Artificial Intelligence in Brain Tumor Imaging: A Step toward Personalized Medicine
Abstract
:1. Introduction
2. An Introduction to Artificial Intelligence and Related Concepts
2.1. Artificial Intelligence (AI)
2.2. Radiomics
2.2.1. Radiogenomics
2.2.2. Radiomics Workflow
2.2.3. Machine Learning
2.2.4. Supervised Learning
2.2.5. Unsupervised Learning
Semi-Supervised Learning
Self-Supervised Learning
2.2.6. ML Models
2.2.7. Features
2.2.8. Artificial Neural Network
2.2.9. Deep Learning
3. Lesion Detection and Differential Diagnosis
4. Tumor Characterization
5. Segmentation
6. Prognosis
6.1. Prediction of Complications
6.2. Prediction of Recurrence and Follow-Up
6.3. Tailored Therapeutics
6.4. Progression vs. Pseudo-Progression
7. Limitations
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abdel Razek, A.A.K.; Alksas, A.; Shehata, M.; AbdelKhalek, A.; Abdel Baky, K.; El-Baz, A.; Helmy, E. Clinical Applications of Artificial Intelligence and Radiomics in Neuro-Oncology Imaging. Insights Imaging 2021, 12, 152. [Google Scholar] [CrossRef]
- Wesseling, P.; Capper, D. WHO 2016 Classification of Gliomas. Neuropathol. Appl. Neurobiol. 2018, 44, 139–150. [Google Scholar] [CrossRef]
- Jiang, H.; Cui, Y.; Wang, J.; Lin, S. Impact of Epidemiological Characteristics of Supratentorial Gliomas in Adults Brought about by the 2016 World Health Organization Classification of Tumors of the Central Nervous System. Oncotarget 2017, 8, 20354–20361. [Google Scholar] [CrossRef] [Green Version]
- Ceravolo, I.; Barchetti, G.; Biraschi, F.; Gerace, C.; Pampana, E.; Pingi, A.; Stasolla, A. Early Stage Glioblastoma: Retrospective Multicentric Analysis of Clinical and Radiological Features. Radiol. Med. 2021, 126, 1468–1476. [Google Scholar] [CrossRef]
- Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathol. 2007, 114, 97–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [Green Version]
- Capper, D.; Jones, D.T.W.; Sill, M.; Hovestadt, V.; Schrimpf, D.; Sturm, D.; Koelsche, C.; Sahm, F.; Chavez, L.; Reuss, D.E.; et al. DNA Methylation-Based Classification of Central Nervous System Tumours. Nature 2018, 555, 469–474. [Google Scholar]
- Luger, A.-L.; König, S.; Samp, P.F.; Urban, H.; Divé, I.; Burger, M.C.; Voss, M.; Franz, K.; Fokas, E.; Filipski, K.; et al. Molecular Matched Targeted Therapies for Primary Brain Tumors—A Single Center Retrospective Analysis. J. Neurooncol. 2022, 159, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Di Bonaventura, R.; Montano, N.; Giordano, M.; Gessi, M.; Gaudino, S.; Izzo, A.; Mattogno, P.P.; Stumpo, V.; Caccavella, V.M.; Giordano, C.; et al. Reassessing the Role of Brain Tumor Biopsy in the Era of Advanced Surgical, Molecular, and Imaging Techniques—A Single-Center Experience with Long-Term Follow-Up. J. Pers. Med. 2021, 11, 909. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Manjila, S.; Sakla, N.; True, A.; Wardeh, A.H.; Beig, N.; Vaysberg, A.; Matthews, J.; Prasanna, P.; Spektor, V. Radiomics and Radiogenomics in Gliomas: A Contemporary Update. Br. J. Cancer 2021, 125, 641–657. [Google Scholar] [CrossRef] [PubMed]
- Vagvala, S.; Guenette, J.P.; Jaimes, C.; Huang, R.Y. Imaging Diagnosis and Treatment Selection for Brain Tumors in the Era of Molecular Therapeutics. Cancer Imaging 2022, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Rudie, J.D.; Rauschecker, A.M.; Bryan, R.N.; Davatzikos, C.; Mohan, S. Emerging Applications of Artificial Intelligence in Neuro-Oncology. Radiology 2019, 290, 607–618. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial Intelligence in Radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Scapicchio, C.; Gabelloni, M.; Barucci, A.; Cioni, D.; Saba, L.; Neri, E. A Deep Look into Radiomics. Radiol. Med. 2021, 126, 1296–1311. [Google Scholar] [CrossRef] [PubMed]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Irmici, G.; Cè, M.; Caloro, E.; Khenkina, N.; Della Pepa, G.; Ascenti, V.; Martinenghi, C.; Papa, S.; Oliva, G.; Cellina, M. Chest X-Ray in Emergency Radiology: What Artificial Intelligence Applications Are Available? Diagnostics 2023, 13, 216. [Google Scholar] [CrossRef]
- Soda, P.; D’Amico, N.C.; Tessadori, J.; Valbusa, G.; Guarrasi, V.; Bortolotto, C.; Akbar, M.U.; Sicilia, R.; Cordelli, E.; Fazzini, D.; et al. AIforCOVID: Predicting the Clinical Outcomes in Patients with COVID-19 Applying AI to Chest-X-Rays. An Italian Multicentre Study. Med. Image Anal. 2021, 74, 102216. [Google Scholar] [CrossRef]
- Shui, L.; Ren, H.; Yang, X.; Li, J.; Chen, Z.; Yi, C.; Zhu, H.; Shui, P. The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology. Front. Oncol. 2021, 10, 570465. [Google Scholar] [CrossRef]
- Avery, E.; Sanelli, P.C.; Aboian, M.; Payabvash, S. Radiomics: A Primer on Processing Workflow and Analysis. Semin. Ultrasound CT MRI 2022, 43, 142–146. [Google Scholar] [CrossRef]
- Lohmann, P.; Galldiks, N.; Kocher, M.; Heinzel, A.; Filss, C.P.; Stegmayr, C.; Mottaghy, F.M.; Fink, G.R.; Jon Shah, N.; Langen, K.-J. Radiomics in Neuro-Oncology: Basics, Workflow, and Applications. Methods 2021, 188, 112–121. [Google Scholar] [CrossRef]
- Cellina, M.; Pirovano, M.; Ciocca, M.; Gibelli, D.; Floridi, C.; Oliva, G. Radiomic Analysis of the Optic Nerve at the First Episode of Acute Optic Neuritis: An Indicator of Optic Nerve Pathology and a Predictor of Visual Recovery? Radiol. Med. 2021, 126, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Cellina, M.; Cè, M.; Irmici, G.; Ascenti, V.; Khenkina, N.; Toto-Brocchi, M.; Martinenghi, C.; Papa, S.; Carrafiello, G. Artificial Intelligence in Lung Cancer Imaging: Unfolding the Future. Diagnostics 2022, 12, 2644. [Google Scholar] [CrossRef]
- Tan, P.-N.; Steinbach, M.; Karpatne, A.; Kumar, V. Introduction to Data Mining, 2nd ed.; What’s New in Computer Science; Pearson: London, UK, 2018. [Google Scholar]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Jung, A. Machine Learning: The Basics; Springer: Singapore, 2022. [Google Scholar]
- Sidey-Gibbons, J.A.M.; Sidey-Gibbons, C.J. Machine Learning in Medicine: A Practical Introduction. BMC Med. Res. Methodol. 2019, 19, 64. [Google Scholar] [CrossRef] [Green Version]
- Vicini, S.; Bortolotto, C.; Rengo, M.; Ballerini, D.; Bellini, D.; Carbone, I.; Preda, L.; Laghi, A.; Coppola, F.; Faggioni, L. A Narrative Review on Current Imaging Applications of Artificial Intelligence and Radiomics in Oncology: Focus on the Three Most Common Cancers. Radiol. Med. 2022, 127, 819–836. [Google Scholar] [CrossRef] [PubMed]
- Cellina, M.; Cè, M.; Irmici, G.; Ascenti, V.; Caloro, E.; Bianchi, L.; Pellegrino, G.; D’Amico, N.; Papa, S.; Carrafiello, G. Artificial Intelligence in Emergency Radiology: Where Are We Going? Diagnostics 2022, 12, 3223. [Google Scholar] [CrossRef]
