. [Google Scholar] [CrossRef]
- Hillengass, J.; Usmani, S.; Rajkumar, S.V.; Durie, B.G.M.; Mateos, M.-V.; Lonial, S.; Joao, C.; Anderson, K.C.; García-Sanz, R.; Riva, E.; et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol. 2019, 20, e302–e312. [Google Scholar]
- Kumar, S.K. Updates in the Treatment of Multiple Myeloma. J. Natl. Compr. Cancer Netw. 2021, 19, 648–651. [Google Scholar] [CrossRef]
- Bonello, F.; D’agostino, M.; Moscvin, M.; Cerrato, C.; Boccadoro, M.; Gay, F. CD38 as an immunotherapeutic target in multiple myeloma. Expert Opin. Biol. Ther. 2018, 18, 1209–1221. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Moreau, P.; Terpos, E.; Mateos, M.V.; Zweegman, S.; Cook, G.; Cook, G.; Delforge, M.; Hájek, R.; Schjesvold, F.; et al. Multiple Myeloma: EHA-ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. Hemasphere 2021, 5, e528. [Google Scholar]
- Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): A randomised, open-label, phase 3 study. Lancet 2019, 394, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Morè, S.; Corvatta, L.; Manieri, V.M.; Saraceni, F.; Scortechini, I.; Mancini, G.; Fiorentini, A.; Olivieri, A.; Offidani, M. Autologous Stem Cell Transplantation in Multiple Myeloma: Where Are We and Where Do We Want to Go? Cells 2022, 11, 606. [Google Scholar] [CrossRef]
- Voorhees, P.M.; Kaufman, J.L.; Laubach, J.P.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D., Jr.; et al. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: The GRIFFIN trial. Blood 2020, 136, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Leypoldt, L.B.; Besemer, B.; Asemissen, A.M.; Hänel, M.; Blau, I.W.; Görner, M.; Ko, Y.-D.; Reinhardt, H.C.; Staib, P.; Mann, C.; et al. Isatuximab, carfilzomib, lenalidomide, and dexamethasone (Isa-KRd) in front-line treatment of high-risk multiple myeloma: Interim analysis of the GMMG-CONCEPT trial. Leukemia 2021, 36, 885–888. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.J.; Chhabra, S.; Medvedova, E.; Dholaria, B.R.; Schmidt, T.M.; Godby, K.N.; Silbermann, R.; Dhakal, B.; Bal, S.; Giri, S.; et al. Daratumumab, Carfilzomib, Lenalidomide, and Dexamethasone With Minimal Residual Disease Response-Adapted Therapy in Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. 2021, 40, 2901–2912. [Google Scholar] [CrossRef]
- Somagutta, M.R.; Uday, U.; Bathula, N.R.; Pendyala, S.; Mahadevaiah, A.; Jain, M.S.; Mahmutaj, G.; Gad, M.; Baptiste, J.J. Diagnosing Frailty in Primary Care Practice. Cureus 2022, 14, e23329. [Google Scholar] [CrossRef]
- Palumbo, A.; Bringhen, S.; Mateos, M.-V.; Larocca, A.; Facon, T.; Kumar, S.K.; Offidani, M.; McCarthy, P.; Evangelista, A.; Lonial, S.; et al. Geriatric assessment predicts survival and toxicities in elderly myeloma patients: An International Myeloma Working Group report. Blood 2015, 125, 2068–2074. [Google Scholar]
- Engelhardt, M.; Domm, A.-S.; Dold, S.M.; Ihorst, G.; Reinhardt, H.; Zober, A.; Hieke, S.; Baayen, C.; Müller, S.J.; Einsele, H.; et al. A concise revised Myeloma Comorbidity Index as a valid prognostic instrument in a large cohort of 801 multiple myeloma patients. Haematologica 2017, 102, 910–921. [Google Scholar] [CrossRef]
- Facon, T.; Dimopoulos, M.A.; Meuleman, N.; Belch, A.; Mohty, M.; Chen, W.-M.; Kim, K.; Zamagni, E.; Rodriguez-Otero, P.; Renwick, W.; et al. A simplified frailty scale predicts outcomes in transplant-ineligible patients with newly diagnosed multiple myeloma treated in the FIRST (MM-020) trial. Leukemia 2019, 34, 224–233. [Google Scholar] [CrossRef]
- Bonello, F.; Cani, L.; D’agostino, M. Risk Stratification Before and During Treatment in Newly Diagnosed Multiple Myeloma: From Clinical Trials to the Real-World Setting. Front. Oncol. 2022, 12, 830922. [Google Scholar] [CrossRef]
- Facon, T.; Kumar, S.K.; Plesner, T.; Orlowski, R.Z.; Moreau, P.; Bahlis, N.; Basu, S.; Nahi, H.; Hulin, C.; Quach, H.; et al. Daratumumab, lenalidomide, and dexamethasone versus lenalidomide and dexamethasone alone in newly diagnosed multiple myeloma (MAIA): Overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 1582–1596. [Google Scholar] [PubMed]
