Canadian Consensus Recommendations on the Management of Extensive-Stage Small-Cell Lung Cancer
Abstract
:1. Introduction
2. Methods
3. Pathological Classification and Diagnosis of SCLC
3.1. Overview
3.2. Immunohistochemistry
3.3. Combined Histology Tumours and SCLC Transformation
3.4. Recommendations for Pathological Assessment
- SCLC should be diagnosed according to the most recent World Health Organization criteria.
- If available, tissue biopsies and cytology samples should be correlated to ensure the accurate diagnosis of SCLC.
- The presence of any adenocarcinoma component in a C-SCLC or a new diagnosis of SCLC in a non-smoker should prompt molecular testing for driver mutations for the consideration of targeted therapy.
- Currently there is no routine predictive biomarker available for SCLC and biomarker testing is not recommended in routine clinical practice.
4. Staging
4.1. Overview
4.2. Recommendations for Diagnosis and Staging
- 5.
- A complete diagnostic/staging workup should include a physical examination, hematologic and biochemical laboratory profiles, CT chest, abdomen, and pelvis, as well as MRI or CT imaging of the brain.
- MRI of the brain is preferred over CT to detect asymptomatic brain metastases.
- PET can be considered when ambiguity exists regarding the diagnosis of LS-SCLC vs. ES-SCLC.
- PET is only relevant if the disease outside the chest has not been documented.
- If PET is not available, a bone scan may be used to identify bone metastases.
- 6.
- Prompt treatment initiation is of greater importance than complete staging once the extensive disease is demonstrated due to the rapid progression of untreated ES-SCLC. Staging may continue during and immediately after the initiation of treatment.
5. First-Line Systemic Therapy
5.1. Overview
5.2. The Role of ICIs
5.2.1. Investigational Anti-PD-1/PD-L1 Antibodies
5.2.2. What Are the First-Line Treatment Options for Patients with ES-SCLC?
5.3. Recommendations for First-Line Systemic Therapy in ES-SCLC
- 7.
- Preferred first-line systemic therapy for ES-SCLC should include four cycles of EP in combination with a PD-L1 inhibitor (atezolizumab or durvalumab) if there are no contraindications.
- The choice between carboplatin and cisplatin should be based on toxicity profile and co-morbidities.
- 8.
- Alternatives could include platinum with irinotecan or treating with CAV for a platinum-free regimen. These regimens have not been approved in combination PD-L1/PD-1 inhibitors.
- If using irinotecan, clinicians should be aware of the increased risk of neutropenia and diarrhea. Irinotecan is a radiosensitizing agent that might interact with radiation therapy.
- 9.
- Patients with poor PS (ECOG ≥ 3) may become eligible for a PD-L1 inhibitor if their PS improves after 1–2 cycles of chemotherapy.
- If available in the treatment jurisdiction, the addition of a PD-L1 inhibitor may be based on clinical judgement and improvement of PS.
- 10.
- During systemic therapy and PD-L1 maintenance, patients with ES-SCLC could be assessed with imaging every 2–3 months, depending on disease sites and the burden of the disease.
6. Second-Line Therapy and Beyond
6.1. Overview
6.2. Camptothecins
6.3. Lurbinectedin
6.4. Later-Line Options
What Are the Second- and Later-Line Treatment Options for Patients with ES-SCLC?
6.5. Recommendations for Subsequent Lines of Therapy
- 11.
- Retreatment with the initial platinum-based doublet chemotherapy should be considered for platinum-sensitive patients (treatment-free interval ≥ 90 days) who are able to tolerate it.
- 12.
- For patients with ES-SCLC who experience progression on or within 3 months of completing first-line chemotherapy, one should consider CAV or IV topotecan. Lurbinectedin could also be considered. Irinotecan is an option.
- 13.
- For patients with poor PS (ECOG ≥ 3) with progression while on or after initial therapy, symptom management with best supportive care should be considered.
- 14.
- Upon the second progression, subsequent lines of therapy are generally less effective than the initial treatment but may provide significant palliation for some patients. Symptom control and improved quality of life are the primary goals of treatment.
6.6. Emerging Options for Relapsed/Refractory ES-SCLC
7. Radiation Therapy (RT)
7.1. Overview
7.2. Thoracic RT in ES-SCLC
Recommendations for Thoracic RT
- 15.
- RT to the residual primary tumour and lymph nodes could be offered to patients with documented response to systemic therapy presenting with residual thoracic disease, limited extra-thoracic disease and ECOG PS 0–2 who achieve a response after chemotherapy +/− PD-L1 inhibitor.
- Dosing and fractionation of consolidative thoracic RT should be individualized depending on the symptoms, urgency to treat, and PS.
- A Total of 30 Gy in 10 fractions was used in the largest randomized trial; 20 Gy in 5 daily fractions may be appropriate due to logistics or for those receiving symptomatic palliation or 40 Gy in 15 daily fractions may be considered in patients with good PS.
- Consolidative thoracic RT after chemotherapy +/− PD-L1 inhibitor may be considered for patients with documented response to systemic therapy presenting with residual thoracic disease, limited extra-thoracic disease and ECOG PS 0–2 during or before maintenance with a PD-L1 inhibitor.
7.3. PCI in ES-SCLC
7.3.1. Hippocampal Avoidance (HA) in the Context of PCI
7.3.2. Recommendations for PCI
- 16.
- For ES-SCLC patients with good PS who have had a complete or very good partial response to chemotherapy +/− PD-L1 inhibitor as part of their first-line systemic therapy, both PCI and observation with regular brain MRI surveillance are acceptable options. An individualized discussion should be held with patients to evaluate the risks and benefits of each approach.
- The preferred dose for PCI to the whole brain is 25 Gy in 10 daily fractions. A shorter course (e.g., 20 Gy in 5 fractions) may be appropriate in selected patients with ES-SCLC.
- Higher total RT dose (≥36 Gy) should be avoided in patients receiving PCI.
- 17.
- Due to the high risk of developing brain metastases, MRI surveillance imaging (every 3 months during the first year and every 6 months thereafter) for brain metastases should be recommended for all patients regardless of PCI status.
8. Treatment of Brain Metastases in ES-SCLC
8.1. Overview
8.2. HA in WBRT
8.3. Stereotactic Radiation Surgery (SRS)
8.4. Recommendations for ES-SCLC Patients with Brain Metastases
- 18.
