Metastatic Castration-Resistant Prostate Cancer, Immune Checkpoint Inhibitors, and Beyond
Abstract
:1. Background
2. Selection of Trials
3. Monotherapy: Previous Trials
4. Combination Strategies
5. Novel Immunotherapeutic Targets beyond ICI
6. B7-H3 as an Alternative Immune Checkpoint in Prostate Cancer
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seer Cancer Statistics. Available online: https://seer.cancer.gov/statfacts/html/prost.html (accessed on 18 March 2023).
- Mitsogiannis, I.; Tzelves, L.; Dellis, A.; Issa, H.; Papatsoris, A.; Moussa, M. Prostate Cancer Immunotherapy. Expert Opin. Biol. Ther. 2022, 22, 577–590. [Google Scholar] [CrossRef]
- Claps, M.; Mennitto, A.; Guadalupi, V.; Sepe, P.; Stellato, M.; Zattarin, E.; Gillessen, S.S.; Sternberg, C.N.; Berruti, A.; De Braud, F.G.M.; et al. Immune-Checkpoint Inhibitors and Metastatic Prostate Cancer Therapy: Learning by Making Mistakes. Cancer Treat Rev. 2020, 88, 102057. [Google Scholar] [CrossRef]
- Venkatachalam, S.; McFarland, T.R.; Agarwal, N.; Swami, U. Immune Checkpoint Inhibitors in Prostate Cancer. Cancers 2021, 13, 2187. [Google Scholar] [CrossRef]
- Iannantuono, G.M.; Torino, F.; Rosenfeld, R.; Guerriero, S.; Carlucci, M.; Sganga, S.; Capotondi, B.; Riondino, S.; Roselli, M. The Role of Histology-Agnostic Drugs in the Treatment of Metastatic Castration-Resistant Prostate Cancer. Int. J. Mol. Sci. 2022, 23, 8535. [Google Scholar] [CrossRef]
- Pestana, R.C.; Sen, S.; Hobbs, B.P.; Hong, D.S. Histology-Agnostic Drug Development—Considering Issues beyond the Tissue. Nat. Rev. Clin. Oncol. 2020, 17, 555–568. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network Guideline Version 1.2023 Prostate Cancer. Available online: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 18 March 2023).
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sena, L.A.; Fountain, J.; Isaacsson Velho, P.; Lim, S.J.; Wang, H.; Nizialek, E.; Rathi, N.; Nussenzveig, R.; Maughan, B.L.; Velez, M.G.; et al. Tumor Frameshift Mutation Proportion Predicts Response to Immunotherapy in Mismatch Repair-Deficient Prostate Cancer. Oncologist 2021, 26, e270–e278. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, E.S.; Piulats, J.M.; Gross-Goupil, M.; Goh, J.; Ojamaa, K.; Hoimes, C.J.; Vaishampayan, U.; Berger, R.; Sezer, A.; Alanko, T.; et al. Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study. J. Clin. Oncol. 2020, 38, 395–405. [Google Scholar] [CrossRef]
- Merck News Release. Available online: https://www.merck.com/news/merck-provides-update-on-phase-3-trials-keynote-641-and-keynote-789/ (accessed on 18 March 2023).