- Mateos, M.-V.; Cavo, M.; Blade, J.; Dimopoulos, M.A.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; et al. Overall survival with daratumumab, bortezomib, melphalan, and prednisone in newly diagnosed multiple myeloma (ALCYONE): A randomised, open-label, phase 3 trial. Lancet 2020, 395, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Durie, B.G.M.; Hoering, A.; Sexton, R.; Abidi, M.H.; Epstein, J.; Rajkumar, S.V.; Dispenzieri, A.; Kahanic, S.P.; Thakuri, M.C.; Reu, F.J.; et al. Longer term follow-up of the randomized phase III trial SWOG S0777: Bortezomib, lenalidomide and dexamethasone vs. lenalidomide and dexamethasone in patients (Pts) with previously untreated multiple myeloma without an intent for immediate autologous stem cell transplant (ASCT). Blood Cancer J. 2020, 10, 53. [Google Scholar] [CrossRef]
- Kumar, S.K.; Jacobus, S.J.; Cohen, A.D.; Weiss, M.; Callander, N.; Singh, A.K.; Parker, T.L.; Menter, A.; Yang, X.; Parsons, B.; et al. Carfilzomib or bortezomib in combination with lenalidomide and dexamethasone for patients with newly diagnosed multiple myeloma without intention for immediate autologous stem-cell transplantation (ENDURANCE): A multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2020, 21, 1317–1330. [Google Scholar] [CrossRef] [PubMed]
- Stege, C.A.M.; Nasserinejad, K.; van der Spek, E.; Bilgin, Y.M.; Kentos, A.; Sohne, M.; van Kampen, R.J.W.; Ludwig, I.; Thielen, N.; Durdu-Rayman, N.; et al. Ixazomib, Daratumumab, and Low-Dose Dexamethasone in Frail Patients With Newly Diagnosed Multiple Myeloma: The Hovon 143 Study. J. Clin. Oncol. 2021, 39, 2758–2767. [Google Scholar] [CrossRef]
- Moreau, P.; Masszi, T.; Grzasko, N.; Bahlis, N.J.; Hansson, M.; Pour, L.; Sandhu, I.; Ganly, P.; Baker, B.W.; Jackson, S.R.; et al. Oral Ixazomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 374, 1621–1634. [Google Scholar] [CrossRef] [PubMed]
- Yong, K.; Delforge, M.; Driessen, C.; Fink, L.; Flinois, A.; Gonzalez-McQuire, S.; Safaei, R.; Karlin, L.; Mateos, M.; Raab, M.S.; et al. Multiple myeloma: Patient outcomes in real-world practice. Br. J. Haematol. 2016, 175, 252–264. [Google Scholar] [CrossRef]
- Botta, C.; Martino, E.A.; Conticello, C.; Mendicino, F.; Vigna, E.; Romano, A.; Palumbo, G.A.; Cerchione, C.; Martinelli, G.; Morabito, F.; et al. Treatment of Lenalidomide Exposed or Refractory Multiple Myeloma: Network Meta-Analysis of Lenalidomide-Sparing Regimens. Front. Oncol. 2021, 11, 643490. [Google Scholar] [CrossRef]
- Dimopoulos, M.; Wang, M.; Maisnar, V.; Minarik, J.; Bensinger, W.; Mateos, M.-V.; Obreja, M.; Blaedel, J.; Moreau, P. Response and progression-free survival according to planned treatment duration in patients with relapsed multiple myeloma treated with carfilzomib, lenalidomide, and dexamethasone (KRd) versus lenalidomide and dexamethasone (Rd) in the phase III ASPIRE study. J. Hematol. Oncol. 2018, 11, 1–9. [Google Scholar] [CrossRef]
- Bahlis, N.J.; Dimopoulos, M.A.; White, D.J.; Benboubker, L.; Cook, G.; Leiba, M.; Ho, P.J.; Kim, K.; Takezako, N.; Moreau, P.; et al. Daratumumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: Extended follow-up of POLLUX, a randomized, open-label, phase 3 study. Leukemia 2020, 34, 1875–1884. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Lonial, S.; White, D.; Moreau, P.; Weisel, K.; San-Miguel, J.; Shpilberg, O.; Grosicki, S.; Špička, I.; Walter-Croneck, A.; et al. Elotuzumab, lenalidomide, and dexamethasone in RRMM: Final overall survival results from the phase 3 randomized ELOQUENT-2 study. Blood Cancer J. 2020, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Bonello, F.; Boccadoro, M.; Larocca, A. Diagnostic and Therapeutic Challenges in the Management of Intermediate and Frail Elderly Multiple Myeloma Patients. Cancers 2020, 12, 3106. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Chanan-Khan, A.; Weisel, K.; Nooka, A.K.; Masszi, T.; Beksac, M.; Spicka, I.; Hungria, V.; Munder, M.; Mateos, M.V.; et al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 754–766. [Google Scholar] [CrossRef]
- Moreau, P.; Dimopoulos, M.-A.; Mikhael, J.; Yong, K.; Capra, M.; Facon, T.; Hajek, R.; Baker, R.; Kim, K.; Martinez, G.; et al. Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): A multicentre, open-label, randomised phase 3 trial. Lancet 2021, 397, 2361–2371. [Google Scholar] [CrossRef]