- Patients with ES-SCLC who present with asymptomatic brain metastases could receive systemic therapy, followed by radiation therapy upon completion of induction therapy.
- 19.
- Those with symptomatic brain metastases should receive radiation therapy, followed by systemic therapy.
- 20.
- Serial brain MRI imaging is recommended in patients who have asymptomatic brain metastases and are receiving systemic therapy before brain RT.
- Brain MRI is recommended every 3 months during the first year and every 6 months thereafter. Brain CT is only an option if MRI cannot be used, because CT is inferior to MRI for detecting brain metastases.
- 21.
- In patients with solitary brain metastases, SRS may be an acceptable alternative to WBRT +/− HA, despite the lack of trial data; however, the choice between SRS and WBRT +/− HA depends on the location, size, and number of intracranial lesions and extent of extracranial disease.
9. Emerging Biomarkers in SCLC and Future Directions
9.1. Overview
9.2. Recommendation for Emerging Biomarkers
- 22.
- Although one can assess novel biomarkers and SCLC subtypes, at present, they should not be used to make treatment-related decisions. Testing for the biomarkers is a research tool that may be used for screening potential trial candidates.
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brenner, D.R.; Poirier, A.; Woods, R.R.; Ellison, L.F.; Billette, J.M.; Demers, A.A.; Zhang, S.X.; Yao, C.; Finley, C.; Fitzgerald, N.; et al. Projected estimates of cancer in Canada in 2022. Can. Med. Assoc. J. 2022, 194, E601–E607. [Google Scholar] [CrossRef]
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Primers 2021, 7, 3. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Berniker, A.V.; Abdulrahman, A.A.; Teytelboym, O.M.; Galindo, L.M.; Mackey, J.E. Extrapulmonary small-cell carcinoma: Imaging features with radiologic-pathologic correlation. Radiographics 2015, 35, 152–163. [Google Scholar] [CrossRef] [Green Version]
- Travis, W.; Nicholson, S.; Hirsch, F.R.; Pugatch, B.; Geisinger, K.; Brambilla, E.; Gazdar, A.; Petersen, I.; Meyerson, M.; Hanash, S.M.; et al. Small-cell carcinoma. In WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart; Travis, W.D., Brambilla, E., Müller-Hermelink, H.K., Harris, C.C., Eds.; IARC Press: Lyon, France, 2004; pp. 31–34. [Google Scholar]
- Babakoohi, S.; Fu, P.; Yang, M.; Linden, P.A.; Dowlati, A. Combined SCLC clinical and pathologic characteristics. Clin. Lung Cancer 2013, 14, 113–139. [Google Scholar] [CrossRef]
- Doherty, J.; Dawe, D.E.; Pond, G.R.; Ellis, P.M. The effect of age on referral to an oncologist and receipt of chemotherapy among small-cell lung cancer patients in Ontario, Canada. J. Geriatr. Oncol. 2019, 10, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; Winslow, M.M.; Sage, J. Mechanisms of small-cell lung cancer metastasis. EMBO Mol. Med. 2021, 13, e13122. [Google Scholar] [CrossRef] [PubMed]
- Quan, A.L.; Videtic, G.M.; Suh, J.H. Brain metastases in small-cell lung cancer. Oncology 2004, 18, 961–972. [Google Scholar]
- Horn, L.; Mansfield, A.S.; Szczęsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Dvorkin, M.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.J.; Özgüroğlu, M.; Ji, J.H.; et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): A randomised, controlled, open-label, phase 3 trial. Lancet 2019, 394, 1929–1939. [Google Scholar] [CrossRef] [PubMed]
- Trigo, J.; Subbiah, V.; Besse, B.; Moreno, V.; López, R.; Sala, M.A.; Peters, S.; Ponce, S.; Fernández, C.; Alfaro, V.; et al. Lurbinectedin as second-line treatment for patients with small-cell lung cancer: A single-arm, open-label, phase 2 basket trial. Lancet Oncol. 2020, 21, 645–654. [Google Scholar] [CrossRef] [PubMed]
- WHO Classification of Tumours Editorial Board. Thoracic Tumours. In WHO Classification of Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2021; pp. 61–72. [Google Scholar]
- Zheng, M. Classification and Pathology of Lung Cancer. Surg. Oncol. Clin. N. Am. 2016, 25, 447–468. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, G.; Rodriguez, J.; Viale, G.; Rosai, J. Typical and atypical pulmonary carcinoid tumor overdiagnosed as small-cell carcinoma on biopsy specimens: A major pitfall in the management of lung cancer patients. Am. J. Surg. Pathol. 2005, 29, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centonze, G.; Maisonneuve, P.; Simbolo, M.; Lagano, V.; Grillo, F.; Fabbri, A.; Prinzi, N.; Garzone, G.; Filugelli, M.; Pardo, C.; et al. Lung carcinoid tumours: Histology and Ki-67, the eternal rivalry. Histopathology 2023, 82, 324–339. [Google Scholar] [CrossRef]
- de M Rêgo, J.F.; de Medeiros, R.S.S.; Braghiroli, M.I.; Galvão, B.; Neto, J.E.B.; Munhoz, R.R.; Guerra, J.; Nonogaki, S.; Kimura, L.; Pfiffer, T.E.; et al. Expression of ERCC1, Bcl-2, Lin28a, and Ki-67 as biomarkers of response to first-line platinum-based chemotherapy in patients with high-grade extrapulmonary neuroendocrine carcinomas or small-cell lung cancer. Ecancermedicalscience 2017, 11, 767. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, N.; Maebayashi, T.; Aizawa, T.; Sakaguchi, M.; Nishimaki, H.; Masuda, S. Correlation between the Ki-67 proliferation index and response to radiation therapy in small-cell lung cancer. Radiat. Oncol. 2017, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Agoff, S.N.; Lamps, L.W.; Philip, A.T.; Amin, M.B.; Schmidt, R.A.; True, L.D.; Folpe, A.L. Thyroid transcription factor-1 is expressed in extrapulmonary small-cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod. Pathol. 2000, 13, 238–242. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Li, Q.; Li, D.; Fang, Y.; Wang, C. Whole-Process Treatment of Combined Small-cell Lung Cancer Initially Diagnosed as “Lung Squamous Cell Carcinoma”: A Case Report and Review of the Literature. Front. Immunol. 2022, 13, 831698. [Google Scholar] [CrossRef]