- Guido, S.; Muller, A. Introduction to Machine Learning with Python a Guide for Data Scientists; O’Reilly Media: Sebastopol, CA, USA, 2018. [Google Scholar]
- Sansone, M.; Fusco, R.; Grassi, F.; Gatta, G.; Belfiore, M.P.; Angelone, F.; Ricciardi, C.; Ponsiglione, A.M.; Amato, F.; Galdiero, R.; et al. Machine Learning Approaches with Textural Features to Calculate Breast Density on Mammography. Curr. Oncol. 2023, 30, 839–853. [Google Scholar] [CrossRef] [PubMed]
- Fusco, R.; Di Bernardo, E.; Piccirillo, A.; Rubulotta, M.R.; Petrosino, T.; Barretta, M.L.; Mattace Raso, M.; Vallone, P.; Raiano, C.; Di Giacomo, R.; et al. Radiomic and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography and Dynamic Contrast Magnetic Resonance Imaging to Detect Breast Malignant Lesions. Curr. Oncol. 2022, 29, 1947–1966. [Google Scholar] [CrossRef]
- Zhang, Z. A Gentle Introduction to Artificial Neural Networks. Ann. Transl. Med. 2016, 4, 370. [Google Scholar] [CrossRef] [Green Version]
- Agatonovic-Kustrin, S.; Beresford, R. Basic Concepts of Artificial Neural Network (ANN) Modeling and Its Application in Pharmaceutical Research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef]
- Santosh, K.C.; Das, N.; Ghosh, S. Deep Learning Models for Medical Imaging. In Deep Learning Models for Medical Imaging; Elsevier: Amsterdam, The Netherlands, 2021; pp. i–iii. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Nielsen, M.A. Neural Networks and Deep Learning; Determination Press: San Francisco, CA, USA, 2015. [Google Scholar]
- Abd-Ellah, M.K.; Awad, A.I.; Khalaf, A.A.M.; Hamed, H.F.A. A Review on Brain Tumor Diagnosis from MRI Images: Practical Implications, Key Achievements, and Lessons Learned. Magn. Reson. Imaging 2019, 61, 300–318. [Google Scholar] [CrossRef]
- Parekh, V.S.; Jacobs, M.A. Deep Learning and Radiomics in Precision Medicine. Expert Rev. Precis. Med. Drug Dev. 2019, 4, 59–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Abiwinanda, N.; Hanif, M.; Hesaputra, S.T.; Handayani, A.; Mengko, T.R. Brain Tumor Classification Using Convolutional Neural Network; Springe: Singapore, 2019. [Google Scholar]
- Pope, W.B. Brain Metastases: Neuroimaging. Handb. Clin. Neurol. 2018, 149, 89–112. [Google Scholar]
- Park, J.E. Artificial Intelligence in Neuro-Oncologic Imaging: A Brief Review for Clinical Use Cases and Future Perspectives. Brain Tumor Res. Treat. 2022, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W.; Jun, Y.; Lee, Y.; Han, K.; An, C.; Ahn, S.S.; Hwang, D.; Lee, S.-K. Robust Performance of Deep Learning for Automatic Detection and Segmentation of Brain Metastases Using Three-Dimensional Black-Blood and Three-Dimensional Gradient Echo Imaging. Eur. Radiol. 2021, 31, 6686–6695. [Google Scholar] [CrossRef]
- Voicu, I.P.; Pravatà, E.; Panara, V.; Navarra, R.; Mattei, P.A.; Caulo, M. Differentiating Solitary Brain Metastases from High-Grade Gliomas with MR: Comparing Qualitative versus Quantitative Diagnostic Strategies. Radiol. Med. 2022, 127, 891–898. [Google Scholar] [CrossRef]
- Bauer, A.H.; Erly, W.; Moser, F.G.; Maya, M.; Nael, K. Differentiation of Solitary Brain Metastasis from Glioblastoma Multiforme: A Predictive Multiparametric Approach Using Combined MR Diffusion and Perfusion. Neuroradiology 2015, 57, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Moltoni, G.; Guarnera, A.; Pasquini, L.; Di Napoli, A.; Napolitano, A.; Espagnet, M.C.R.; Bozzao, A. Single Brain Metastasis versus Glioblastoma Multiforme: A VOI-Based Multiparametric Analysis for Differential Diagnosis. Radiol. Med. 2022, 127, 490–497. [Google Scholar] [CrossRef]
- Swinburne, N.C.; Schefflein, J.; Sakai, Y.; Oermann, E.K.; Titano, J.J.; Chen, I.; Tadayon, S.; Aggarwal, A.; Doshi, A.; Nael, K. Machine Learning for Semi-automated Classification of Glioblastoma, Brain Metastasis and Central Nervous System Lymphoma Using Magnetic Resonance Advanced Imaging. Ann. Transl. Med. 2019, 7, 232. [Google Scholar] [CrossRef]
- Upadhyay, N.; Waldman, A.D. Conventional MRI Evaluation of Gliomas. Br. J. Radiol. 2011, 84, S107–S111. [Google Scholar] [CrossRef] [Green Version]
- Skogen, K.; Schulz, A.; Helseth, E.; Ganeshan, B.; Dormagen, J.B.; Server, A. Texture Analysis on Diffusion Tensor Imaging: Discriminating Glioblastoma from Single Brain Metastasis. Acta Radiol. 2019, 60, 356–366. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, L.; Niu, S.; Chen, S.; Yang, B.; Chen, H.; Zheng, F.; Zang, Y.; Zhang, H.; Xin, Y.; et al. Differentiation between Glioblastoma Multiforme and Metastasis from the Lungs and Other Sites Using Combined Clinical/Routine MRI Radiomics. Front. Cell Dev. Biol. 2021, 9, 710461. [Google Scholar] [CrossRef]
- Nayak, L.; Lee, E.Q.; Wen, P.Y. Epidemiology of Brain Metastases. Curr. Oncol. Rep. 2012, 14, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Ramón, R.; Larroza, A.; Ruiz-España, S.; Arana, E.; Moratal, D. Classifying Brain Metastases by Their Primary Site of Origin Using a Radiomics Approach Based on Texture Analysis: A Feasibility Study. Eur. Radiol. 2018, 28, 4514–4523. [Google Scholar] [CrossRef]
- Barajas, R.F.; Politi, L.S.; Anzalone, N.; Schöder, H.; Fox, C.P.; Boxerman, J.L.; Kaufmann, T.J.; Quarles, C.C.; Ellingson, B.M.; Auer, D.; et al. Consensus Recommendations for MRI and PET Imaging of Primary Central Nervous System Lymphoma: Guideline Statement from the International Primary CNS Lymphoma Collaborative Group (IPCG). Neuro Oncol. 2021, 23, 1056–1071. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Booth, T.C.; Bhogal, P.; Malhotra, A.; Wilhelm, T. Imaging of Primary Central Nervous System Lymphoma. Clin. Radiol. 2011, 66, 768–777. [Google Scholar] [CrossRef]
- Cai, Q.; Fang, Y.; Young, K.H. Primary Central Nervous System Lymphoma: Molecular Pathogenesis and Advances in Treatment. Transl. Oncol. 2019, 12, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Stadlbauer, A.; Marhold, F.; Oberndorfer, S.; Heinz, G.; Buchfelder, M.; Kinfe, T.M.; Meyer-Bäse, A. Radiophysiomics: Brain Tumors Classification by Machine Learning and Physiological MRI Data. Cancers 2022, 14, 2363. [Google Scholar] [CrossRef]
- Ucuzal, H.; Yasar, S.; Colak, C. Classification of Brain Tumor Types by Deep Learning with Convolutional Neural Network on Magnetic Resonance Images Using a Developed Web-Based Interface. In Proceedings of the 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 11–13 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Adu, K.; Yu, Y.; Cai, J.; Tashi, N. Dilated Capsule Network for Brain Tumor Type Classification via MRI Segmented Tumor Region. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 942–947. [Google Scholar]