- Kwon, E.D.; Drake, C.G.; Scher, H.I.; Fizazi, K.; Bossi, A.; van den Eertwegh, A.J.M.; Krainer, M.; Houede, N.; Santos, R.; Mahammedi, H.; et al. Ipilimumab versus Placebo after Radiotherapy in Patients with Metastatic Castration-Resistant Prostate Cancer That Had Progressed after Docetaxel Chemotherapy (CA184-043): A Multicentre, Randomised, Double-Blind, Phase 3 Trial. Lancet Oncol. 2014, 15, 700–712. [Google Scholar] [CrossRef]
- Beer, T.M.; Kwon, E.D.; Drake, C.G.; Fizazi, K.; Logothetis, C.; Gravis, G.; Ganju, V.; Polikoff, J.; Saad, F.; Humanski, P.; et al. Randomized, Double-Blind, Phase III Trial of Ipilimumab Versus Placebo in Asymptomatic or Minimally Symptomatic Patients with Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2017, 35, 40–47. [Google Scholar] [CrossRef]
- Petrylak, D.P.; Loriot, Y.; Shaffer, D.R.; Braiteh, F.; Powderly, J.; Harshman, L.C.; Conkling, P.; Delord, J.-P.; Gordon, M.; Kim, J.W.; et al. Safety and Clinical Activity of Atezolizumab in Patients with Metastatic Castration-Resistant Prostate Cancer: A Phase I Study. Clin. Cancer Res. 2021, 27, 3360–3369. [Google Scholar] [CrossRef]
- Powles, T.; Yuen, K.C.; Gillessen, S.; Kadel, E.E.; Rathkopf, D.; Matsubara, N.; Drake, C.G.; Fizazi, K.; Piulats, J.M.; Wysocki, P.J.; et al. Atezolizumab with Enzalutamide versus Enzalutamide Alone in Metastatic Castration-Resistant Prostate Cancer: A Randomized Phase 3 Trial. Nat. Med. 2022, 28, 144–153. [Google Scholar] [CrossRef]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Fizazi, K.; González Mella, P.; Castellano, D.; Minatta, J.N.; Rezazadeh Kalebasty, A.; Shaffer, D.; Vázquez Limón, J.C.; Sánchez López, H.M.; Armstrong, A.J.; Horvath, L.; et al. Nivolumab plus Docetaxel in Patients with Chemotherapy-Naïve Metastatic Castration-Resistant Prostate Cancer: Results from the Phase II CheckMate 9KD Trial. Eur. J. Cancer 2022, 160, 61–71. [Google Scholar] [CrossRef]
- Drake, C.G.; Saad, F.; Clark, W.R.; Ciprotti, M.; Sharkey, B.; Subudhi, S.K.; Fizazi, K. 690TiP A Phase III, Randomized, Double-Blind Trial of Nivolumab or Placebo Combined with Docetaxel for Metastatic Castration-Resistant Prostate Cancer (MCRPC; CheckMate 7DX). Ann. Oncol. 2020, 31, S546. [Google Scholar] [CrossRef]
- Yu, E.Y.; Kolinsky, M.P.; Berry, W.R.; Retz, M.; Mourey, L.; Piulats, J.M.; Appleman, L.J.; Romano, E.; Gravis, G.; Gurney, H.; et al. Pembrolizumab Plus Docetaxel and Prednisone in Patients with Metastatic Castration-Resistant Prostate Cancer: Long-Term Results from the Phase 1b/2 KEYNOTE-365 Cohort B Study. Eur. Urol. 2022, 82, 22–30. [Google Scholar] [CrossRef]
- Petrylak, D.P.; Li, B.; Schloss, C.; Fizazi, K. KEYNOTE-921: Phase III Study of Pembrolizumab (Pembro) plus Docetaxel and Prednisone for Enzalutamide (Enza)- or Abiraterone (Abi)-Pretreated Patients (Pts) with Metastatic Castration-Resistant Prostate Cancer (MCRPC). Ann. Oncol. 2019, 30, v351. [Google Scholar] [CrossRef]
- Petrylak, D.P.; Ratta, R.; Matsubara, N.; Korbenfeld, E.P.; Gafanov, R.; Mourey, L.; Todenhöfer, T.; Gurney, H.; Kramer, G.; Bergman, A.M.; et al. Pembrolizumab plus Docetaxel for Patients with Metastatic Castration-Resistant Prostate Cancer (MCRPC): Randomized, Double-Blind, Phase 3 KEYNOTE-921 Study. JCO 2023, 41 (Suppl. S6), 19. [Google Scholar] [CrossRef]