- Shen, C.; Che, G. Case Report: Combined Small-cell Lung Carcinoma with Pulmonary Adenocarcinoma. Front. Surg. 2022, 9, 830849. [Google Scholar] [CrossRef]
- Zhao, X.; McCutcheon, J.N.; Kallakury, B.; Chahine, J.J.; Pratt, D.; Raffeld, M.; Chen, Y.; Wang, C.; Giaccone, G. Combined Small-cell Carcinoma of the Lung: Is It a Single Entity? J. Thorac. Oncol. 2018, 13, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Sequist, L.V.; Waltman, B.A.; Dias-Santagata, D.; Digumarthy, S.; Turke, A.B.; Fidias, P.; Bergethon, K.; Shaw, A.T.; Gettinger, S.; Cosper, A.K.; et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 2011, 3, 75ra26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.A.; Arcila, M.E.; Rekhtman, N.; Sima, C.S.; Zakowski, M.F.; Pao, W.; Kris, M.G.; Miller, V.A.; Ladanyi, M.; Riely, G.J. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res. 2013, 19, 2240–2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcoux, N.; Gettinger, S.N.; O’Kane, G.; Arbour, K.C.; Neal, J.W.; Husain, H.; Evans, T.L.; Brahmer, J.R.; Muzikansky, A.; Bonomi, P.D.; et al. EGFR-Mutant Adenocarcinomas That Transform to Small-Cell Lung Cancer and Other Neuroendocrine Carcinomas: Clinical Outcomes. J. Clin. Oncol. 2019, 37, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Quintanal-Villalonga, A.; Taniguchi, H.; Zhan, Y.A.; Hasan, M.M.; Chavan, S.S.; Meng, F.; Uddin, F.; Manoj, P.; Donoghue, M.T.; Won, H.H.; et al. Multiomic Analysis of Lung Tumors Defines Pathways Activated in Neuroendocrine Transformation. Cancer Discov. 2021, 11, 3028–3047. [Google Scholar] [CrossRef]
- Bunn, P.A., Jr.; Minna, J.D.; Augustyn, A.; Gazdar, A.F.; Ouadah, Y.; Krasnow, M.A.; Berns, A.; Brambilla, E.; Rekhtman, N.; Massion, P.P.; et al. Small-cell Lung Cancer: Can Recent Advances in Biology and Molecular Biology Be Translated into Improved Outcomes? J. Thorac. Oncol. 2016, 11, 453–474. [Google Scholar] [CrossRef] [Green Version]
- Karachaliou, N.; Sosa, A.E.; Rosell, R. Unraveling the genomic complexity of small-cell lung cancer. Transl. Lung Cancer Res. 2016, 5, 363–366. [Google Scholar] [CrossRef] [Green Version]
- Vallières, E.; Shepherd, F.A.; Crowley, J.; Van Houtte, P.; Postmus, P.E.; Carney, D.; Chansky, K.; Shaikh, Z.; Goldstraw, P. The IASLC Lung Cancer Staging Project: Proposals regarding the relevance of TNM in the pathologic staging of small-cell lung cancer in the forthcoming (seventh) edition of the TNM classification for lung cancer. J. Thorac. Oncol. 2009, 4, 1049–1059. [Google Scholar] [CrossRef]
- Shepherd, F.A.; Crowley, J.; Van Houtte, P.; Postmus, P.E.; Carney, D.; Chansky, K.; Shaikh, Z.; Goldstraw, P. The International Association for the Study of Lung Cancer lung cancer staging project: Proposals regarding the clinical staging of small-cell lung cancer in the forthcoming (seventh) edition of the tumor, node, metastasis classification for lung cancer. J. Thorac. Oncol. 2007, 2, 1067–1077. [Google Scholar] [CrossRef]
- Pass, H.; Ball, D.; Scagliotti, G. IASLC Thoracic Oncology, 2nd ed.; Elsevier: Philadelphia, PA, USA, 2017; pp. 374–381. [Google Scholar]
- Gozzard, P.; Woodhall, M.; Chapman, C.; Nibber, A.; Waters, P.; Vincent, A.; Lang, B.; Maddison, P. Paraneoplastic neurologic disorders in small-cell lung carcinoma: A prospective study. Neurology 2015, 85, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Raibagkar, P.; Ho, D.; Gunturu, K.S.; Srinivasan, J. Worsening of anti-Hu paraneoplastic neurological syndrome related to anti-PD-1 treatment: Case report and review of literature. J. Neuroimmunol. 2020, 341, 577184. [Google Scholar] [CrossRef]
- Gill, A.; Perez, M.A.; Perrone, C.M.; Bae, C.J.; Pruitt, A.A.; Lancaster, E. A case series of PD-1 inhibitor-associated paraneoplastic neurologic syndromes. J. Neuroimmunol. 2019, 334, 576980. [Google Scholar] [CrossRef] [PubMed]
- Seute, T.; Leffers, P.; ten Velde, G.P.; Twijnstra, A. Detection of brain metastases from small-cell lung cancer: Consequences of changing imaging techniques (CT versus MRI). Cancer 2008, 112, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- Martucci, F.; Pascale, M.; Valli, M.C.; Pesce, G.A.; Froesch, P.; Giovanella, L.; Richetti, A.; Treglia, G. Impact of 18F-FDG PET/CT in Staging Patients with Small-cell Lung Cancer: A Systematic Review and Meta-Analysis. Front. Med. 2020, 6, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demedts, I.K.; Vermaelen, K.Y.; van Meerbeeck, J.P. Treatment of extensive-stage small-cell lung carcinoma: Current status and future prospects. Eur. Respir. J. 2010, 35, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Di Maio, M.; Chiodini, P.; Rudd, R.M.; Okamoto, H.; Skarlos, D.V.; Früh, M.; Qian, W.; Tamura, T.; Samantas, E.; et al. Carboplatin- or cisplatin-based chemotherapy in first-line treatment of small-cell lung cancer: The COCIS meta-analysis of individual patient data. J. Clin. Oncol. 2012, 30, 1692–1698. [Google Scholar] [CrossRef]
- Hatfield, L.A.; Huskamp, H.A.; Lamont, E.B. Survival and Toxicity After Cisplatin Plus Etoposide Versus Carboplatin Plus Etoposide for Extensive-Stage Small-Cell Lung Cancer in Elderly Patients. J. Oncol. Pract. 2016, 12, 666–673. [Google Scholar] [CrossRef] [Green Version]
- Bishop, J.F.; Raghavan, D.; Stuart-Harris, R.; Morstyn, G.; Aroney, R.; Kefford, R.; Yuen, K.; Lee, J.; Gianoutsos, P.; Olver, I.N. Carboplatin (CBDCA, JM-8) and VP-16-213 in previously untreated patients with small-cell lung cancer. J. Clin. Oncol. 1987, 5, 1574–1578. [Google Scholar] [CrossRef]
- Sundstrøm, S.; Bremnes, R.M.; Kaasa, S.; Aasebø, U.; Hatlevoll, R.; Dahle, R.; Boye, N.; Wang, M.; Vigander, T.; Vilsvik, J.; et al. Cisplatin and etoposide regimen is superior to cyclophosphamide, epirubicin, and vincristine regimen in small-cell lung cancer: Results from a randomized phase III trial with 5 years’ follow-up. J. Clin. Oncol. 2002, 20, 4665–4672. [Google Scholar] [CrossRef]