- Afshar, P.; Plataniotis, K.N.; Mohammadi, A. Capsule Networks for Brain Tumor Classification Based on MRI Images and Coarse Tumor Boundaries. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1368–1372. [Google Scholar]
- Sunderland, G.J.; Jenkinson, M.D.; Zakaria, R. Surgical Management of Posterior Fossa Metastases. J. Neurooncol. 2016, 130, 535–542. [Google Scholar] [CrossRef] [PubMed]
- She, D.; Yang, X.; Xing, Z.; Cao, D. Differentiating Hemangioblastomas from Brain Metastases Using Diffusion-Weighted Imaging and Dynamic Susceptibility Contrast-Enhanced Perfusion-Weighted MR Imaging. Am. J. Neuroradiol. 2016, 37, 1844–1850. [Google Scholar] [CrossRef] [Green Version]
- Payabvash, S.; Aboian, M.; Tihan, T.; Cha, S. Machine Learning Decision Tree Models for Differentiation of Posterior Fossa Tumors Using Diffusion Histogram Analysis and Structural MRI Findings. Front. Oncol. 2020, 10, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Yu, W.-Y.; Liauw, L.; Chander, R.J.; Soon, W.E.; Lee, H.Y.; Tan, K. Clinicoradiologic Features Distinguish Tumefactive Multiple Sclerosis from CNS Neoplasms. Neurol. Clin. Pract. 2017, 7, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.K.; Wiest, R.; Locher, C.; Heldner, M.R.; Schucht, P.; Raabe, A.; Gralla, J.; Kamm, C.P.; Slotboom, J.; Kellner-Weldon, F. Differentiating Enhancing Multiple Sclerosis Lesions, Glioblastoma, and Lymphoma with Dynamic Texture Parameters Analysis: A Feasibility Study. Med. Phys. 2017, 44, 4000–4008. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yang, Y.; Shi, Z.; Zhang, A.; Yan, L.; Hu, Y.; Feng, L.; Ma, J.; Wang, W.; Cui, G. Distinguishing Brain Inflammation from Grade II Glioma in Population without Contrast Enhancement: A Radiomics Analysis Based on Conventional MRI. Eur. J. Radiol. 2021, 134, 109467. [Google Scholar] [CrossRef]
- Qian, Z.; Li, Y.; Wang, Y.; Li, L.; Li, R.; Wang, K.; Li, S.; Tang, K.; Zhang, C.; Fan, X.; et al. Differentiation of Glioblastoma from Solitary Brain Metastases Using Radiomic Machine-Learning Classifiers. Cancer Lett. 2019, 451, 128–135. [Google Scholar] [CrossRef]
- Bae, S.; An, C.; Ahn, S.S.; Kim, H.; Han, K.; Kim, S.W.; Park, J.E.; Kim, H.S.; Lee, S.-K. Robust Performance of Deep Learning for Distinguishing Glioblastoma from Single Brain Metastasis Using Radiomic Features: Model Development and Validation. Sci. Rep. 2020, 10, 12110. [Google Scholar] [CrossRef]
- Wiestler, B.; Kluge, A.; Lukas, M.; Gempt, J.; Ringel, F.; Schlegel, J.; Meyer, B.; Zimmer, C.; Förster, S.; Pyka, T.; et al. Multiparametric MRI-Based Differentiation of WHO Grade II/III Glioma and WHO Grade IV Glioblastoma. Sci. Rep. 2016, 6, 35142. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, L.-F.; Hu, Y.-C.; Li, G.; Yang, Y.; Han, Y.; Sun, Y.-Z.; Liu, Z.-C.; Tian, Q.; Han, Z.-Y.; et al. Optimizing a Machine Learning Based Glioma Grading System Using Multi-Parametric MRI Histogram and Texture Features. Oncotarget 2017, 8, 47816–47830. [Google Scholar] [CrossRef]
- Kim, M.; Jung, S.Y.; Park, J.E.; Jo, Y.; Park, S.Y.; Nam, S.J.; Kim, J.H.; Kim, H.S. Diffusion- and Perfusion-Weighted MRI Radiomics Model May Predict Isocitrate Dehydrogenase (IDH) Mutation and Tumor Aggressiveness in Diffuse Lower Grade Glioma. Eur. Radiol. 2020, 30, 2142–2151. [Google Scholar] [CrossRef] [PubMed]
- Akkus, Z.; Ali, I.; Sedlář, J.; Agrawal, J.P.; Parney, I.F.; Giannini, C.; Erickson, B.J. Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence. J. Digit. Imaging 2017, 30, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Lee, S.; Kim, J.; Park, H. Classification of the Glioma Grading Using Radiomics Analysis. PeerJ 2018, 6, e5982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Q.; Yan, L.-F.; Zhang, X.; Zhang, X.; Hu, Y.-C.; Han, Y.; Liu, Z.-C.; Nan, H.-Y.; Sun, Q.; Sun, Y.-Z.; et al. Radiomics Strategy for Glioma Grading Using Texture Features from Multiparametric MRI. J. Magn. Reson. Imaging 2018, 48, 1518–1528. [Google Scholar] [CrossRef] [PubMed]
- Mzoughi, H.; Njeh, I.; Wali, A.; Slima, M.B.; BenHamida, A.; Mhiri, C.; Mahfoudhe, K.B. Deep Multi-Scale 3D Convolutional Neural Network (CNN) for MRI Gliomas Brain Tumor Classification. J. Digit. Imaging 2020, 33, 903–915. [Google Scholar] [CrossRef]
- Chang, P.; Grinband, J.; Weinberg, B.D.; Bardis, M.; Khy, M.; Cadena, G.; Su, M.-Y.; Cha, S.; Filippi, C.G.; Bota, D.; et al. Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas. Am. J. Neuroradiol. 2018, 39, 1201–1207. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Zhang, R.; Fa, L.; Zhang, L.; Wang, L.; Shao, G. ATRX Status in Patients with Gliomas: Radiomics Analysis. Medicine 2022, 101, e30189. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, X.; Rui, W.; Pang, H.; Qiu, T.; Wang, J.; Xie, Q.; Jin, T.; Zhang, H.; Chen, H.; et al. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features. J. Magn. Reson. Imaging 2019, 49, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Alentorn, A.; Duran-Peña, A.; Pingle, S.C.; Piccioni, D.E.; Idbaih, A.; Kesari, S. Molecular profiling of gliomas: Potential therapeutic implications. Expert Rev. Anticancer Ther. 2015, 15, 955–962. [Google Scholar] [CrossRef]
- Haubold, J.; Hosch, R.; Parmar, V.; Glas, M.; Guberina, N.; Catalano, O.A.; Pierscianek, D.; Wrede, K.; Deuschl, C.; Forsting, M.; et al. Fully Automated MR Based Virtual Biopsy of Cerebral Gliomas. Cancers 2021, 13, 6186. [Google Scholar] [CrossRef]
- Shboul, Z.A.; Chen, J.; Iftekharuddin, K.M. Prediction of Molecular Mutations in Diffuse Low-Grade Gliomas Using MR Imaging Features. Sci. Rep. 2020, 10, 3711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabrese, E.; Rudie, J.D.; Rauschecker, A.M.; Villanueva-Meyer, J.E.; Clarke, J.L.; Solomon, D.A.; Cha, S. Combining Radiomics and Deep Convolutional Neural Network Features from Preoperative MRI for Predicting Clinically Relevant Genetic Biomarkers in Glioblastoma. Neuro-Oncol. Adv. 2022, 4, vdac060. [Google Scholar] [CrossRef] [PubMed]
- Khastavaneh, H.; Ebrahimpour-komleh, H. Automated Segmentation of Abnormal Tissues in Medical Images. J. Biomed. Phys. Eng. 2019. [Google Scholar] [CrossRef]
- Barone, F.; Alberio, N.; Iacopino, D.; Giammalva, G.; D’Arrigo, C.; Tagnese, W.; Graziano, F.; Cicero, S.; Maugeri, R. Brain Mapping as Helpful Tool in Brain Glioma Surgical Treatment—Toward the “Perfect Surgery”? Brain Sci. 2018, 8, 192. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A. Study and Analysis of Different Segmentation Methods for Brain Tumor MRI Application. Multimed. Tools Appl. 2023, 82, 7117–7139. [Google Scholar] [CrossRef]