- Sharma, P.; Pachynski, R.K.; Narayan, V.; Fléchon, A.; Gravis, G.; Galsky, M.D.; Mahammedi, H.; Patnaik, A.; Subudhi, S.K.; Ciprotti, M.; et al. Nivolumab Plus Ipilimumab for Metastatic Castration-Resistant Prostate Cancer: Preliminary Analysis of Patients in the CheckMate 650 Trial. Cancer Cell 2020, 38, 489–499.e3. [Google Scholar] [CrossRef]
- Sharma, P.; Krainer, M.; Saad, F.; Castellano, D.; Bedke, J.; Kwiatkowski, M.; Patnaik, A.; Procopio, G.; Wiechno, P.; Kochuparambil, S.T.; et al. Nivolumab plus Ipilimumab for the Treatment of Post-Chemotherapy Metastatic Castration-Resistant Prostate Cancer (MCRPC): Additional Results from the Randomized Phase 2 CheckMate 650 Trial. JCO 2023, 41 (Suppl. S6), 22. [Google Scholar] [CrossRef]
- Heidegger, I.; Necchi, A.; Pircher, A.; Tsaur, I.; Marra, G.; Kasivisvanathan, V.; Kretschmer, A.; Mathieu, R.; Ceci, F.; van den Bergh, R.C.N.; et al. A Systematic Review of the Emerging Role of Immune Checkpoint Inhibitors in Metastatic Castration-Resistant Prostate Cancer: Will Combination Strategies Improve Efficacy? Eur. Urol. Oncol. 2021, 4, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, F.; Ren, Y.; Weng, G.; Xu, L.; Xue, X.; Keng, P.C.; Lee, S.O.; Chen, Y. IL-6 Signaling Contributes to Radioresistance of Prostate Cancer through Key DNA Repair-Associated Molecules ATM, ATR, and BRCA 1/2. J. Cancer Res. Clin. Oncol. 2019, 145, 1471–1484. [Google Scholar] [CrossRef] [PubMed]
- Mughees, M.; Kaushal, J.B.; Sharma, G.; Wajid, S.; Batra, S.K.; Siddiqui, J.A. Chemokines and Cytokines: Axis and Allies in Prostate Cancer Pathogenesis. Semin. Cancer Biol. 2022, 86 Pt 3, 497–512. [Google Scholar] [CrossRef] [PubMed]
- Dorff, T.B.; Goldman, B.; Pinski, J.K.; Mack, P.C.; Lara, P.N.; Van Veldhuizen, P.J.; Quinn, D.I.; Vogelzang, N.J.; Thompson, I.M.; Hussain, M.H.A. Clinical and Correlative Results of SWOG S0354: A Phase II Trial of CNTO328 (Siltuximab), a Monoclonal Antibody against Interleukin-6, in Chemotherapy-Pretreated Patients with Castration-Resistant Prostate Cancer. Clin Cancer Res. 2010, 16, 3028–3034. [Google Scholar] [CrossRef]
- Dorff, T.; Hirasawa, Y.; Acoba, J.; Pagano, I.; Tamura, D.; Pal, S.; Zhang, M.; Waitz, R.; Dhal, A.; Haynes, W.; et al. Phase Ib Study of Patients with Metastatic Castrate-Resistant Prostate Cancer Treated with Different Sequencing Regimens of Atezolizumab and Sipuleucel-T. J. Immunother. Cancer 2021, 9, e002931. [Google Scholar] [CrossRef]
- de Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef]
- Yu, E.Y.; Piulats, J.M.; Gravis, G.; Fong, P.C.C.; Todenhöfer, T.; Laguerre, B.; Arranz, J.A.; Oudard, S.; Massard, C.; Heinzelbecker, J.; et al. Pembrolizumab plus Olaparib in Patients with Metastatic Castration-Resistant Prostate Cancer: Long-Term Results from the Phase 1b/2 KEYNOTE-365 Cohort A Study. Eur. Urol. 2023, 83, 15–26. [Google Scholar] [CrossRef]
- LeVee, A.; Lin, C.Y.; Posadas, E.; Figlin, R.; Bhowmick, N.A.; Di Vizio, D.; Ellis, L.; Rosser, C.J.; Freeman, M.R.; Theodorescu, D.; et al. Clinical Utility of Olaparib in the Treatment of Metastatic Castration-Resistant Prostate Cancer: A Review of Current Evidence and Patient Selection. Onco Targets Ther. 2021, 14, 4819–4832. [Google Scholar] [CrossRef]
- ESMO Congress 2022 OncologyPro. Available online: https://oncologypro.esmo.org/meeting-resources/esmo-congress/pembrolizumab-olaparib-vs-abiraterone-abi-or-enzalutamide-enza-for-patients-pts-with-previously-treated-metastatic-castration-resistant-pro. (accessed on 18 March 2023).