- Baka, S.; Califano, R.; Ferraldeschi, R.; Aschroft, L.; Thatcher, N.; Taylor, P.; Faivre-Finn, C.; Blackhall, F.; Lorigan, P. Phase III randomised trial of doxorubicin-based chemotherapy compared with platinum-based chemotherapy in small-cell lung cancer. Br. J. Cancer 2008, 99, 442–447. [Google Scholar] [CrossRef] [Green Version]
- Pujol, J.L.; Carestia, L.; Daurès, J.P. Is there a case for cisplatin in the treatment of small-cell lung cancer? A meta-analysis of randomized trials of a cisplatin-containing regimen versus a regimen without this alkylating agent. Br. J. Cancer 2000, 83, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Noda, K.; Nishiwaki, Y.; Kawahara, M.; Negoro, S.; Sugiura, T.; Yokoyama, A.; Fukuoka, M.; Mori, K.; Watanabe, K.; Tamura, T.; et al. Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N. Engl. J. Med. 2002, 346, 85–91. [Google Scholar] [CrossRef]
- Hanna, N.; Bunn, P.A., Jr.; Langer, C.; Einhorn, L.; Guthrie, T., Jr.; Beck, T.; Ansari, R.; Ellis, P.; Byrne, M.; Morrison, M.; et al. Randomized phase III trial comparing irinotecan/cisplatin with etoposide/cisplatin in patients with previously untreated extensive-stage disease small-cell lung cancer. J. Clin. Oncol. 2006, 24, 2038–2043. [Google Scholar] [CrossRef] [PubMed]
- Lara, P.N., Jr.; Natale, R.; Crowley, J.; Lenz, H.J.; Redman, M.W.; Carleton, J.E.; Jett, J.; Langer, C.J.; Kuebler, J.P.; Dakhil, S.R.; et al. Phase III trial of irinotecan/cisplatin compared with etoposide/cisplatin in extensive-stage small-cell lung cancer: Clinical and pharmacogenomic results from SWOG S0124. J. Clin. Oncol. 2009, 27, 2530–2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermes, A.; Bergman, B.; Bremnes, R.; Ek, L.; Fluge, S.; Sederholm, C.; Sundstrøm, S.; Thaning, L.; Vilsvik, J.; Aasebø, U.; et al. Irinotecan plus carboplatin versus oral etoposide plus carboplatin in extensive small-cell lung cancer: A randomized phase III trial. J. Clin. Oncol. 2008, 26, 4261–4267. [Google Scholar] [CrossRef] [PubMed]
- Zatloukal, P.; Cardenal, F.; Szczesna, A.; Gorbunova, V.; Moiseyenko, V.; Zhang, X.; Cisar, L.; Soria, J.C.; Domine, M.; Thomas, M. A multicenter international randomized phase III study comparing cisplatin in combination with irinotecan or etoposide in previously untreated small-cell lung cancer patients with extensive disease. Ann. Oncol. 2010, 21, 1810–1816. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.L.; Wang, B.; Liu, J.Z.; Liu, W.W. Irinotecan plus cisplatin compared with etoposide plus cisplatin in patients with previously untreated extensive-stage small-cell lung cancer: A meta-analysis. J. Cancer Res. Ther. 2018, 14, S1076–S1083. [Google Scholar] [CrossRef]
- Schmittel, A.; Sebastian, M.; Fischer von Weikersthal, L.; Martus, P.; Gauler, T.C.; Kaufmann, C.; Hortig, P.; Fischer, J.R.; Link, H.; Binder, D.; et al. A German multicenter, randomized phase III trial comparing irinotecan-carboplatin with etoposide-carboplatin as first-line therapy for extensive-disease small-cell lung cancer. Ann. Oncol. 2011, 22, 1798–1804. [Google Scholar] [CrossRef]
- Reck, M.; Luft, A.; Szczesna, A.; Havel, L.; Kim, S.W.; Akerley, W.; Pietanza, M.C.; Wu, Y.L.; Zielinski, C.; Thomas, M.; et al. Phase III Randomized Trial of Ipilimumab Plus Etoposide and Platinum Versus Placebo Plus Etoposide and Platinum in Extensive-Stage Small-Cell Lung Cancer. J. Clin. Oncol. 2016, 34, 3740–3748. [Google Scholar] [CrossRef]
- Liu, S.V.; Reck, M.; Mansfield, A.S.; Mok, T.; Scherpereel, A.; Reinmuth, N.; Garassino, M.C.; De Castro Carpeno, J.; Califano, R.; Nishio, M.; et al. Updated Overall Survival and PD-L1 Subgroup Analysis of Patients with Extensive-Stage Small-Cell Lung Cancer Treated with Atezolizumab, Carboplatin, and Etoposide (IMpower133). J. Clin. Oncol. 2021, 39, 619–630. [Google Scholar] [CrossRef]
- Goldman, J.W.; Dvorkin, M.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.J.; Özgüroğlu, M.; Ji, J.H.; et al. Durvalumab, with or without tremelimumab, plus platinum-etoposide versus platinum-etoposide alone in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): Updated results from a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 51–65. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.J.; Özgüroğlu, M.; Ji, J.H.; Garassino, M.C.; et al. Durvalumab, with or without tremelimumab, plus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer: 3-year overall survival update from CASPIAN. ESMO Open 2022, 7, 100408. [Google Scholar] [CrossRef]
- Rudin, C.M.; Awad, M.M.; Navarro, A.; Gottfried, M.; Peters, S.; Csőszi, T.; Cheema, P.K.; Rodriguez-Abreu, D.; Wollner, M.; Yang, J.C.; et al. Pembrolizumab or Placebo Plus Etoposide and Platinum as First-Line Therapy for Extensive-Stage Small-Cell Lung Cancer: Randomized, Double-Blind, Phase III KEYNOTE-604 Study. J. Clin. Oncol. 2020, 38, 2369–2379. [Google Scholar] [CrossRef]
- Rudin, C.M.; Liu, S.V.; Lu, S.; Soo, R.A.; Hong, M.H.; Lee, J.-S.; Bryl, M.; Dumoulin, D.W.; Rittmeyer, A.; Chiu, C.-H.; et al. SKYSCRAPER-02: Primary results of a phase III, randomized, double-blind, placebo-controlled study of atezolizumab (atezo) + carboplatin + etoposide (CE) with or without tiragolumab (tira) in patients (pts) with untreated extensive-stage small-cell lung cancer (ES-SCLC). J. Clin. Oncol. 2022, 40 (Suppl. S17), LBA8507. [Google Scholar]
- Canadian Agency for Drugs and Technologies in Health. CADTH Reimbursement Recommendation: Atezolizumab (Tecentriq). Available online: https://www.cadth.ca/sites/default/files/DRR/2022/PC0269%20Tecentriq%20for%20NSCLC%20-%20CADTH%20Final%20Recommendation-Final-meta.pdf (accessed on 5 May 2023).