- Akbari, H.; Macyszyn, L.; Da, X.; Bilello, M.; Wolf, R.L.; Martinez-Lage, M.; Biros, G.; Alonso-Basanta, M.; O’Rourke, D.M.; Davatzikos, C. Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma. Neurosurgery 2016, 78, 572–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathore, S.; Akbari, H.; Doshi, J. Radiomic Signature of Infiltration in Peritumoral Edema Predicts Subsequent Recurrence in Glioblastoma: Implications for Personalized Radiotherapy Planning. J. Med. Imaging 2018, 5, 1. [Google Scholar] [CrossRef]
- Chang, P.D.; Malone, H.R.; Bowden, S.G.; Chow, D.S.; Gill, B.J.A.; Ung, T.H.; Samanamud, J.; Englander, Z.K.; Sonabend, A.M.; Sheth, S.A.; et al. A Multiparametric Model for Mapping Cellularity in Glioblastoma Using Radiographically Localized Biopsies. Am. J. Neuroradiol. 2017, 38, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.D.; Chow, D.S.; Yang, P.H.; Filippi, C.G.; Lignelli, A. Predicting Glioblastoma Recurrence by Early Changes in the Apparent Diffusion Coefficient Value and Signal Intensity on FLAIR Images. Am. J. Roentgenol. 2017, 208, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Akinyelu, A.A.; Zaccagna, F.; Grist, J.T.; Castelli, M.; Rundo, L. Brain Tumor Diagnosis Using Machine Learning, Convolutional Neural Networks, Capsule Neural Networks and Vision Transformers, Applied to MRI: A Survey. J. Imaging 2022, 8, 205. [Google Scholar] [CrossRef]
- Afshar, P.; Mohammadi, A.; Plataniotis, K.N. BayesCap: A Bayesian Approach to Brain Tumor Classification Using Capsule Networks. IEEE Signal Process. Lett. 2020, 27, 2024–2028. [Google Scholar] [CrossRef]
- Thaha, M.M.; Kumar, K.P.M.; Murugan, B.S.; Dhanasekeran, S.; Vijayakarthick, P.; Selvi, A.S. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. J. Med. Syst. 2019, 43, 294. [Google Scholar] [CrossRef]
- Cè, M.; Caloro, E.; Pellegrino, M.E.; Basile, M.; Sorce, A.; Fazzini, D.; Oliva, G.; Cellina, M. Artificial Intelligence in Breast Cancer Imaging: Risk Stratification, Lesion Detection and Classification, Treatment Planning and Prognosis—A Narrative Review. Explor. Target. Anti-Tumor Ther. 2022, 3, 795–816. [Google Scholar] [CrossRef]
- Aboian, M.; Bousabarah, K.; Kazarian, E.; Zeevi, T.; Holler, W.; Merkaj, S.; Cassinelli Petersen, G.; Bahar, R.; Subramanian, H.; Sunku, P.; et al. Clinical Implementation of Artificial Intelligence in Neuroradiology with Development of a Novel Workflow-Efficient Picture Archiving and Communication System-Based Automated Brain Tumor Segmentation and Radiomic Feature Extraction. Front. Neurosci. 2022, 16, 860208. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Yan, M.; Li, C.; Yan, C.; Zhu, Z.; Lu, W. Machine-Learning-Assisted Prediction of Surgical Outcomes in Patients Undergoing Gastrectomy. Chin. J. Cancer Res. 2019, 31, 797–805. [Google Scholar] [CrossRef]
- Harris, A.H.S.; Kuo, A.C.; Weng, Y.; Trickey, A.W.; Bowe, T.; Giori, N.J. Can Machine Learning Methods Produce Accurate and Easy-to-Use Prediction Models of 30-Day Complications and Mortality After Knee or Hip Arthroplasty? Clin. Orthop. Relat. Res. 2019, 477, 452–460. [Google Scholar] [CrossRef]
- Merath, K.; Hyer, J.M.; Mehta, R.; Farooq, A.; Bagante, F.; Sahara, K.; Tsilimigras, D.I.; Beal, E.; Paredes, A.Z.; Wu, L.; et al. Use of Machine Learning for Prediction of Patient Risk of Postoperative Complications After Liver, Pancreatic, and Colorectal Surgery. J. Gastrointest. Surg. 2020, 24, 1843–1851. [Google Scholar] [CrossRef]
- Campillo-Gimenez, B.; Garcelon, N.; Jarno, P.; Chapplain, J.M.; Cuggia, M. Full-Text Automated Detection of Surgical Site Infections Secondary to Neurosurgery in Rennes, France. Stud. Health Technol. Inform. 2013, 192, 572–575. [Google Scholar] [PubMed]
- Arvind, V.; Kaji, D.; Kim, J.; Caridi, J.M.; Cho, S.K. Artificial Intelligence (AI) Can Predict Postoperative Complications Better than Traditional Statistical Testing Following Anterior Cervical Discectomy and Fusion (ACDF). Spine J. 2017, 17, S145–S146. [Google Scholar] [CrossRef]
- Hopkins, B.S.; Mazmudar, A.; Driscoll, C.; Svet, M.; Goergen, J.; Kelsten, M.; Shlobin, N.A.; Kesavabhotla, K.; Smith, Z.A.; Dahdaleh, N.S. Using Artificial Intelligence (AI) to Predict Postoperative Surgical Site Infection: A Retrospective Cohort of 4046 Posterior Spinal Fusions. Clin. Neurol. Neurosurg. 2020, 192, 105718. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.; Layard Horsfall, H.; Funnell, J.P.; Hanrahan, J.G.; Khan, D.Z.; Muirhead, W.; Stoyanov, D.; Marcus, H.J. Artificial Intelligence in Brain Tumour Surgery—An Emerging Paradigm. Cancers 2021, 13, 5010. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, P.; Zanzotto, F.M.; Scarpato, N.; Riondino, S.; Nanni, U.; Roselli, M.; Guadagni, F. Risk Assessment for Venous Thromboembolism in Chemotherapy-Treated Ambulatory Cancer Patients. Med. Decis. Mak. 2017, 37, 234–242. [Google Scholar] [CrossRef]
- Howcroft, J.; Kofman, J.; Lemaire, E.D. Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.W.; Levine, D.; Syrowatka, A.; Kuznetsova, M.; Craig, K.J.T.; Rui, A.; Jackson, G.P.; Rhee, K. The Potential of Artificial Intelligence to Improve Patient Safety: A Scoping Review. NPJ Digit. Med. 2021, 4, 54. [Google Scholar] [CrossRef] [PubMed]
- Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling Polypharmacy Side Effects with Graph Convolutional Networks. Bioinformatics 2018, 34, i457–i466. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, R.-S.; Mi, Z.; Yang, B.-R.; Kau, L.-J.; Bitew, M.A.; Li, T.-Y. Body Posture Recognition and Turning Recording System for the Care of Bed Bound Patients. Technol. Health Care 2015, 24, S307–S312. [Google Scholar] [CrossRef] [PubMed]
- Zlochower, A.; Chow, D.S.; Chang, P.; Khatri, D.; Boockvar, J.A.; Filippi, C.G. Deep Learning AI Applications in the Imaging of Glioma. Top. Magn. Reson. Imaging 2020, 29, 115-0. [Google Scholar] [CrossRef] [PubMed]
- Hegi, M.E.; Diserens, A.-C.; Gorlia, T.; Hamou, M.-F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, L.; Wu, B.; Fu, Z.; Feng, F.; Qiao, E.; Li, Q.; Sun, C.; Ge, M. Prognostic Role of IDH Mutations in Gliomas: A Meta-Analysis of 55 Observational Studies. Oncotarget 2015, 6, 17354–17365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.-R.; Yao, Y.; Xu, H.-Z.; Qin, Z.-Y. Isocitrate Dehydrogenase (IDH)1/2 Mutations as Prognostic Markers in Patients with Glioblastomas. Medicine 2016, 95, e2583. [Google Scholar] [CrossRef] [PubMed]