- Karzai, F.; VanderWeele, D.; Madan, R.A.; Owens, H.; Cordes, L.M.; Hankin, A.; Couvillon, A.; Nichols, E.; Bilusic, M.; Beshiri, M.L.; et al. Activity of Durvalumab plus Olaparib in Metastatic Castration-Resistant Prostate Cancer in Men with and without DNA Damage Repair Mutations. J. Immunother. Cancer 2018, 6, 141. [Google Scholar] [CrossRef]
- Bellavia, M.C.; Patel, R.B.; Anderson, C.J. Combined Targeted Radiopharmaceutical Therapy and Immune Checkpoint Blockade: From Preclinical Advances to the Clinic. J. Nucl. Med. 2022, 63, 1636–1641. [Google Scholar] [CrossRef]
- Sandhu, S.; Subramaniam, S.; Hofman, M.S.; Stockler, M.R.; Martin, A.J.; Pokorski, I.; Goh, J.C.; Pattison, D.A.; Dhiantravan, N.; Gedye, C.; et al. Evolution: Phase II Study of Radionuclide 177 Lu-PSMA-617 Therapy versus 177 Lu-PSMA-617 in Combination with Ipilimumab and Nivolumab for Men with Metastatic Castration-Resistant Prostate Cancer (MCRPC; ANZUP 2001). JCO 2023, 41 (Suppl. S6), TPS271. [Google Scholar] [CrossRef]
- Czernin, J.; Current, K.; Mona, C.E.; Nyiranshuti, L.; Hikmat, F.; Radu, C.G.; Lückerath, K. Immune-Checkpoint Blockade Enhances 225Ac-PSMA617 Efficacy in a Mouse Model of Prostate Cancer. J. Nucl. Med. 2021, 62, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Fong, L.; Morris, M.J.; Sartor, O.; Higano, C.S.; Pagliaro, L.; Alva, A.; Appleman, L.J.; Tan, W.; Vaishampayan, U.; Porcu, R.; et al. A Phase Ib Study of Atezolizumab with Radium-223 Dichloride in Men with Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2021, 27, 4746–4756. [Google Scholar] [CrossRef]
- Shenderov, E.; Antonarakis, E.S. B7-H3 and Prostate Cancer: New Therapeutic Dance Partners. Eur. Urol. 2023, 83, 239–240. [Google Scholar] [CrossRef] [PubMed]
- Benzon, B.; Zhao, S.G.; Haffner, M.C.; Takhar, M.; Erho, N.; Yousefi, K.; Hurley, P.; Bishop, J.L.; Tosoian, J.; Ghabili, K.; et al. Correlation of B7-H3 with Androgen Receptor, Immune Pathways and Poor Outcome in Prostate Cancer: An Expression-Based Analysis. Prostate Cancer Prostatic Dis. 2017, 20, 28–35. [Google Scholar] [CrossRef]
- Guo, C.; Figueiredo, I.; Gurel, B.; Neeb, A.; Seed, G.; Crespo, M.; Carreira, S.; Rekowski, J.; Buroni, L.; Welti, J.; et al. B7-H3 as a Therapeutic Target in Advanced Prostate Cancer. Eur. Urol. 2023, 83, 224–238. [Google Scholar] [CrossRef]
- Chapoval, A.I.; Ni, J.; Lau, J.S.; Wilcox, R.A.; Flies, D.B.; Liu, D.; Dong, H.; Sica, G.L.; Zhu, G.; Tamada, K.; et al. B7-H3: A Costimulatory Molecule for T Cell Activation and IFN-γ Production. Nat. Immunol. 2001, 2, 269–274. [Google Scholar] [CrossRef]
- Kontos, F.; Michelakos, T.; Kurokawa, T.; Sadagopan, A.; Schwab, J.H.; Ferrone, C.R.; Ferrone, S. B7-H3: An Attractive Target for Antibody-Based Immunotherapy. Clin. Cancer Res. 2021, 27, 1227–1235. [Google Scholar] [CrossRef]