- Canadian Agency for Drugs and Technologies in Health. CADTH Reimbursement Recommendation: Durvalumab (Imfinzi). Available online: https://www.cadth.ca/sites/default/files/DRR/2021/PC0234%20Imfinzi%20-%20CADTH%20Final%20Rec.pdf (accessed on 5 May 2023).
- Atezolizumab (Tecentriq) Product Monograph. Hoffmann-La Roche Limited. Submission Control No: 269664. April 2023. Available online: https://www.rochecanada.com/PMs/Tecentriq/Tecentriq_PM_CIE.pdf (accessed on 5 May 2023).
- Imfinzi (Durvalumab) Product Monograph. AstraZeneca Canada Inc. Submission Control No: 269876. April 2023. Available online: https://www.astrazeneca.ca/content/dam/az-ca/downloads/productinformation/imfinzi-product-monograph-en.pdf (accessed on 5 May 2023).
- Antonia, S.J.; López-Martin, J.A.; Bendell, J.; Ott, P.A.; Taylor, M.; Eder, J.P.; Jäger, D.; Pietanza, M.C.; Le, D.T.; de Braud, F.; et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): A multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016, 17, 883–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leal, T.; Wang, Y.; Dowlati, A.; Lewis, D.A.; Chen, Y.; Mohindra, A.R.; Razaq, M.; Ahuja, H.G.; Liu, J.; King, D.M.; et al. Randomized phase II clinical trial of cisplatin/carboplatin and etoposide (CE) alone or in combination with nivolumab as frontline therapy for extensive-stage small-cell lung cancer (ES-SCLC): ECOG-ACRIN EA5161. J. Clin. Oncol. 2020, 38 (Suppl. S15), 9000. [Google Scholar] [CrossRef]
- Owonikoko, T.K.; Park, K.; Govindan, R.; Ready, N.; Reck, M.; Peters, S.; Dakhil, S.R.; Navarro, A.; Rodríguez-Cid, J.; Schenker, M.; et al. Nivolumab and Ipilimumab as Maintenance Therapy in Extensive-Disease Small-Cell Lung Cancer: CheckMate 451. J. Clin. Oncol. 2021, 39, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Han, L.; Wu, L.; Chen, J.; Sun, H.; Wen, G.; Ji, Y.; Dvorkin, M.; Shi, J.; Pan, Z.; et al. Effect of First-Line Serplulimab vs. Placebo Added to Chemotherapy on Survival in Patients with Extensive-Stage Small-cell Lung Cancer: The ASTRUM-005 Randomized Clinical Trial. JAMA 2022, 328, 1223–1232. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, C.; Yao, W.; Wang, Q.; Min, X.; Chen, G.; Xu, X.; Li, X.; Xu, F.; Fang, Y.; et al. Adebrelimab or placebo plus carboplatin and etoposide as first-line treatment for extensive-stage small-cell lung cancer (CAPSTONE-1): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2022, 23, 739–747. [Google Scholar] [CrossRef]
- Targeted Oncology. FDA Grants Orphan Drug Status to Serplulimab for Small-cell Lung Cancer. Available online: https://www.targetedonc.com/view/fda-grants-orphan-drug-status-to-serplulimab-for-small-cell-lung-cancer (accessed on 5 May 2023).
- Owonikoko, T.K.; Behera, M.; Chen, Z.; Bhimani, C.; Curran, W.J.; Khuri, F.R.; Ramalingam, S.S. A systematic analysis of efficacy of second-line chemotherapy in sensitive and refractory small-cell lung cancer. J. Thorac. Oncol. 2012, 7, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Baize, N.; Monnet, I.; Greillier, L.; Geier, M.; Lena, H.; Janicot, H.; Vergnenegre, A.; Crequit, J.; Lamy, R.; Auliac, J.B. Carboplatin plus etoposide versus topotecan as second-line treatment for patients with sensitive relapsed small-cell lung cancer: An open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 2020, 21, 1224–1233. [Google Scholar] [CrossRef]
- O’Sullivan, D.E.; Cheung, W.Y.; Syed, I.A.; Moldaver, D.; Shanahan, M.K.; Bebb, D.G.; Sit, C.; Brenner, D.R.; Boyne, D.J. Real-World Treatment Patterns, Clinical Outcomes, and Health Care Resource Utilization in Extensive-Stage Small-cell Lung Cancer in Canada. Curr. Oncol. 2021, 28, 3091–3103. [Google Scholar] [CrossRef] [PubMed]
- Cramer-van der Welle, C.M.; Schramel, F.M.N.H.; van Leeuwen, A.S.; Groen, H.J.M.; van de Garde, E.M.W. Real-world treatment patterns and outcomes of patients with extensive disease small-cell lung cancer. Eur. J. Cancer Care 2020, 29, e13250. [Google Scholar] [CrossRef] [PubMed]
- Tendler, S.; Zhan, Y.; Pettersson, A.; Lewensohn, R.; Viktorsson, K.; Fang, F.; De Petris, L. Treatment patterns and survival outcomes for small-cell lung cancer patients—A Swedish single center cohort study. Acta Oncol. 2020, 59, 388–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffens, C.C.; Elender, C.; Hutzschenreuter, U.; Dille, S.; Binninger, A.; Spring, L.; Jänicke, M.; Marschner, N. Treatment and outcome of 432 patients with extensive-stage small-cell lung cancer in first, second and third line-Results from the prospective German TLK cohort study. Lung Cancer 2019, 130, 216–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topotecan Hydrochloride for Injection Product Monograph. Pfizer Canada ULC. Submission Control No.: 245735. April 2021. Available online: https://pdf.hres.ca/dpd_pm/00060717.pdf (accessed on 5 May 2023).