- Dimopoulos, M.; Quach, H.; Mateos, M.-V.; Landgren, O.; Leleu, X.; Siegel, D.; Weisel, K.; Yang, H.; Klippel, Z.; Zahlten-Kumeli, A.; et al. Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): Results from a randomised, multicentre, open-label, phase 3 study. Lancet 2020, 396, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.; Weisel, K.; Moreau, P.; Anderson, L.D.; White, D.; San-Miguel, J.; Sonneveld, P.; Engelhardt, M.; Jenner, M.; Corso, A.; et al. Pomalidomide, bortezomib, and dexamethasone for multiple myeloma previously treated with lenalidomide (OPTIMISMM): Outcomes by prior treatment at first relapse. Leukemia 2020, 35, 1722–1731. [Google Scholar] [CrossRef]
- Goldschmidt, H.; Mai, E.K.; Dürig, J.; Scheid, C.; Weisel, K.C.; Kunz, C.; Bertsch, U.; Hielscher, T.; Merz, M.; Munder, M.; et al. Response-adapted lenalidomide maintenance in newly diagnosed myeloma: Results from the phase III GMMG-MM5 trial. Leukemia 2020, 34, 1853–1865. [Google Scholar] [CrossRef]
- Moreau, P.; Kumar, S.K.; San Miguel, J.; Davies, F.; Zamagni, E.; Bahlis, N.; Ludwig, H.; Mikhael, J.; Terpos, E.; Schjesvold, F.; et al. Treatment of relapsed and refractory multiple myeloma: Recommendations from the International Myeloma Working Group. Lancet Oncol. 2021, 22, e105–e118. [Google Scholar] [CrossRef]
- Goldschmidt, H.; Baertsch, M.-A.; Schlenzka, J.; Becker, N.; Habermehl, C.; Hielscher, T.; Raab, M.-S.; Hillengass, J.; Sauer, S.; Müller-Tidow, C.; et al. Salvage autologous transplant and lenalidomide maintenance vs. lenalidomide/dexamethasone for relapsed multiple myeloma: The randomized GMMG phase III trial ReLApsE. Leukemia 2021, 35, 1134–1144. [Google Scholar] [CrossRef]
- Baertsch, M.-A.; Fougereau, M.; Hielscher, T.; Sauer, S.; Breitkreutz, I.; Jordan, K.; Müller-Tidow, C.; Goldschmidt, H.; Raab, M.-S.; Hillengass, J.; et al. Carfilzomib, Lenalidomide, and Dexamethasone Followed by Salvage Autologous Stem Cell Transplant with or without Maintenance for Relapsed or Refractory Multiple Myeloma. Cancers 2021, 13, 4706. [Google Scholar] [CrossRef]
- Gay, F.; Musto, P.; Rota-Scalabrini, D.; Bertamini, L.; Belotti, A.; Galli, M.; Offidani, M.; Zamagni, E.; Ledda, A.; Grasso, M.; et al. Carfilzomib with cyclophosphamide and dexamethasone or lenalidomide and dexamethasone plus autologous transplantation or carfilzomib plus lenalidomide and dexamethasone, followed by maintenance with carfilzomib plus lenalidomide or lenalidomide alone for patients with newly diagnosed multiple myeloma (FORTE): A randomised, open-label, phase 2 trial. Lancet Oncol. 2021, 22, 1705–1720. [Google Scholar] [CrossRef] [PubMed]
- Conticello, C.; Romano, A.; Del Fabro, V.; Martino, E.A.; Calafiore, V.; Sapienza, G.; Leotta, V.; Parisi, M.S.; Markovic, U.; Garibaldi, B.; et al. Feasibility, Tolerability and Efficacy of Carfilzomib in Combination with Lenalidomide and Dexamethasone in Relapsed Refractory Myeloma Patients: A Retrospective Real-Life Survey of the Sicilian Myeloma Network. J. Clin. Med. 2019, 8, 877. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, S.; Rocco, S.; Vitagliano, O.; Catalano, L.; Cerchione, C.; Vincelli, I.D.; Scopelliti, A.; Gentile, M.; Farina, G.; Barone, M.; et al. KRD (carfilzomib and lenalidomide plus dexamethasone) for the treatment of relapsed or refractory multiple myeloma in the real-life: A retrospective survey in 123 patients. Ann. Hematol. 2020, 99, 2903–2909. [Google Scholar] [CrossRef]
- Mele, A.; Prete, E.; De Risi, C.; Citiso, S.; Greco, G.; Falcone, A.P.; Sanpaolo, G.; Mele, G.; Giannotta, A.; Vergine, C.; et al. Carfilzomib, lenalidomide, and dexamethasone in relapsed/refractory multiple myeloma patients: The real-life experience of Rete Ematologica Pugliese (REP). Ann. Hematol. 2020, 100, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, E.; Staderini, M.; Pilerci, S.; Perfetto, F.; Cappelli, F.; Allinovi, M.; Nozzoli, C.; Attucci, I.; Buzzichelli, A.; Messeri, M.; et al. A Daratumumab, lenalidomide, and dexamethasone combination in relapsed/refractory myeloma patients: A real-life single-center experience. Leuk. Lymphoma 2020, 61, 3255–3258. [Google Scholar] [CrossRef]
- Fazio, F.; Franceschini, L.; Tomarchio, V.; Rago, A.; Garzia, M.G.; Cupelli, L.; Bongarzoni, V.; Andriani, A.; Gumenyuk, S.; Tafuri, A.; et al. Daratumumab combined with dexamethasone and lenalidomide or bortezomib in relapsed/refractory multiple myeloma (RRMM) patients: Report from the multiple myeloma GIMEMA Lazio group. eJHaem 2022, 3, 121–128. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Terpos, E.; Boccadoro, M.; Delimpasi, S.; Beksac, M.; Katodritou, E.; Moreau, P.; Baldini, L.; Symeonidis, A.; Bila, J.; et al. Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO): An open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 801–812. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Dytfeld, D.; Grosicki, S.; Moreau, P.; Takezako, N.; Hori, M.; Leleu, X.; LeBlanc, R.; Suzuki, K.; Raab, M.S.; et al. Elotuzumab Plus Pomalidomide and Dexamethasone for Relapsed/Refractory Multiple Myeloma: Final Overall Survival Analysis From the Randomized Phase II ELOQUENT-3 Trial. J. Clin. Oncol. 2023, 41, 568–578. [Google Scholar] [CrossRef]