- Mendes, A.A.; Lu, J.; Kaur, H.B.; Zheng, S.L.; Xu, J.; Hicks, J.; Weiner, A.B.; Schaeffer, E.M.; Ross, A.E.; Balk, S.P.; et al. Association of B7-H3 Expression with Racial Ancestry, Immune Cell Density, and Androgen Receptor Activation in Prostate Cancer. Cancer 2022, 128, 2269–2280. [Google Scholar] [CrossRef]
- Shi, X.; Day, A.; Bergom, H.E.; Tape, S.; Baca, S.C.; Sychev, Z.E.; Larson, G.; Bozicevich, A.; Drake, J.M.; Zorko, N.; et al. Integrative Molecular Analyses Define Correlates of High B7-H3 Expression in Metastatic Castrate-Resistant Prostate Cancer. npj Precis. Onc. 2022, 6, 80. [Google Scholar] [CrossRef]
- Shenderov, E.; De Marzo, A.M.; Lotan, T.L.; Wang, H.; Chan, S.; Lim, S.J.; Ji, H.; Allaf, M.E.; Chapman, C.; Moore, P.A.; et al. Neoadjuvant enoblituzumab in localized prostate cancer: A single-arm, phase 2 trial. Nat. Med. 2023, 1–10. [Google Scholar] [CrossRef]
- Doi, T.; Patel, M.; Falchook, G.S.; Koyama, T.; Friedman, C.F.; Piha-Paul, S.; Gutierrez, M.E.; Abdul-Karim, R.; Awad, M.; Adkins, D.R.; et al. 453O DS-7300 (B7-H3 DXd Antibody-Drug Conjugate [ADC]) Shows Durable Antitumor Activity in Advanced Solid Tumors: Extended Follow-Up of a Phase I/II Study. Ann. Oncol. 2022, 33, S744–S745. [Google Scholar] [CrossRef]
- Jang, S.; Powderly, J.D.; Spira, A.I.; Bakkacha, O.; Loo, D.; Bohac, G.C.; Sharma, M. Phase 1 Dose Escalation Study of MGC018, an Anti-B7-H3 Antibody-Drug Conjugate (ADC), in Patients with Advanced Solid Tumors. JCO 2021, 39 (Suppl. S15), 2631. [Google Scholar] [CrossRef]
- Miller, J.S.; Zorko, N.; Merino, A.; Phung, G.; Khaw, M.; Howard, P.; Hamsher, H.; Davis, Z.; Cichocki, F.; Berk, G.I.; et al. 755P B7H3-Targeted Tri-Specific Killer Engagers Deliver IL-15 to NK Cells but Not T-Cells, and Specifically Target Solid Tumors as a Pan-Tumor Antigen Strategy Mediated through NK Cells. Ann. Oncol. 2022, 33, S889. [Google Scholar] [CrossRef]
- Zhang, Y.; He, L.; Sadagopan, A.; Ma, T.; Dotti, G.; Wang, Y.; Zheng, H.; Gao, X.; Wang, D.; DeLeo, A.B.; et al. Targeting Radiation-Resistant Prostate Cancer Stem Cells by B7-H3 CAR T Cells. Mol. Cancer Ther. 2021, 20, 577–588. [Google Scholar] [CrossRef]
- Zorko, N.; Cichocki, F.; Goulding, J.; Hancock, B.; Blum, R.; Pribadi, M.; Gaertner, B.; Lee, T.; Felices, M.; Bjordahl, R.; et al. Abstract 2761: FT573: Preclinical Development of Multiplexed-Engineered IPSC-Derived NK Cells Expressing a Novel Camelid Nanobody Chimeric Antigen Receptor (CAR) Targeting Pan-Cancer Antigen B7-H3. Cancer Res. 2022, 82 (Suppl. S12), 2761. [Google Scholar] [CrossRef]
Trial Name/NCT | Phase | Patient Population | Treatment | Primary Endpoint | Results |
---|---|---|---|---|---|
CA184-095 (NCT01057810) | III | Chemotherapy-naïve patients with mCRPC without visceral metastases | Ipilimumab monotherapy | OS | 28.7 months (95% CI, 24.5 to 32.5 months) in the ipilimumab arm versus 29.7 months (95% CI, 26.1 to 34.2 months) in the placebo arm (hazard ratio, 1.11; 95.87% CI, 0.88 to 1.39; p = 0.3667) |