- Macyszyn, L.; Akbari, H.; Pisapia, J.M.; Da, X.; Attiah, M.; Pigrish, V.; Bi, Y.; Pal, S.; Davuluri, R.V.; Roccograndi, L.; et al. Imaging Patterns Predict Patient Survival and Molecular Subtype in Glioblastoma via Machine Learning Techniques. Neuro Oncol. 2016, 18, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Nie, D.; Lu, J.; Zhang, H.; Adeli, E.; Wang, J.; Yu, Z.; Liu, L.; Wang, Q.; Wu, J.; Shen, D. Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages. Sci. Rep. 2019, 9, 1103. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Li, S.; Kuang, Y.; Hill, V.B.; Heimberger, A.B.; Zhai, L.; Zhai, S. Artificial Intelligence in the Radiomic Analysis of Glioblastomas: A Review, Taxonomy, and Perspective. Front. Oncol. 2022, 12, 3793. [Google Scholar] [CrossRef]
- Sanghani, P.; Ang, B.T.; King, N.K.K.; Ren, H. Overall Survival Prediction in Glioblastoma Multiforme Patients from Volumetric, Shape and Texture Features Using Machine Learning. Surg. Oncol. 2018, 27, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, P.; Patel, J.; Partovi, S.; Madabhushi, A.; Tiwari, P. Radiomic Features from the Peritumoral Brain Parenchyma on Treatment-Naïve Multi-Parametric MR Imaging Predict Long versus Short-Term Survival in Glioblastoma Multiforme: Preliminary Findings. Eur. Radiol. 2017, 27, 4188–4197. [Google Scholar] [CrossRef]
- Park, J.E.; Kim, H.S.; Jo, Y.; Yoo, R.-E.; Choi, S.H.; Nam, S.J.; Kim, J.H. Radiomics Prognostication Model in Glioblastoma Using Diffusion- and Perfusion-Weighted MRI. Sci. Rep. 2020, 10, 4250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grist, J.T.; Withey, S.; Bennett, C.; Rose, H.E.L.; MacPherson, L.; Oates, A.; Powell, S.; Novak, J.; Abernethy, L.; Pizer, B.; et al. Combining Multi-Site Magnetic Resonance Imaging with Machine Learning Predicts Survival in Pediatric Brain Tumors. Sci. Rep. 2021, 11, 18897. [Google Scholar] [CrossRef]
- Beig, N.; Patel, J.; Prasanna, P.; Hill, V.; Gupta, A.; Correa, R.; Bera, K.; Singh, S.; Partovi, S.; Varadan, V.; et al. Radiogenomic Analysis of Hypoxia Pathway Is Predictive of Overall Survival in Glioblastoma. Sci. Rep. 2018, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Itakura, H.; Achrol, A.S.; Mitchell, L.A.; Loya, J.J.; Liu, T.; Westbroek, E.M.; Feroze, A.H.; Rodriguez, S.; Echegaray, S.; Azad, T.D.; et al. Magnetic Resonance Image Features Identify Glioblastoma Phenotypic Subtypes with Distinct Molecular Pathway Activities. Sci. Transl. Med. 2015, 7, 303ra138. [Google Scholar] [CrossRef] [Green Version]
- Rathore, S.; Akbari, H.; Rozycki, M.; Abdullah, K.G.; Nasrallah, M.P.; Binder, Z.A.; Davuluri, R.V.; Lustig, R.A.; Dahmane, N.; Bilello, M.; et al. Radiomic MRI Signature Reveals Three Distinct Subtypes of Glioblastoma with Different Clinical and Molecular Characteristics, Offering Prognostic Value beyond IDH1. Sci. Rep. 2018, 8, 5087. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Qian, Z.; Xu, K.; Wang, K.; Fan, X.; Li, S.; Liu, X.; Wang, Y.; Jiang, T. Radiomic Features Predict Ki-67 Expression Level and Survival in Lower Grade Gliomas. J. Neurooncol. 2017, 135, 317–324. [Google Scholar] [CrossRef]
- Chukwueke, U.N.; Wen, P.Y. Use of the Response Assessment in Neuro-Oncology (RANO) Criteria in Clinical Trials and Clinical Practice. CNS Oncol. 2019, 8, CNS28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kickingereder, P.; Isensee, F.; Tursunova, I.; Petersen, J.; Neuberger, U.; Bonekamp, D.; Brugnara, G.; Schell, M.; Kessler, T.; Foltyn, M.; et al. Automated Quantitative Tumour Response Assessment of MRI in Neuro-Oncology with Artificial Neural Networks: A Multicentre, Retrospective Study. Lancet Oncol. 2019, 20, 728–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.W.; Choi, D.; Park, J.E.; Ahn, S.S.; Kim, H.; Chang, J.H.; Kim, S.H.; Kim, H.S.; Lee, S.-K. Differentiation of Recurrent Glioblastoma from Radiation Necrosis Using Diffusion Radiomics with Machine Learning Model Development and External Validation. Sci. Rep. 2021, 11, 2913. [Google Scholar] [CrossRef] [PubMed]
- Razek, A.A.K.A.; El-Serougy, L.; Abdelsalam, M.; Gaballa, G.; Talaat, M. Differentiation of Residual/Recurrent Gliomas from Postradiation Necrosis with Arterial Spin Labeling and Diffusion Tensor Magnetic Resonance Imaging-Derived Metrics. Neuroradiology 2018, 60, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Lao, J.; Chen, Y.; Li, Z.-C.; Li, Q.; Zhang, J.; Liu, J.; Zhai, G. A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme. Sci. Rep. 2017, 7, 10353. [Google Scholar] [CrossRef] [Green Version]
- Antropova, N.; Huynh, B.Q.; Giger, M.L. A Deep Feature Fusion Methodology for Breast Cancer Diagnosis Demonstrated on Three Imaging Modality Datasets. Med. Phys. 2017, 44, 5162–5171. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Cao, J.; Zhang, J.; Bu, J.; Yu, Y.; Tan, Y.; Feng, Q.; Huang, M. Differentiation of Recurrence from Radiation Necrosis in Gliomas Based on the Radiomics of Combinational Features and Multimodality MRI Images. Comput. Math. Methods Med. 2019, 2019, 2893043. [Google Scholar] [CrossRef]
- Narang, S.; Kim, D.; Aithala, S.; Heimberger, A.B.; Ahmed, S.; Rao, D.; Rao, G.; Rao, A. Tumor Image-Derived Texture Features Are Associated with CD3 T-Cell Infiltration Status in Glioblastoma. Oncotarget 2017, 8, 101244–101254. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.Y.; Cho, S.J.; Sunwoo, L.; Baik, S.H.; Bae, Y.J.; Choi, B.S.; Jung, C.; Kim, J.H. Classification of True Progression after Radiotherapy of Brain Metastasis on MRI Using Artificial Intelligence: A Systematic Review and Meta-Analysis. Neuro-Oncol. Adv. 2021, 3, vdab080. [Google Scholar] [CrossRef]
- Blasiak, A.; Khong, J.; Kee, T. CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence. SLAS Technol. 2020, 25, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Yauney, G.; Shah, P. Reinforcement Learning with Action-Derived Rewards for Chemotherapy and Clinical Trial Dosing Regimen Selection. In Proceedings of the 3rd Machine Learning for Healthcare Conference, Palo Alto, CA, USA, 17–18 August 2018; Volume 85, pp. 161–226. [Google Scholar]
- Jabbari, P.; Rezaei, N. Artificial Intelligence and Immunotherapy. Expert Rev. Clin. Immunol. 2019, 15, 689–691. [Google Scholar] [CrossRef]