- Attal, M.; Richardson, P.G.; Rajkumar, S.V.; San-Miguel, J.; Beksac, M.; Spicka, I.; Leleu, X.; Schjesvold, F.; Moreau, P.; Dimopoulos, M.A.; et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): A randomised, multicentre, open-label, phase 3 study. Lancet 2019, 394, 2096–2107. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Moreau, P.; Augustson, B.; Castro, N.; Pika, T.; Delimpasi, S.; De la Rubia, J.; Maiolino, A.; Reiman, T.; Martinez-Lopez, J.; et al. Isatuximab plus carfilzomib and dexamethasone in patients with relapsed multiple myeloma based on prior lines of treatment and refractory status: IKEMA subgroup analysis. Am. J. Hematol. 2022, 98, E15–E19. [Google Scholar] [CrossRef]
- Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.-O.; Callander, N.; Lendvai, N.; Sborov, D.; et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): A two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2019, 21, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Farooq, A.v.; Degli Esposti, S.; Popat, R.; Thulasi, P.; Lonial, S.; Nooka, A.K.; Jakubowiak, A.; Sborov, D.; Zaugg, B.E.; Badros, A.Z.; et al. Corneal Epithelial Findings in Patients with Multiple Myeloma Treated with Antibody–Drug Conjugate Belantamab Mafodotin in the Pivotal, Randomized, DREAMM-2 Study. Ophthalmol. Ther. 2020, 9, 889–911. [Google Scholar] [CrossRef] [PubMed]
- Condorelli, A.; Garibaldi, B.; Gagliano, C.; Romano, A.; del Fabro, V.; Parrinello, N.L.; Longo, A.; Cosentino, S.; Di Raimondo, F.; Conticello, C. Belantamab Mafodotin and Relapsed/Refractory Multiple Myeloma: This Is Not Game Over. Acta Haematol. 2021. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Nooka, A.; Cohen, A.; Lee, H.; Badros, A.; Suvannasankha, A.; Callander, N.; Abdallah, A.; Trudel, S.; Chari, A.; Libby, E.; et al. P31 SINGLE-AGENT BELANTAMAB MAFODOTIN IN PATIENTS WITH RELAPSED OR REFRACTORY MULTIPLE MYELOMA: FINAL ANALYSIS OF THE DREAMM-2 TRIAL. HemaSphere 2023, 7, 27–28. [Google Scholar] [CrossRef]
- Chari, A.; Vogl, D.T.; Gavriatopoulou, M.; Nooka, A.K.; Yee, A.J.; Huff, C.A.; Moreau, P.; Dingli, D.; Cole, C.; Lonial, S.; et al. Oral Selinexor–Dexamethasone for Triple-Class Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 381, 727–738. [Google Scholar] [CrossRef]
- Lonial, S.; Popat, R.; Hulin, C.; Jagannath, S.; Oriol, A.; Richardson, P.G.; Facon, T.; Weisel, K.; Larsen, J.T.; Minnema, M.C.; et al. Iberdomide plus dexamethasone in heavily pretreated late-line relapsed or refractory multiple myeloma (CC-220-MM-001): A multicentre, multicohort, open-label, phase 1/2 trial. Lancet Haematol. 2022, 9, e822–e832. [Google Scholar] [CrossRef]
- Cornell, R.; Hari, P.; Tang, S.; Biran, N.; Callander, N.; Chari, A.; Chhabra, S.; Fiala, M.A.; Gahvari, Z.; Gandhi, U.; et al. Overall survival of patients with triple-class refractory multiple myeloma treated with selinexor plus dexamethasone vs. standard of care in MAMMOTH. Am. J. Hematol. 2020, 96, E5–E8. [Google Scholar] [CrossRef]
- Grosicki, S.; Simonova, M.; Spicka, I.; Pour, L.; Kriachok, I.; Gavriatopoulou, M.; Pylypenko, H.; Auner, H.W.; Leleu, X.; Doronin, V.; et al. Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): A randomised, open-label, phase 3 trial. Lancet 2020, 396, 1563–1573. [Google Scholar] [CrossRef]
- Richard, S.; Jagannath, S. Targeting Nuclear Export Proteins in Multiple Myeloma Therapy. BioDrugs 2022, 36, 13–25. [Google Scholar] [CrossRef]
- Morabito, F.; Zamagni, E.; Conticello, C.; Pavone, V.; Palmieri, S.; Bringhen, S.; Galli, M.; Mangiacavalli, S.; Derudas, D.; Rossi, E.; et al. Adjusted comparison between elotuzumab and carfilzomib in combination with lenalidomide and dexamethasone as salvage therapy for multiple myeloma patients. Eur. J. Haematol. 2021, 108, 178–189. [Google Scholar] [CrossRef]