- von Pawel, J.; Schiller, J.H.; Shepherd, F.A.; Fields, S.Z.; Kleisbauer, J.P.; Chrysson, N.G.; Stewart, D.J.; Clark, P.I.; Palmer, M.C.; Depierre, A.; et al. Topotecan versus cyclophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. J. Clin. Oncol. 1999, 17, 658–667. [Google Scholar] [CrossRef]
- Edelman, M.J.; Dvorkin, M.; Laktionov, K.; Navarro, A.; Juan-Vidal, O.; Kozlov, V.; Golden, G.; Jordan, O.; Deng, C.Q.; Bentsion, D.; et al. Randomized phase 3 study of the anti-disialoganglioside antibody dinutuximab and irinotecan vs. irinotecan or topotecan for second-line treatment of small-cell lung cancer. Lung Cancer 2022, 166, 135–142. [Google Scholar] [CrossRef]
- Zepzelca (Lurbinectedin) Product Monograph. Jazz Pharmaceuticals Canada Incorporated. Submission Control No.: 259506. June 2022. Available online: https://www.zepzelca.ca/sites/default/files/pdf/zepzelca.ca.PM-en.pdf (accessed on 5 May 2023).
- Canadian Agency for Drugs and Technologies in Health. CADTH Reimbursement Recommendation: Lurbinectedin (Zepzelca). Available online: https://www.cadth.ca/sites/default/files/DRR/2023/PC0281%20Zepzelca%20-%20Confidental%20Final%20CADTH%20Recommendation%20(Redacted)-KH_SC%20-%20KH-meta.pdf (accessed on 5 May 2023).
- Paz-Ares, L.; Ciuleanu, T.; Navarro, A.; Fulop, A.; Cousin, S.; Bonanno, L.; Smit, E.; Chiappori, A.; Olmedo, M.E.; Horvath, I.; et al. PL02.03 Lurbinectedin/Doxorubicin versus CAV or Topotecan in Relapsed SCLC Patients: Phase III Randomized ATLANTIS Trial. J. Thorac. Oncol. 2021, 16, S844–S845. [Google Scholar] [CrossRef]
- Masters, G.A.; Declerck, L.; Blanke, C.; Sandler, A.; DeVore, R.; Miller, K.; Johnson, D. Phase II trial of gemcitabine in refractory or relapsed small-cell lung cancer: Eastern Cooperative Oncology Group Trial 1597. J. Clin. Oncol. 2003, 21, 1550–1555. [Google Scholar] [CrossRef]
- Hoang, T.; Kim, K.; Jaslowski, A.; Koch, P.; Beatty, P.; McGovern, J.; Quisumbing, M.; Shapiro, G.; Witte, R.; Schiller, J.H. Phase II study of second-line gemcitabine in sensitive or refractory small-cell lung cancer. Lung Cancer 2003, 42, 97–102. [Google Scholar] [CrossRef]
- Pietanza, M.C.; Kadota, K.; Huberman, K.; Sima, C.S.; Fiore, J.J.; Sumner, D.K.; Travis, W.D.; Heguy, A.; Ginsberg, M.S.; Holodny, A.I.; et al. Phase II trial of temozolomide in patients with relapsed sensitive or refractory small-cell lung cancer, with assessment of methylguanine-DNA methyltransferase as a potential biomarker. Clin. Cancer Res. 2012, 18, 1138–1145. [Google Scholar] [CrossRef] [Green Version]
- Furuse, K.; Kubota, K.; Kawahara, M.; Takada, M.; Kimura, I.; Fujii, M.; Ohta, M.; Hasegawa, K.; Yoshida, K.; Nakajima, S.; et al. Phase II study of vinorelbine in heavily previously treated small-cell lung cancer. Japan Lung Cancer Vinorelbine Study Group. Oncology 1996, 53, 169–172. [Google Scholar] [CrossRef]
- Goldman, J.W.; Cummings, A.L.; Mendenhall, M.A.; Velez, M.A.; Babu, S.; Johnson, T.T.; Alcantar, J.M.; Dakhil, S.R.; Kanamori, D.E.; Lawler, W.E.; et al. Primary analysis from the phase 2 study of continuous talazoparib (TALA) plus intermittent low-dose temozolomide (TMZ) in patients with relapsed or refractory extensive-stage small-cell lung cancer (ES-SCLC). ASCO 2022. J. Clin. Oncol. 2022, 40 (Suppl. S16), 8517. [Google Scholar] [CrossRef]
- Farago, A.F.; Yeap, B.Y.; Stanzione, M.; Hung, Y.P.; Heist, R.S.; Marcoux, J.P.; Zhong, J.; Rangachari, D.; Barbie, D.A.; Phat, S.; et al. Combination Olaparib and Temozolomide in Relapsed Small-Cell Lung Cancer. Cancer Discov. 2019, 9, 1372–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietanza, M.C.; Waqar, S.N.; Krug, L.M.; Dowlati, A.; Hann, C.L.; Chiappori, A.; Owonikoko, T.K.; Woo, K.M.; Cardnell, R.J.; Fujimoto, J.; et al. Randomized, Double-Blind, Phase II Study of Temozolomide in Combination with Either Veliparib or Placebo in Patients with Relapsed-Sensitive or Refractory Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 2386–2394. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Hafez, N.; Soliman, H.H.; Fu, S.; Kato, S.; Lara, P.; Vaishampayan, U.N.; Razak, A.R.A.; Cardin, D.B.; Munster, P.N.; et al. Preliminary efficacy data of platinum-pretreated small-cell lung cancer (SCLC) cohort of NCI 9881 study: A phase II study of cediranib in combination with olaparib in advanced solid tumors. J. Clin. Oncol. 2020, 38 (Suppl. S15), 9065. [Google Scholar] [CrossRef]
- Ma, S.; He, Z.; Wang, L.; Wu, Y.; Yang, S.; Chen, H.; Wu, Y.; Mo, Y.; Liu, Y.; Wang, Q. Sintilimab plus anlotinib as second or further-line therapy for small-cell lung cancer: An objective performance trial. J. Clin. Oncol. 2022, 40 (Suppl. S16), 8516. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, J.Y.; Xu, Y.H.; Chen, M.; Deng, L.C.; Wu, J.P.; Zhou, T.; Zhang, L.Q.; Tan, J.; Pu, X.X.; et al. Efficacy and safety of apatinib as second or later-line therapy in extensive-stage small-cell lung cancer: A prospective, exploratory, single-arm, multi-center clinical trial. Transl. Lung Cancer Res. 2022, 11, 832–844. [Google Scholar] [CrossRef]
- AbbVie News Center. AbbVie Discontinues Rovalpituzumab Tesirine (Rova-T) Research and Development Program. Press Release. August 2019. Available online: https://news.abbvie.com/news/press-releases/abbvie-discontinues-rovalpituzumab-tesirine-rova-t-research-and-development-program.htm (accessed on 5 May 2023).