- Thust, S.C.; van den Bent, M.J.; Smits, M. Pseudoprogression of Brain Tumors. J. Magn. Reson. Imaging 2018, 48, 571–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.Y.; Park, J.E.; Jo, Y.; Shim, W.H.; Nam, S.J.; Kim, J.H.; Yoo, R.-E.; Choi, S.H.; Kim, H.S. Incorporating Diffusion- and Perfusion-Weighted MRI into a Radiomics Model Improves Diagnostic Performance for Pseudoprogression in Glioblastoma Patients. Neuro Oncol. 2019, 21, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Jang, B.-S.; Jeon, S.H.; Kim, I.H.; Kim, I.A. Prediction of Pseudoprogression versus Progression Using Machine Learning Algorithm in Glioblastoma. Sci. Rep. 2018, 8, 12516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Fèvre, C.; Constans, J.-M.; Chambrelant, I.; Antoni, D.; Bund, C.; Leroy-Freschini, B.; Schott, R.; Cebula, H.; Noël, G. Pseudoprogression versus True Progression in Glioblastoma Patients: A Multiapproach Literature Review. Part 2—Radiological Features and Metric Markers. Crit. Rev. Oncol. Hematol. 2021, 159, 103230. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.; Shehu, V.; Gupta, P.K.; Nath, K.; Poptani, H. Physiological Imaging Methods for Evaluating Response to Immunotherapies in Glioblastomas. Int. J. Mol. Sci. 2021, 22, 3867. [Google Scholar] [CrossRef]
- Booth, T.C.; Larkin, T.J.; Yuan, Y.; Kettunen, M.I.; Dawson, S.N.; Scoffings, D.; Canuto, H.C.; Vowler, S.L.; Kirschenlohr, H.; Hobson, M.P.; et al. Analysis of Heterogeneity in T2-Weighted MR Images Can Differentiate Pseudoprogression from Progression in Glioblastoma. PLoS ONE 2017, 12, e0176528. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Wong, K.K.; Young, G.S.; Guo, L.; Wong, S.T. Support Vector Machine Multiparametric MRI Identification of Pseudoprogression from Tumor Recurrence in Patients with Resected Glioblastoma. J. Magn. Reson. Imaging 2011, 33, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Afridi, M.; Jain, A.; Aboian, M.; Payabvash, S. Brain Tumor Imaging: Applications of Artificial Intelligence. Semin. Ultrasound CT MRI 2022, 43, 153–169. [Google Scholar] [CrossRef]
- Melguizo-Gavilanes, I.; Bruner, J.M.; Guha-Thakurta, N.; Hess, K.R.; Puduvalli, V.K. Characterization of Pseudoprogression in Patients with Glioblastoma: Is Histology the Gold Standard? J. Neurooncol. 2015, 123, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author and Year | Country | N. Patients | Database | MRI Sequences and Clinical Data | AI Model | Task | Main Results | Main Limitations |
---|---|---|---|---|---|---|---|---|
Park et al. [46] | South Korea | 188 (917 lesions) | Institutional brain MRI database | 3D-GRE, 3D-BB | DL model based on 3D U-net | BM detection (3D-BB + 3D-GRE vs. 3D-GRE) | 3D-BB + 3D-GRE model sensitivity = 93.1% 3D-GRE model sensitivity = 76.8%, (p < 0.001) | Single-center, retrospective study, small data size, 3D-BB sequences may have limited availability in MRI scanners, model mostly trained on patients with metastases |
Swinburne et al. [50] | USA | 26 | Institutional brain MRI database | DWI, DSC, DCE | MLP (Multilayer Perceptorn) model using VpNET2 | GBM vs. BM vs. PCNSL | Increase in 19.2% in correct diagnoses in cases where neuroradiologists disagreed | Manual tumor segmentation, sample size, no evaluation with an independent test cohort |
Skogen et al. [52] | Norway | 43 | Institutional brain MRI database | DTI (FA and ADC) | Commercially available texture analysis research software (TexRAD) | GBM vs. BM | The heterogeneity of the peritumoral edema was significantly higher in GBMs (sensitivity 80% and specificity 90%) | Retrospective study, analysis of a single slice, the manual drawn of the ROI |
Han et al. [53] | China | 350 | Institutional brain MRI database (two centers) | T1C, clinical data (age, sex), routine radiological indices (tumor size, edema ratio, location) | AI-driven model using logistic regression model | GBM vs. BM (lung cancer and other sites) | Combination models superior to clinical or radiological models (AUC: 0.764 for differentiation and 0.759 for differentiation between MET-lung and MET-other in internal validation cohorts) | Radiomic only based on T1-enhanced images, retrospective study, many small groups of metastases from other than lungs |
Ortiz-Ramón et al. [55] | Spain | 67 | Institutional brain MRI database | IR-T1 | RF model | Differentiate the primary site of origin of brain metastases | Images quantized with 32 gray-levels (AUC = 0.873 ± 0.064). differentiating lung cancer from breast cancer (AUC = 0.963 ± 0.054) and melanoma (AUC = 0.936 ± 0.070) | Small set of BM, single-center study, |
Stadlbauer et al. [59] | Austria | 167 | Institutional brain MRI database | Standard MRI (FLAIR, T1C), advanced MRI (DWI, DSC), physiological MRI (VAM = vascular architecture mapping) | Nine commonly use ML (SVM, DT, kNN, MLP, AdaBoost, RF, bagging) | GBM vs. HHG (anaplastic glioma) vs. meningioma vs. PCNSL vs. BM | Adaptive boosting and random forest + advanced MRI and physiological MRI data were superior to human reading in accuracy (0.875 vs. 0.850), precision (0.862 vs. 0.798), F-score (0.774 vs. 0.740), AUROC (0.886 vs. 0.813), and classification error (5 vs. 6) | Small sample size, single MRI scanner and traditional ML |
Ucuzal et al. [60] | Turkey | 233 | Open-source dataset from https://figshare.com (accessed on 01 January 2022). | T1C | CNN from DL algorithm, developed web-based software (Python programming language and TensorFlow, Keras, Scikit-learn, OpenCV, Pandas, NumPy, MatPlotLib, and Flask libraries) | Glioma vs. Meningioma vs. Pituitary lesions | All the calculated performance metrics are higher than 98% for classifying the types of brain tumors on the training dataset | Small size, not healthy individuals, the selection and creation of these algorithms may require a lot of time and experience |
Pavabvash et al. [65] | USA | 256 | Institutional brain MRI database | T1, DWI, T2, FLAIR, SWI, DSC, T1C | Naïve Bayes, RF, SVM, CNN | Differentiation of posterior fossa lesions (Hemangioblastoma, Pilocytic Astrocytoma, Ependymoma, Medulloblastoma | The decision tree model achieved greater AUC for differentiation of pilocytic astrocytoma (p = 0.020); and ATRT (p = 0.001) from other types of neoplasms | Small number of rare tumor types, lack of molecular subtyping in medulloblastoma and ependymoma, manual segmentation, acquisition in different field strengths |
Verma et al. [67] | Switzerland | 32 | Institutional brain MRI database | DSC, T1CI | DTPA-method with different texture parameters | GBM vs. PCNSL, tumefactive multiple sclerosis | The texture parameters of the original DSCE-image for mean, standard deviation and variance showed the most significant differences (p-value between <0.00 and 0.05) between pathologies | Small size, smaller TOI in MS, manual segmentation |