- Markovic, U.; Romano, A.; Del Fabro, V.; Bellofiore, C.; Bulla, A.; Parisi, M.S.; Leotta, S.; Gentile, M.; Cangialosi, C.; Vincelli, I.; et al. Daratumumab as Single Agent in Relapsed/Refractory Myeloma Patients: A Retrospective Real-Life Survey. Front. Oncol. 2021, 11, 624405. [Google Scholar] [CrossRef]
- Hose, D.; Schreder, M.; Hefner, J.; Bittrich, M.; Danhof, S.; Strifler, S.; Krauth, M.-T.; Schoder, R.; Gisslinger, B.; Einsele, H.; et al. Elotuzumab, pomalidomide, and dexamethasone is a very well tolerated regimen associated with durable remission even in very advanced myeloma: A retrospective study from two academic centers. J. Cancer Res. Clin. Oncol. 2020, 147, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, L.; Sánchez-Escamilla, M.; Perales, M.-A. CAR T Cell Toxicity: Current Management and Future Directions. HemaSphere 2019, 3, e186. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.; Usmani, S.Z.; Berdeja, J.G.; Agha, M.; Cohen, A.D.; Hari, P.; Avigan, D.; Deol, A.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, an Anti–B-cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for Relapsed/Refractory Multiple Myeloma: CARTITUDE-1 2-Year Follow-Up. J. Clin. Oncol. 2023, 41, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Y.C.; Cohen, A.D.; Delforge, M.; Hillengass, J.; Goldschmidt, H.; Weisel, K.; Raab, M.-S.; Scheid, C.; Schecter, J.M.; De Braganca, K.C.; et al. Efficacy and Safety of Ciltacabtagene Autoleucel (Cilta-cel), a B-Cell Maturation Antigen (BCMA)-Directed Chimeric Antigen Receptor (CAR) T-Cell Therapy, in Lenalidomide-Refractory Patients with Progressive Multiple Myeloma after 1-3 Prior Lines of Therapy: Updated Results from CARTITUDE-2. Blood 2021, 138, 3866. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef]
- Jagannath, S.; Lin, Y.; Goldschmidt, H.; Reece, D.; Nooka, A.; Senin, A.; Rodriguez-Otero, P.; Powles, R.; Matsue, K.; Shah, N.; et al. KarMMa-RW: Comparison of idecabtagene vicleucel with real-world outcomes in relapsed and refractory multiple myeloma. Blood Cancer J. 2021, 11, 116. [Google Scholar] [CrossRef]
- Rodriguez-Otero, P.; Ailawadhi, S.; Arnulf, B.; Patel, K.; Cavo, M.; Nooka, A.K.; Manier, S.; Callander, N.; Costa, L.J.; Vij, R.; et al. Ide-cel or Standard Regimens in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 388, 1002–1014. [Google Scholar] [CrossRef]
- Mailankody, S.; Devlin, S.M.; Landa, J.; Nath, K.; Diamonte, C.; Carstens, E.J.; Russo, D.; Auclair, R.; Fitzgerald, L.; Cadzin, B.; et al. GPRC5D-Targeted CAR T Cells for Myeloma. N. Engl. J. Med. 2022, 387, 1196–1206. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Garfall, A.L.; van de Donk, N.W.C.J.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Rosinol, L.; Chari, A.; Bhutani, M.; Karlin, L.; et al. Teclistamab, a B-cell maturation antigen × CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): A multicentre, open-label, single-arm, phase 1 study. Lancet 2021, 398, 665–674. [Google Scholar] [CrossRef]
- Chari, A.; Minnema, M.C.; Berdeja, J.G.; Oriol, A.; van de Donk, N.W.C.J.; Rodríguez-Otero, P.; Askari, E.; Mateos, M.V.; Costa, L.J.; Caers, J.; et al. Talquetamab, a T-Cell–Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N. Engl. J. Med. 2022, 387, 2232–2244. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.W.; Bar, N.; Victoria Mateos, M.; Ribas, P.; Hansson, M.; Paris, L.; Hofmeister, C.; Rodriguez-Otero, P.; Aranzazu Bermúdez, M.; Santoro, A.; et al. P883: Alnuctamab (ALNUC.; BMS-986349, CC-93269), A BCMA × CD3 T-Cell Engager, in Patients (PTS) with Relapsed/Refractory Multiple Myeloma (RRMM): Latest Results from a Phase 1 First-in-Human Clinical Study. Hemasphere 2023, 7, e1220745. [Google Scholar] [CrossRef]
- Carlo-Stella, C.; Mazza, R.; Manier, S.; Facon, T.; Yoon, S.-S.; Koh, Y.; Harrison, S.J.; Er, J.; Pinto, A.; Volzone, F.; et al. RG6234, a GPRC5DxCD3 T-Cell Engaging Bispecific Antibody, Is Highly Active in Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Updated Intravenous (IV) and First Subcutaneous (SC) Results from a Phase I Dose-Escalation Study. Blood 2022, 140, 397–399. [Google Scholar] [CrossRef]
- Van Oekelen, O.; Nath, K.; Mouhieddine, T.H.; Farzana, T.; Aleman, A.; Melnekoff, D.T.; Ghodke-Puranik, Y.; Shah, G.L.; Lesokhin, A.M.; Giralt, S.A.; et al. Interventions and outcomes of patients with multiple myeloma receiving salvage therapy after BCMA-directed CAR T therapy. Blood 2023, 141, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ren, Q.; Liu, X.; Guo, X.; Song, Y. Bispecific antibodies targeting BCMA, GPRC5D, and FcRH5 for multiple myeloma therapy: Latest updates from ASCO 2023 Annual Meeting. J. Hematol. Oncol. 2023, 16, 92. [Google Scholar] [CrossRef]