- Hipp, S.; Voynov, V.; Drobits-Handl, B.; Giragossian, C.; Trapani, F.; Nixon, A.E.; Scheer, J.M.; Adam, P.J. A Bispecific DLL3/CD3 IgG-Like T-Cell Engaging Antibody Induces Antitumor Responses in Small-cell Lung Cancer. Clin. Cancer Res. 2020, 26, 5258–5268. [Google Scholar] [CrossRef]
- Wermke, M.; Felip, E.; Gambardella, V.; Kuboki, Y.; Morgensztern, D.; Hamed, Z.O.; Liu, M.; Studeny, M.; Owonikoko, T.K. Phase I trial of the DLL3/CD3 bispecific T-cell engager BI 764532 in DLL3-positive small-cell lung cancer and neuroendocrine carcinomas. Future Oncol. 2022, 18, 2639–2649. [Google Scholar] [CrossRef]
- Jeremic, B.; Shibamoto, Y.; Nikolic, N.; Milicic, B.; Milisavljevic, S.; Dagovic, A.; Aleksandrovic, J.; Radosavljevic-Asic, G. Role of radiation therapy in the combined-modality treatment of patients with extensive disease small-cell lung cancer: A randomized study. J. Clin. Oncol. 1999, 17, 2092–2099. [Google Scholar] [CrossRef]
- Slotman, B.J.; van Tinteren, H.; Praag, J.O.; Knegjens, J.L.; El Sharouni, S.Y.; Hatton, M.; Keijser, A.; Faivre-Finn, C.; Senan, S. Use of thoracic radiotherapy for extensive stage small-cell lung cancer: A phase 3 randomised controlled trial. Lancet 2015, 385, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Gore, E.M.; Hu, C.; Sun, A.Y.; Grimm, D.F.; Ramalingam, S.S.; Dunlap, N.E.; Higgins, K.A.; Werner-Wasik, M.; Allen, A.M.; Iyengar, P.; et al. Randomized Phase II Study Comparing Prophylactic Cranial Irradiation Alone to Prophylactic Cranial Irradiation and Consolidative Extracranial Irradiation for Extensive-Disease Small-cell Lung Cancer (ED SCLC): NRG Oncology RTOG 0937. J. Thorac. Oncol. 2017, 12, 1561–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palma, D.A.; Warner, A.; Louie, A.V.; Senan, S.; Slotman, B.; Rodrigues, G.B. Thoracic Radiotherapy for Extensive Stage Small-Cell Lung Cancer: A Meta-Analysis. Clin. Lung Cancer 2016, 17, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Rathod, S.; Jeremic, B.; Dubey, A.; Giuliani, M.; Bashir, B.; Chowdhury, A.; Liang, Y.; Pereira, S.; Agarwal, J.; Koul, R. Role of thoracic consolidation radiation in extensive stage small-cell lung cancer: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Cancer 2019, 110, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Slotman, B.J.; van Tinteren, H.; Praag, J.O.; Knegjens, J.L.; El Sharouni, S.Y.; Hatton, M.; Keijser, A.; Faivre-Finn, C.; Senan, S. Radiotherapy for extensive stage small-cell lung cancer—Authors’ reply. Lancet 2015, 385, 1292–1293. [Google Scholar] [CrossRef]
- Reinmuth, N.; Garassino, M.C.; Trukhin, D.; Hochmair, M.J.; Özgüroglu, M.; Havel, L.; Goldman, J.; Chen, Y.; Losonczy, G.; Spinnato, F.; et al. P48.03 First-Line Durvalumab plus Platinum-Etoposide in ES-SCLC: Exploratory Analyses Based on Extent of Disease in CASPIAN. J. Thorac. Oncol. 2021, 16, S500. [Google Scholar] [CrossRef]
- Sun, A.; Abdulkarim, B.; Blais, N.; Greenland, J.; Louie, A.V.; Melosky, B.; Schellenberg, D.; Snow, S.; Liu, G. Use of radiation therapy among patients with Extensive-stage Small-cell lung cancer receiving Immunotherapy: Canadian consensus recommendations. Lung Cancer 2023, 179, 107166. [Google Scholar] [CrossRef]
- Ge, W.; Xu, H.; Yan, Y.; Cao, D. The effects of prophylactic cranial irradiation versus control on survival of patients with extensive-stage small-cell lung cancer: A meta-analysis of 14 trials. Radiat. Oncol. 2018, 13, 155. [Google Scholar] [CrossRef]
- Rule, W.G.; Foster, N.R.; Meyers, J.P.; Ashman, J.B.; Vora, S.A.; Kozelsky, T.F.; Garces, Y.I.; Urbanic, J.J.; Salama, J.K.; Schild, S.E. Prophylactic cranial irradiation in elderly patients with small-cell lung cancer: Findings from a North Central Cancer Treatment Group pooled analysis. J. Geriatr. Oncol. 2015, 6, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Schild, S.E.; Foster, N.R.; Meyers, J.P.; Ross, H.J.; Stella, P.J.; Garces, Y.I.; Olivier, K.R.; Molina, J.R.; Past, L.R.; Adjei, A.A.; et al. Prophylactic cranial irradiation in small-cell lung cancer: Findings from a North Central Cancer Treatment Group Pooled Analysis. Ann. Oncol. 2012, 23, 2919–2924. [Google Scholar] [CrossRef]