Han et al. [68] | China | 57 | Institutional brain MRI database | T1, T2 | t-test and statistical regression (LASSO algorithm) to develop three radiomic models base on T1 WI, T2 WI and a combination | LGG vs. multiple sclerosis | T2WI and combination models achieved better diagnostic efficacy, with AUC of 0.980, 0.988 in primary cohort and that of 0.950, 0.925 in validation cohort, | Retrospective study, small size, single scanner, unknown etiology of inflammation |
Qian et al. [69] | China | 412 | Cancer Genome Atlas (TCGA); retrospective dataset from Beijing Tiantan Hospital | T1C | Radiomic features extraction, ML | GBM vs. single BM | SVM + LASSO classifiers had the highest prediction efficacy (AUC, 0.90) | Retrospective study; imaging data from multiple MRI systems; only CE sequences were used |
Bae et al. [70] | Korea | 166 (training) + 82 (validation) | retrospective institutional brain MRI database | T2, T1C | DL using radiomic features | GBM vs. single BM | DNN showed high diagnostic performance, with an AUC, sen, spec, and acc of 0.956, 90.6%, 88.0% and 89.0% | Automated tumor segmentation, not included advanced sequences, heterogeneous MR scanner types |
Adu et al. [61] | China | Brain Tumor Dataset. Figshare (3064 images) | T1C | CapsNets (dilated capsulenet) | Detection + classification | Acc.: 95% | Not enough comparisons and experiments with confusion matrix | |
Abiwinanda et al. [43] | Indonesia | Brain Tumor Dataset. Figshare (3064 images) | T1C | CNN | Classify into three types | Acc.: 98% | Complexity of pre-processing |
Author and Year. | Country | N. Patients | Database | MRI Sequences and Clinical Data | AI Model | Task | Main Results | Limitations |
---|---|---|---|---|---|---|---|---|
Chang et al. [78] | USA | 259 | The Cancer Imaging Archives | T1, T1C, FLAIR | CNN (DL) | IDH1, 1p/19q co-deletion, MGMT | Accuracy, respectively: 94%, 92%, 83% | Small sample size; retrospective study; lack of an independent dataset |
Mzoughi et al. [77] | Tunisia | BraTS 2018 dataset | T1C | 3D CNN | Grade classification (LGG and HGG) | Classification accuracy: 96.49% | ||
Wiestler et al. [71] | Germany | 37 | institutional brain MRI database | T1C, FLAIR, T2, rOEF, CBV | ML (RF) | WHO grade II/III vs. WHO grade IV | Acc: 91.8% | Lack of an independent validation cohort, small sample size, retrospective study |
Zhang et al. (2017) [72] | China | 120 | institutional brain MRI database | T1, T1C, FLAIR, ASL, DWI, DCE | ML | Comprehensive automated glioma grading scheme (LGG and HGG) | SVM is superior to the other classifiers, best performance when combined with RFE attribute selection strategy | High classification accuracy on current data but bad performance on new dataset |
Kim et al. [73] | South Korea | 127 | retrospective institutional brain MRI database | T1, T2, FLAIR, T1C, DWI, DSC | Radiomic features extraction, ML | Glioma grading and IDH prediction | Higher performance (AUC 0.932) of multiparametric model with ADC features in tumor grading | Retrospective design, small number of patients in the validation set, data from a single institution |
Cho et al. [75] | Korea | 285 | BraTS 2017 | T1, T1C, T2, FLAIR | Radiomic features extraction, ML | Glioma grading | RF classifier showed the best performance with AUC 0.9213 for the test cohort | Not considered molecular information |
Tian et al. [76] | China | 153 | retrospective brain MRI database | T1C, T2, DWI, ASL | Radiomic features extraction | Glioma grading (LGG vs. HGG; grade III vs. IV) | SVM model’s more promising than using the single sequence MRI for classifying LGGs from HGGs and grade III from IV | |
Akkus et al. [74] | USA | 159 | brain tumor patient database of Mayo Clinic | T1C, T2 | multi-scale CNN | 1p/19q prediction | Increased enhancement, infiltrative margins, and left frontal lobe predilection are associated with 1p/19q codeletion with up to 93% accuracy | Limited original data size (solved by data augmentation) |
Meng et al. [79] | China | 123 | Institutional brain MRI database | T1, T2, FLAIR, T1C, ADC | SVM model and 5-fold cross validation | ATRX status | AUC for ATRX mutation (ATRX(−)) on training set 0.93 (95%[CI]: 0.87–1.0), on validation set 0.84 | Small dataset, lack of multiparametric MRI, just one imaging biomarker |
Ren et al. [80] | China | 57 | Institutional brain MRI database | 3D-ASL, T2, FLAIR, DWI | SVM | IDH1(+) and ATRX(−) | Accuracies/AUCs/sensitivity/specificity/PPV/NPV of predicting IDH1(+) in LGG: 94.74%/0.931/100%/85.71%/92.31%/100%; ATRX(−) in LGG with IDH1(+) 91.67%/0.926/94.74%/88.24%/90.00%/93.75% | Qualified patient population relatively small, the molecular sequencing, such as IDH2 codons, was not performed; hard to be fully understood by treating physicians and applied to routine clinical practice |
Haubold et al. [82] | Germany | 217 | Institutional brain MRI database | T1, T1C, FLAIR | DeepMedic (CNN-based algorithm), XGBoost (SL) model for parameter optimization | ATRX, IDH1/2, MGMT, 1p19q co-deletion, LGG vs. HGG | AUC (validation/test) for LGG vs. HGG 0.981 ± 0.015/0.885 ± 0.02, ATRX(-) with AUCs of 0.979 ± 0.028/0.923 ± 0.045, followed by 0.929 ± 0.042/0.861 ± 0.023 for IDH1/2; 1p19q and MGMT achieved moderate results. | Small sample size, different MRiI manufacturer, retrospective study |
Shboul et al.l [83] | USA | 108 | Institutional brain MRI database | T1, T1C, FLAIR, T2 | XGBoost (SL model) | MGMT methylation, IDH mutations, 1p/19q co-deletion, ATRX and TERT mutations | The prediction models of MGMT, IDH, 1p/19q, ATRX, and TERT achieve a test performance AUC of 0.83 ± 0.04, 0.84 ± 0.03, 0.80 ± 0.04, 0.70 ± 0.09, and 0.82 ± 0.04, respectively | Small sample size |
Calabrese et al. [84] | USA | 400 | Institutional brain MRI database | T1, T1C, T2, FLAIR, SWI, DWI, ASL, MD, AD, RD, and FA. | CNN, Random forest model | mutations of IDH, TERT, TP53, PTEN, ATRX, or CDKN2A/B, MGMT methylation, EGFR amplification, and combined aneuploidy of chromosome 7 and 10 | Good performances; ROC AUC highest for ATRX (0.97) and IDH1 (0.96) mutations | Lack of external validation |
Autor and Year | Country | N. Patients | Database | MRI Sequences and Clinical Data | AI Model | Task | Main Results | Limitations |
---|---|---|---|---|---|---|---|---|
Macyszyn et al. (2019) [113] | USA | 105 (retrospective) + 26 (prospective) | Hospital case series of GB at the University of Pennsylvania from 2006 to 2013 | Structural, diffusion, and perfusion scans >18 years old, GBM histopathological diagnosis | Machine learning algorithm | Prediction of overall survival and molecular subtype | High prediction accuracy (survival 80%, molecular subtype 76%) | Only MRI at time of diagnosis was used in creating the predictive model, data from a single institution |