- Bladé, J.; Beksac, M.; Caers, J.; Jurczyszyn, A.; von Lilienfeld-Toal, M.; Moreau, P.; Rasche, L.; Rosiñol, L.; Usmani, S.Z.; Zamagni, E.; et al. Extramedullary disease in multiple myeloma: A systematic literature review. Blood Cancer J. 2022, 12, 45. [Google Scholar] [CrossRef]
- Montefusco, V.; Gay, F.; Spada, S.; De Paoli, L.; Di Raimondo, F.; Ribolla, R.; Musolino, C.; Patriarca, F.; Musto, P.; Galieni, P.; et al. Outcome of paraosseous extra-medullary disease in newly diagnosed multiple myeloma patients treated with new drugs. Haematologica 2019, 105, 193–200. [Google Scholar] [CrossRef]
- Li, J.; Shen, K.-N.; Huang, W.-R.; Li, L.-H.; Chen, H.; Chen, W.-M.; Liu, K.Y.; Yu, L.; Zhou, D.B. Autologous stem cell transplant can overcome poor prognosis in patients with multiple myeloma with extramedullary plasmacytoma. Leuk. Lymphoma 2014, 55, 1687–1690. [Google Scholar] [CrossRef]
- Gagelmann, N.; Eikema, D.-J.; Iacobelli, S.; Koster, L.; Nahi, H.; Stoppa, A.-M.; Masszi, T.; Caillot, D.; Lenhoff, S.; Udvardy, M.; et al. Impact of extramedullary disease in patients with newly diagnosed multiple myeloma undergoing autologous stem cell transplantation: A study from the Chronic Malignancies Working Party of the EBMT. Haematologica 2023, 108, 890–897. [Google Scholar] [CrossRef]
- Beksac, M.; Seval, G.C.; Kanellias, N.; Coriu, D.; Rosiñol, L.; Ozet, G.; Goranova-Marinova, V.; Unal, A.; Bila, J.; Ozsan, H.; et al. A real world multicenter retrospective study on extramedullary disease from Balkan Myeloma Study Group and Barcelona University: Analysis of parameters that improve outcome. Haematologica 2019, 105, 201–208. [Google Scholar] [CrossRef]
- Dingli, D.; Ailawadhi, S.; Bergsagel, P.L.; Buadi, F.K.; Dispenzieri, A.; Fonseca, R.; Gertz, M.A.; Gonsalves, W.I.; Hayman, S.R.; Kapoor, P.; et al. Therapy for Relapsed Multiple Myeloma: Guidelines From the Mayo Stratification for Myeloma and Risk-Adapted Therapy. Mayo Clin. Proc. 2017, 92, 578–598. [Google Scholar] [CrossRef] [PubMed]
- Lakshman, A.; Singh, P.P.; Rajkumar, S.V.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Buadi, F.K.; Dingli, D.; Hwa, Y.L.; Fonder, A.L.; et al. Efficacy of VDT PACE-like regimens in treatment of relapsed/refractory multiple myeloma. Am. J. Hematol. 2017, 93, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Minarik, J.; Pika, T.; Radocha, J.; Jungova, A.; Straub, J.; Jelinek, T.; Pour, L.; Pavlicek, P.; Mistrik, M.; Brozova, L.; et al. Survival benefit of ixazomib, lenalidomide and dexamethasone (IRD) over lenalidomide and dexamethasone (Rd) in relapsed and refractory multiple myeloma patients in routine clinical practice. BMC Cancer 2021, 21, 73. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Flüchter, P.; Nickel, K.; Meckel, K.; Messerschmidt, J.; Böckle, D.; Knorz, S.; Steinhardt, M.J.; Krummenast, F.; Danhof, S.; et al. Carfilzomib Based Treatment Strategies in the Management of Relapsed/Refractory Multiple Myeloma with Extramedullary Disease. Cancers 2020, 12, 1035. [Google Scholar] [CrossRef]
- Calvo-Villas, J.M.; Alegre, A.; Calle, C.; Hernández, M.T.; García-Sánchez, R.; Ramírez, G. Lenalidomide is effective for extramedullary disease in relapsed or refractory multiple myeloma. Eur. J. Haematol. 2011, 87, 281–284. [Google Scholar] [CrossRef]
- Li, Y.; Ji, J.; Lu, H.; Li, J.; Qu, X. Pomalidomide-based therapy for extramedullary multiple myeloma. Hematology 2022, 27, 88–94. [Google Scholar] [CrossRef]
- Jiménez-Segura, R.; Granell, M.; Gironella, M.; Abella, E.; García-Guiñón, A.; Oriol, A.; Cabezudo, E.; Clapés, V.; Soler, J.A.; Escoda, L.; et al. Pomalidomide-dexamethasone for treatment of soft-tissue plasmacytomas in patients with relapsed / refractory multiple myeloma. Eur. J. Haematol. 2019, 102, 389–394. [Google Scholar] [CrossRef]
- Rosiñol, L.; Cibeira, M.T.; Bladé, J.; Esteve, J.; Aymerich, M.; Rozman, M.; Segarra, M.; Cid, M.C.; Filella, X.; Montserrat, E. Extramedullary multiple myeloma escapes the effect of thalidomide. Haematologica 2004, 89, 832–836. [Google Scholar]