KEYNOTE-199 (NCT02787005) | II | Pretreated mCRPC patients in 3 cohorts (cohort 1 PD-L1 + disease, cohort 2 PD-L1 negative disease, cohort 3 bone predominant disease regardless of PD-L1 expression) | Pembrolizumab monotherapy | ORR | 5% (95% CI, 2% to 11%) in cohort 1 and 3% (95% CI, <1% to 11%) in cohort 2 |
CA184-043 (NCT00861614) | III | Docetaxel-pretreated mCRPC patients | Ipilimumab vs. placebo after radiotherapy | OS | 11.2 months (95% CI 9.5–12.7) for ipilimumab and 10.0 months (95% CI 8.3–11.0) for placebo (HR 0.85, 95% CI 0.71–1.00; p = 0.053) |
CA184-095 (NCT01057810) | III | Asymptomatic or minimally symptomatic chemo-naïve patients with mCRPC | Ipilimumab vs. placebo | OS | 28.7 months (95% CI, 24.5 to 32.5) for ipilimumab and 29.7 (95% CI, 26.1 to 34.2) in placebo (HR 1.11; 95% CI 0.88 to 1.39; p = 0.3667) |
PCD4989g (NCT01375842) | Ib | mCRPC patients who have progressed on sipuleucel-T or enzalutamide | Atezolizumab monotherapy | Safety and tolerability of atezolizumab | Treatment- related adverse events in 60% of patients |
Trail Name/NCT | Phase | Patient Population | Treatment | Primary Endpoint | Results |
---|---|---|---|---|---|
IMbassador250 (NCT03016312) | III | mCRPC patients who had progressed on abiraterone | Atezolizumab + enzalutamide vs. enzalutamide alone | OS | Stopped early due to low probability of trial achieving primary endpoint given risk of immune-mediated adverse events |
KEYNOTE-641 (NCT03834493) | III | Chemo-naïve mCRPC patients who are abiraterone-naïve or are intolerant to or progressed on abiraterone | Pembrolizumab + enzalutamide vs. placebo + enzalutamide | OS, rPFS | Discontinued after an interim analysis showed no improvement in rPFS or OS |
CheckMate 9KD (NCT03338790) | II | Chemo-naïve mCRPC patients with ongoing ADT and ≤2 prior novel hormonal therapies | Nivolumab and docetaxel with prednisone and then nivolumab | ORR, PSA response rate | Confirmed ORR (95% CI) was 40.0% (25.7–55.7), and the confirmed PSA50-RR (95% CI) was 46.9% (35.7–58.3) |
CheckMate 7DX (NCT04100018) | III | Chemo-naïve mCRPC patients with ongoing ADT and ≤2 prior novel hormonal therapies | Nivolumab + docetaxel vs. placebo + docetaxel | rPFS, OS | Pending |
KEYNOTE-365 (NCT02861573) Cohort B | 1b/II | Chemo-naïve mCRPC patients who progressed on 4 weeks or more of abiraterone or enzalutamide | Pembrolizumab + docetaxel + prednisone | Safety, PSA response rate, ORR | Confirmed PSA response rate was 34% and the confirmed ORR was 23%. TRAEs occurred in 100 patients (96%). Grade 3–5 TRAEs occurred in 46 patients (44%). Seven AE-related deaths (6.7%) occurred (2 due to treatment-related pneumonitis) |