Nie et al. (2019) [114] | China | 68 (training dataset) + 25 (validation dataset) | Hospital case series (Huashan hospital, Shanghai, China Huashan hospital, Shanghai, China | T1 MRI, rs-fMRI and DTI HHG patients with evidence of enhancement in T1wi, no previous treatment | 3D convolutional neural networks (CNNs) + support vector machine (SVM) | Prediction of overall survival | Accuracy of 90.66% | Limited clinical information (e.g., tumor genetics) |
Sanghazni et al. (2022) [115] | Singapore | 163 GBM patients | BraTS 2017 dataset | T1, T2, FLAIR, T1 CE | Support vector machine (SVM) classification based recursive feature elimination method to perform tumor feature selection | Prediction of overall survival | High accuracy for both 2-class and 3-class OS group predictions (89–99%) | - |
Prasanna et al. (2017) [117] | USA | 65 GBM patients | Cancer Imaging Archive | T1C, T2, FLAIR | 402 radiomic features from enhancing lesion, PBZ and tumor necrosis | Radiomic features from the peritumoral brain zone can predict long- versus short-term survival | Features suggestive of intensity heterogeneity and textural patterns were found to be predictive of survival (p = 1.47 × 10−5) as compared to features from enhancing tumor, necrotic regions and known clinical factors | Preliminary study |
Parl et al. (2020) [118] | Korea | 216 patients with newly diagnosed glioblastoma: training (n = 158) and external validation sets (n = 58) | Two tertiary medical centers | DWI, perfusion | Radiomic feature selection using LASSO regression + multiparametric MR prognostic model (radiomics score + clinical predictors) | Multiparametric MR prognostic model (radiomics score + clinical predictors) vs. conventional MR radiomics model discrimination | Better discrimination (C-index, 0.74) and performance of multiparametric MRI than a conventional MR radiomics model (C-index, 0.65, p < 0.0001) or clinical predictors (C-index, 0.66; p < 0.0001); good external validation (C-index, 0.70) | Small number of patients, molecular changes were not considered in this analysis, only scans on 3.0 T |
Grist et al. (2021) [119] | UK | 69 participants with suspected brain tumors (medulloblastoma (N = 17), pilocytic astrocytoma (N = 22), ependymoma (considered high grade, N = 10), other tumors (N = 20) | Four clinical sites in the UK (Birmingham Children’s Hospital, Newcastle Royal Victoria Infirmary, Queen’s Medical Centre, Alder Hey Children’s Hospital, Liverpool) 2009–2017 | T1, T1C, T2, DWI Many different tumor types, stages and patient ages | Unsupervised and supervised machine learning models | Perfusion, DWI, and ADC values determined two new subgroups of brain tumors with different survival characteristics (p < 0.01) | High accuracy (98%) by a neural network, non-invasive risk assessment tool, multi-site and multi-scanner data | Small heterogeneous cohort treated in a diverse manner, variations in scanner protocol, here are a number of children alive at study end with high-risk tumors and currently limited follow-up |
Zhang et al. (2019) [130] | China | 51 glioma patients who underwent radiation treatments after surgery | Hospital case series | T1, T1C, T2, FLAIR Necrosis or recurrence in different glioma subtypes, stages, location and patient ages | Deep features extracted from multimodality MRI images by two CNNs (AlexNet and Inception v3) | Distinguish glioma necrosis from recurrence in glioma patients using a radiomics model based on combinational features and multimodality MRI images | Accuracy of AlexNet and Inception v3 features is higher than that of employing handcrafted features (paired t-test (p < 0.0003) | Correlations among features were ignored, tens of thousands of features were used, the dataset used in this study was relatively small |
Narang et al. (2017) [131] | USA | 79 GB patients | TCGA database | Presurgical T1C, T2, FLAIR T-cell surface marker CD3D/E/G mRNA expression level data | Image-derived features extracted across the T1-post contrast and FLAIR images were selected with the Boruta package selected | Develop an imaging-derived predictive model for assessing the extent of intra-tumoral CD3 T-cell infiltration | Prediction model for CD3 infiltration achieved accuracy of 97.1% and area under the curve (AUC) of 0.993 | Texture features derived only from T1-post and T2-FLAIR sequences, variation in scanning and acquisition protocols, adjustment for molecular status |
Kim et al. (2018) [137] | Korea | 238 patients who were pathologically confirmed as having GB and who subsequently received standard concurrent chemo-radiation therapy | Database of the local Department of Radiology between March 2011 and March 2017 | T1Ci, FLAIR, DWI, and DSC imaging performed within 6 months after surgery or biopsy De novo GB diagnosis according to WHO criteria who had chemo-radiation therapy | Multiparametric radiomics selection by ANTsR and WhiteStripe packages | Distinguish progression vs. pseudoprogression | Multiparametric radiomics model (AUC, 0.90) showed better performance than any single ADC or CBV parameter, robustness (high internal and external validation) | Retrospective nature, small size of the cohort, relatively high fraction of pseudoprogression, need of validation with a 1.5T scanner, time cost and complicated analytical process |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cè, M.; Irmici, G.; Foschini, C.; Danesini, G.M.; Falsitta, L.V.; Serio, M.L.; Fontana, A.; Martinenghi, C.; Oliva, G.; Cellina, M. Artificial Intelligence in Brain Tumor Imaging: A Step toward Personalized Medicine. Curr. Oncol. 2023, 30, 2673-2701. https://doi.org/10.3390/curroncol30030203
Cè M, Irmici G, Foschini C, Danesini GM, Falsitta LV, Serio ML, Fontana A, Martinenghi C, Oliva G, Cellina M. Artificial Intelligence in Brain Tumor Imaging: A Step toward Personalized Medicine. Current Oncology. 2023; 30(3):2673-2701. https://doi.org/10.3390/curroncol30030203
Chicago/Turabian StyleCè, Maurizio, Giovanni Irmici, Chiara Foschini, Giulia Maria Danesini, Lydia Viviana Falsitta, Maria Lina Serio, Andrea Fontana, Carlo Martinenghi, Giancarlo Oliva, and Michaela Cellina. 2023. "Artificial Intelligence in Brain Tumor Imaging: A Step toward Personalized Medicine" Current Oncology 30, no. 3: 2673-2701. https://doi.org/10.3390/curroncol30030203
APA StyleCè, M., Irmici, G., Foschini, C., Danesini, G. M., Falsitta, L. V., Serio, M. L., Fontana, A., Martinenghi, C., Oliva, G., & Cellina, M. (2023). Artificial Intelligence in Brain Tumor Imaging: A Step toward Personalized Medicine. Current Oncology, 30(3), 2673-2701. https://doi.org/10.3390/curroncol30030203