- Lonial, S.; Weiss, B.M.; Usmani, S.Z.; Singhal, S.; Chari, A.; Bahlis, N.J.; Belch, A.; Krishnan, A.; Vescio, R.A.; Mateos, M.V.; et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): An open-label, randomised, phase 2 trial. Lancet 2016, 387, 1551–1560. [Google Scholar] [CrossRef]
- Jullien, M.; Trudel, S.; Tessoulin, B.; Mahé, B.; Dubruille, V.; Blin, N.; Gastinne, T.; Bonnet, A.; Lok, A.; Lebourgeois, A.; et al. Single-agent daratumumab in very advanced relapsed and refractory multiple myeloma patients: A real-life single-center retrospective study. Ann. Hematol. 2019, 98, 1435–1440. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Zhao, W.-H.; Chen, Y.-X.; Cao, X.-M.; Yang, Y.; Zhang, Y.-L.; Wang, F.-X.; Zhang, P.-Y.; Lei, B.; et al. Chimeric Antigen Receptor T Cell Therapy in the Relapsed or Refractory Multiple Myeloma with Extramedullary Disease—A Single Institution Observation in China. Blood 2020, 136, 6. [Google Scholar] [CrossRef]
- Zhao, W.-H.; Liu, J.; Wang, B.-Y.; Chen, Y.-X.; Cao, X.-M.; Yang, Y.; Zhang, Y.-L.; Wang, F.-X.; Zhang, P.-Y.; Lei, B.; et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol. Oncol. 2018, 11, 141. [Google Scholar] [CrossRef]
- Wang, B.-Y.; Zhao, W.-H.; Chen, Y.-X.; Cao, X.-M.; Yang, Y.; Zhang, Y.-L.; Wang, F.-X.; Zhang, P.-Y.; Lei, B.; Gu, L.-F.; et al. Five-year remission without disease progression in a patient with relapsed/refractory multiple myeloma with extramedullary disease treated with LCAR-B38M chimeric antigen receptor T cells in the LEGEND-2 study: A case report. J. Med. Case Rep. 2022, 16, 1–8. [Google Scholar] [CrossRef]
- Deng, H.; Liu, M.; Yuan, T.; Zhang, H.; Cui, R.; Li, J.; Yuan, J.; Wang, X.; Wang, Y.; Deng, Q. Efficacy of Humanized Anti-BCMA CAR T Cell Therapy in Relapsed/Refractory Multiple Myeloma Patients With and Without Extramedullary Disease. Front. Immunol. 2021, 12, 720571. [Google Scholar] [CrossRef] [PubMed]
- Usmani, S.Z.; Berdeja, J.G.; Madduri, D.; Jakubowiak, A.J.; Agha, M.E.; Cohen, A.D.; Hari, P.; Yeh, T.-M.; Olyslager, Y.; Banerjee, A.; et al. Ciltacabtagene autoleucel, a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor T-cell (CAR-T) therapy, in relapsed/refractory multiple myeloma (R/R MM): Updated results from CARTITUDE-1.. Virtual Annual Meeting of the American-Society-of-Clinical-Oncology (ASCO). J. Clin. Oncol. 2021, 39, 8005. [Google Scholar]
- Richardson, P.G.; Trudel, S.; Quach, H.; Popat, R.; Lonial, S.; Orlowski, R.Z.; Kim, K.; Mateos, M.-V.; Pawlyn, C.; Ramasamy, K.; et al. Mezigdomide (CC-92480), a Potent, Novel Cereblon E3 Ligase Modulator (CELMoD), Combined with Dexamethasone (DEX) in Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Preliminary Results from the Dose-Expansion Phase of the CC-92480-MM-001 Trial. Blood 2022, 140, 1366–1368. [Google Scholar]
- Chari, A.; Touzeau, C.; Schinke, C.; Minnema, M.C.; Berdeja, J.; Oriol, A.; Van De Donk, N.W.C.J.; Rodriguez Otero, P.; Askari, E.; Mateos, M.-V.; et al. Talquetamab, a G Protein-Coupled Receptor Family C Group 5 Member D x CD3 Bispecific Antibody, in Patients with Relapsed/Refractory Multiple Myeloma (RRMM): Phase 1/2 Results from MonumenTAL-1. Blood 2022, 140, 384–387. [Google Scholar] [CrossRef]
- Cohen, Y.C.; Morillo, D.; E Gatt, M.; Sebag, M.; Kim, K.; Min, C.-K.; Oriol, A.; Ocio, E.M.; Yoon, S.-S.; Mateos, M.-V.; et al. First results from the RedirecTT-1 study with teclistamab (tec) + talquetamab (tal) simultaneously targeting BCMA and GPRC5D in patients (pts) with relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2023, 41, 8002. [Google Scholar] [CrossRef]
- Palumbo, F.; Orofino, A.; Del Fabro, V.; Fazio, M.; Elia, F.; Esposito, B.; Frazzetto, S.; Romano, A.; Di Raimondo, F.; Conticello, C. P60 EVOLVING OUTCOMES OF EXTRAMEDULLARY DISEASE IN MULTIPLE MYELOMA: 20-YEARS SINGLE CENTER EXPERIENCE. HemaSphere 2023, 7, 43–44. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Qu, X. Advances in the treatment of extramedullary disease in multiple myeloma. Transl. Oncol. 2022, 22, 101465. [Google Scholar] [CrossRef]
- Richardson, P.G.; Mateos, M.-V.; Oriol, A.; Larocca, A.; Cavo, M.; Rodríguez-Otero, P.; Leleu, X.; Norkin, M.; Nadeem, O.; Hiemenz, J.W.; et al. HORIZON (OP-106): Melflufen Plus Dexamethasone (dex) in 55 Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM) with Extramedullary Disease (EMD)-Subgroup Analysis. Blood 2020, 136, 15–17. [Google Scholar] [CrossRef]