KEYNOTE-921 (NCT03834506) | III | Chemo-naïve mCRPC patients who progressed on 4 weeks or more of abiraterone or enzalutamide | Pembrolizumab + docetaxel vs. docetaxel alone | OS, rPFS | Results presented at ASCO GU 2023 Conference: rPFS (median 8.6 mo with pembrolizumab + docetaxel vs. 8.3 mo with placebo + docetaxel; HR 0.85, 95% CI 0.7121.01; p = 0.0335) and OS (median 19.6 months vs. 19.0 months; HR 0.92, 95% CI 0.7821.09; p = 0.1677) were not met |
CheckMate 650 (NCT02985957) | II | Asymptomatic/minimally symptomatic patients who progressed after 2nd-generation hormone therapy and have not received chemotherapy for mCRPC (cohort 1) and patients who progressed after taxane-based chemotherapy (cohort 2) | Ipilimumab + nivolumab | ORR; rPFS | Median rPFS (95% CI) in all treated patients was 5.5 (3.5–7.1) and 3.8 months (2.1–5.1) in cohorts 1 and 2. In patients with TMB above vs. below the median, the ORR was 50.0% (95% CI 26.0–74.0) vs. 5.3% (95% CI 0.1–26.0) |
CheckMate 650 (NCT02985957) additional results | II | mCRPC patients previously treated with docetaxel | Nivolumab + ipilimumab q3weeks for 4 doses then nivolumab q4weeks (cohort 1) vs. nivolumab q3weeks for 8 doses and ipilimumab q6w for 4 doses then nivolumab q4weeks (cohort 2) vs. ipilimumab alone (cohort 3) vs. cabaziaxel (cohort 4) | ORR, PSA response rate, rPFS | ORR 9% (cohort 1) vs. 15% (cohort 2) vs. 4% (cohort 3) vs. 11% (cohort 4). PSA response rate 14% (cohort 1) vs. 18% (cohort 2) vs. 5% (cohort 3) vs. 24% (cohort 4) |
Trial/NCT | Phase | Patient Population | Treatment | Primary Endpoint | Results |
---|---|---|---|---|---|
ICIs + cytokines | |||||
SWOG S0354 (NCT00433446) | II | mCRPC patients with prior taxane therapy | Siltuximab every 2 weeks for 12 cycles | PSA RR defined as 50% reduction | Overall PSA RR of 3.8% (95% CI: 0.5%, 13.0%) |
ICIs + cancer vaccines | |||||
NCT03024216 | 1b | Asymptomatic or minimally symptomatic mCRPC patients | Atezolizumab followed by sipuleucel-T (Arm 1) or sipuleucel-T followed by atezolizumab (Arm 2) | Safety | At least one treatment-related AE was reported in 31 subjects (83.8%), including 7 (18.9%) with at least one grade 3 treatment-related AE |
ICIs + PARP inhibitors | |||||
KEYNOTE-365 (NCT02861573) Cohort A | 1b/II | Docetaxel-pretreated mCRPC patients who progressed within 6 months of screening and were molecularly unselected | Pembrolizumab + olaparib | Safety, PSA response rate, ORR | The confirmed PSA response rates in patients with a baseline PSA measurement were 15% (15/102) for the total population and 19% (11/59) for patients with RECIST-ORR was 8.5% (five PRs) in patients with RECIST-measurable disease. All 102 treated patients (100%) experienced at least one all-cause AE, and grade 3–5 AEs occurred in 74 patients (73%) Treatment-related AEs occurred in 93 patients (91%) |