- Di, K.; Lloyd, G.K.; Abraham, V.; MacLaren, A.; Burrows, F.J.; Desjardins, A.; Trikha, M.; Bota, D.A. Marizomib activity as a single agent in malignant gliomas: Ability to cross the blood-brain barrier. Neuro-Oncology 2015, 18, 840–848. [Google Scholar] [CrossRef] [PubMed]
SCORE | Geriatric | Biologic | Cytogenetics | Score Range | Interpretation |
---|---|---|---|---|---|
(Reference) | Domains | Marker | Included? | ||
IMWG | Age | None | No | 0–2 | 0 (fit) |
[27] | CCI | 1 (intermediate fit) | |||
ADLs | 2 (frail) | ||||
IADLs | |||||
R-MCI | Age | None | Yes | 0–9 | 0–3 (fit) |
[28] | Fried Frailty | 4–6 (intermediate fit) | |||
Lung fuction | 7–9 (frail) | ||||
Renal function | |||||
KPS | |||||
SFS | Age | None | No | 0–2 | 0–1 (not frail) |
[29] | CCI | ≥2 (frail) | |||
ECOG-PS |
Staging | Variables | Cytogenetics | Stage | Criteria | |
---|---|---|---|---|---|
System | Included? | ||||
ISS | Sβ2M | No | I–III | I (Sβ2M < 3.5 mg/L; s.albumin ≥ 3.5 gr/dL) | |
Serum albumin | II (not ISS stage I or III) | ||||
III (Sβ2M ≥ 5.5 mg/L) | |||||
R-ISS | Sβ2M | Yes * | I–III | I (ISS stage I: SR CA by FISH; normal LDH level) | |
Serum albumin | II (not ISS stage I or III) | ||||
LDH | III (ISS stage III and either HR CA or higher LDH level) | ||||
R2-ISS | Sβ2M | Yes ** | I–IV | R2-ISS assigns a score to the following variables: | |
Serum albumin | ISS II [1], ISS III [1.5], del(17p) [1], high LDH [1], | ||||
LDH | t (4;14) [1], and amp 1q21 [0.5]. | ||||
The sum of these scores determines the risk group: | |||||
I low (0), II low/intermediate (0.5–1) | |||||
III intermediate/high (1.5–2.5), IV high (>2.5) |
Authors (Reference) | N° of R/R | Prognostic Factors | Treatment | ORR (and CR + VGPR) | mPFS | mOS |
---|---|---|---|---|---|---|
1. Conticello et al., 2019 * [52] | 130 | ISS III 32% | K-Rd | 60% (37%) | HR 8.4 months | 78% (2y) |
HRCAs 14.6% | LR NR | with VGPR/CR | ||||
2. Palmieri et al, 2020 [53] | 123 | ISS III 29% | K-Rd | 85% (65%) | 23 months | 33 months |
Cytogenetic NA | ||||||
3. Mele et al., 2021 ** [54] | 130 | ISS 42% | K-Rd | 79% (91%) | 54% (2y) | 70% (2y) |
HRCAs 6.2% | ||||||
4. Antonioli et al, 2020 [55] | 44 | ISS III 24% | D-Rd | 79% (55%) | HR 19% (1y) | 81% (1y) |
HRCAs 34% | SR 90% (1y) | |||||
5. Fazio et al., 2022 [56] | 171 | ISS III 24% | D-Rd | 93% (81%) | 77% (1y) | 84% (1y) |
Cytogenetic NA | vs | |||||
D-Vd | 76% (49%) |
Authors | R/R | Prognostic | n° Prior | Treatment | ORR | mPFS (Months) | mOS (Months) |
---|---|---|---|---|---|---|---|
Patients | Factors | LOTs | |||||
1. Mateos et al., 2022 [69] | 248 | PS 0–1 | 4 (2–13) | 92 varied | 29.8% | 4.6 * | 12.4 |
IS III 35% | SOC regimens | ||||||
2. Morabito et al, 2022 [70] | 883 | ISS III | 1 (1–11) | Elo-Rd | Elo-Rd 53.9% | 20.3 | 33.4 |
29.1% ** | vs. K-Rd | K-Rd 37% | |||||
3. Markovic et al, 2021 [71] | 44 | HRCA 60% | 4 (2–9) | DARA | VGPR > 27%; PR 10% | 7.2 *** | 7.8 |
single agent | MR 14%; SD 22% | ||||||
4. Hose et al., 2021 [72] | 22 | ISS III 22.7% | 5 (1–16) | Elo-Pd | 50% | 13.5 (ISS I–II) | NR |
HRCA 18% | 6.4 (ISS III) | (42.5 m FUP) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazio, M.; Del Fabro, V.; Parrinello, N.L.; Allegra, A.; Markovic, U.; Botta, C.; Accardi, F.; Vincelli, I.D.; Leotta, S.; Elia, F.; et al. Multiple Myeloma in 2023 Ways: From Trials to Real Life. Curr. Oncol. 2023, 30, 9710-9733. https://doi.org/10.3390/curroncol30110705
Fazio M, Del Fabro V, Parrinello NL, Allegra A, Markovic U, Botta C, Accardi F, Vincelli ID, Leotta S, Elia F, et al. Multiple Myeloma in 2023 Ways: From Trials to Real Life. Current Oncology. 2023; 30(11):9710-9733. https://doi.org/10.3390/curroncol30110705
Chicago/Turabian StyleFazio, Manlio, Vittorio Del Fabro, Nunziatina Laura Parrinello, Alessandro Allegra, Uroš Markovic, Cirino Botta, Fabrizio Accardi, Iolanda Donatella Vincelli, Salvatore Leotta, Federica Elia, and et al. 2023. "Multiple Myeloma in 2023 Ways: From Trials to Real Life" Current Oncology 30, no. 11: 9710-9733. https://doi.org/10.3390/curroncol30110705
APA StyleFazio, M., Del Fabro, V., Parrinello, N. L., Allegra, A., Markovic, U., Botta, C., Accardi, F., Vincelli, I. D., Leotta, S., Elia, F., Esposito, B., Garibaldi, B., Sapuppo, G., Orofino, A., Romano, A., Palumbo, G. A., Di Raimondo, F., & Conticello, C. (2023). Multiple Myeloma in 2023 Ways: From Trials to Real Life. Current Oncology, 30(11), 9710-9733. https://doi.org/10.3390/curroncol30110705