KEYLYNK-010 (NCT03834519) | III | mCRPC patients who progressed after chemotherapy and either abiraterone or enzalutamide | Pembrolizumab + olaparib vs. next-generation hormonal agent | OS, rPFS | rPFS (median 4.4 months with pembrolizumab + olaparib vs. 4.2 months with next-generation hormonal agent; HR 1.02, 95% CI 0.82–1.25; p = 0.55) and OS (15.8 mo vs. 14.6 mo; HR 0.94, 95% CI 0.77–1.14; p = 0.26) were not met. Study was stopped for futility. |
NCT02484404 | II | mCRPC patients who had received prior enzalutamide and/or abiraterone unselected for somatic or germline mutations | Durvalumab + olaparib | rPFS, PSA response | 9 of 17 patients (53%) had a PSA decline of ≥50%. Median rPFS for all patients is 16.1 months (95% CI: 4.5–16.1 months) with a 12-month rPFS of 51.5% (95% CI: 25.7–72.3%) |
ICIs + radioligand therapies | |||||
PRINCE (NCT03658447) | 1b | mCRPC patients with high PSMA expression (SUVmax ≥20 in an index lesion, SUVmax >10 for all lesions ≥10 mm), and no FDG positive/PSMA negative lesions on paired baseline PET/CT | 177Lu-PSMA-617 + pembrolizumab | Safety, PSA response rate | PSA response rate was 76% (28/37 [95% CI 59–88]) and 7/10 (70%) patients with RECIST-measurable disease had a partial response |
NCT02814669 | 1b | mCRPC patients with bone and lymph node and/or visceral metastases that progressed after androgen pathway inhibitor treatment | atezolizumab + radium-223 | Safety, ORR | All 44 patients had ≥1 all-cause AE; 23 (52.3%) had a grade 3/4 AE. 15 (34.1%) grade 3/4 and 3 (6.8%) grade 5 AEs were related to atezolizumab; none were related to radium-223. Confirmed ORR was 6.8% [95% CI, 1.4–18.7] |
NCT05150236 | II | mCRPC patients with progression on prior androgen receptor pathway inhibitors, no more than one line of prior chemotherapy, significant PSMA avidity on 68GaPSMA-11 PET/CT (SUVmax ≥15 at one disease site and SUVmax ≥10 at measurable sites of disease. 10 mm), no FDG positive/PSMA negative disease and no contraindications to ICI | Ipilimumab + Nivolumab + 177Lu-PSMA-617 | 12-month PSA PFS | Ongoing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanka, S.M.; Zorko, N.A.; Antonarakis, E.S.; Barata, P.C. Metastatic Castration-Resistant Prostate Cancer, Immune Checkpoint Inhibitors, and Beyond. Curr. Oncol. 2023, 30, 4246-4256. https://doi.org/10.3390/curroncol30040323
Lanka SM, Zorko NA, Antonarakis ES, Barata PC. Metastatic Castration-Resistant Prostate Cancer, Immune Checkpoint Inhibitors, and Beyond. Current Oncology. 2023; 30(4):4246-4256. https://doi.org/10.3390/curroncol30040323
Chicago/Turabian StyleLanka, Sree M., Nicholas A. Zorko, Emmanuel S. Antonarakis, and Pedro C. Barata. 2023. "Metastatic Castration-Resistant Prostate Cancer, Immune Checkpoint Inhibitors, and Beyond" Current Oncology 30, no. 4: 4246-4256. https://doi.org/10.3390/curroncol30040323
APA StyleLanka, S. M., Zorko, N. A., Antonarakis, E. S., & Barata, P. C. (2023). Metastatic Castration-Resistant Prostate Cancer, Immune Checkpoint Inhibitors, and Beyond. Current Oncology, 30(4), 4246-4256. https://doi.org/10.3390/curroncol30040323