- Viani, G.A.; Boin, A.C.; Ikeda, V.Y.; Vianna, B.S.; Silva, R.S.; Santanella, F. Thirty years of prophylactic cranial irradiation in patients with small-cell lung cancer: A meta-analysis of randomized clinical trials. J. Bras. Pneumol. 2012, 38, 372–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slotman, B.; Faivre-Finn, C.; Kramer, G.; Rankin, E.; Snee, M.; Hatton, M.; Postmus, P.; Collette, L.; Musat, E.; Senan, S. Prophylactic cranial irradiation in extensive small-cell lung cancer. N. Engl. J. Med. 2007, 357, 664–672. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Yamanaka, T.; Seto, T.; Harada, H.; Nokihara, H.; Saka, H.; Nishio, M.; Kaneda, H.; Takayama, K.; Ishimoto, O.; et al. Prophylactic cranial irradiation versus observation in patients with extensive-disease small-cell lung cancer: A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2017, 18, 663–671. [Google Scholar] [CrossRef]
- Simone, C.B., 2nd; Bogart, J.A.; Cabrera, A.R.; Daly, M.E.; DeNunzio, N.J.; Detterbeck, F.; Faivre-Finn, C.; Gatschet, N.; Gore, E.; Jabbour, S.K.; et al. Radiation Therapy for Small-cell Lung Cancer: An ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2020, 10, 158–173. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, A.H.; Bae, K.; Komaki, R.; Meyers, C.; Movsas, B.; Le Pechoux, C.; Werner-Wasik, M.; Videtic, G.M.; Garces, Y.I.; Choy, H. Primary analysis of a phase II randomized trial Radiation Therapy Oncology Group (RTOG) 0212: Impact of different total doses and schedules of prophylactic cranial irradiation on chronic neurotoxicity and quality of life for patients with limited-disease small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Péchoux, C.; Dunant, A.; Senan, S.; Wolfson, A.; Quoix, E.; Faivre-Finn, C.; Ciuleanu, T.; Arriagada, R.; Jones, R.; Wanders, R.; et al. Standard-dose versus higher-dose prophylactic cranial irradiation (PCI) in patients with limited-stage small-cell lung cancer in complete remission after chemotherapy and thoracic radiotherapy (PCI 99-01, EORTC 22003-08004, RTOG 0212, and IFCT 99-01): A randomised clinical trial. Lancet Oncol. 2009, 10, 467–474. [Google Scholar] [CrossRef]
- Rodríguez de Dios, N.; Couñago, F.; Murcia-Mejía, M.; Rico-Oses, M.; Calvo-Crespo, P.; Samper, P.; Vallejo, C.; Luna, J.; Trueba, I.; Sotoca, A.; et al. Randomized Phase III Trial of Prophylactic Cranial Irradiation with or without Hippocampal Avoidance for Small-Cell Lung Cancer (PREMER): A GICOR-GOECP-SEOR Study. J. Clin. Oncol. 2021, 39, 3118–3127. [Google Scholar] [CrossRef]
- Belderbos, J.S.A.; De Ruysscher, D.K.M.; De Jaeger, K.; Koppe, F.; Lambrecht, M.L.F.; Lievens, Y.N.; Dieleman, E.M.T.; Jaspers, J.P.M.; Van Meerbeeck, J.P.; Ubbels, F.; et al. Phase 3 Randomized Trial of Prophylactic Cranial Irradiation with or without Hippocampus Avoidance in SCLC (NCT01780675). J. Thorac. Oncol. 2021, 16, 840–849. [Google Scholar] [CrossRef]
- Rittberg, R.; Banerji, S.; Kim, J.O.; Rathod, S.; Dawe, D.E. Treatment and Prevention of Brain Metastases in Small-cell Lung Cancer. Am. J. Clin. Oncol. 2021, 44, 629–638. [Google Scholar] [CrossRef]
- Hirsch, F.R.; Paulson, O.B.; Hansen, H.H.; Larsen, S.O. Intracranial metastases in small-cell carcinoma of the lung. Prognostic aspects. Cancer 1983, 51, 529–533. [Google Scholar] [CrossRef]
- Seute, T.; Leffers, P.; ten Velde, G.P.; Twijnstra, A. Neurologic disorders in 432 consecutive patients with small-cell lung carcinoma. Cancer 2004, 100, 801–806. [Google Scholar] [CrossRef]
- Kristjansen, P.E.; Kristensen, C.A. The role of prophylactic cranial irradiation in the management of small-cell lung cancer. Cancer Treat. Rev. 1993, 19, 3–16. [Google Scholar] [CrossRef]
- Kepka, L.; Socha, J.; Sas-Korczynska, B. Radiotherapy for brain metastases from small-cell lung cancer in distinct clinical indications and scenarios. J. Thorac. Dis. 2021, 13, 3269–3278. [Google Scholar] [CrossRef] [PubMed]
- Grossi, F.; Scolaro, T.; Tixi, L.; Loprevite, M.; Ardizzoni, A. The role of systemic chemotherapy in the treatment of brain metastases from small-cell lung cancer. Crit. Rev. Oncol. Hematol. 2001, 37, 61–67. [Google Scholar] [CrossRef]
- Seute, T.; Leffers, P.; Wilmink, J.T.; ten Velde, G.P.; Twijnstra, A. Response of asymptomatic brain metastases from small-cell lung cancer to systemic first-line chemotherapy. J. Clin. Oncol. 2006, 24, 2079–2083. [Google Scholar] [CrossRef] [PubMed]
- van Grinsven, E.E.; Nagtegaal, S.H.J.; Verhoeff, J.J.C.; van Zandvoort, M.J.E. The Impact of Stereotactic or Whole Brain Radiotherapy on Neurocognitive Functioning in Adult Patients with Brain Metastases: A Systematic Review and Meta-Analysis. Oncol. Res. Treat. 2021, 44, 622–636. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.D.; Pugh, S.; Laack, N.N.; Wefel, J.S.; Khuntia, D.; Meyers, C.; Choucair, A.; Fox, S.; Suh, J.H.; Roberge, D.; et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: A randomized, double-blind, placebo-controlled trial. Neuro Oncol. 2013, 15, 1429–1437. [Google Scholar] [CrossRef]
- Brown, P.D.; Gondi, V.; Pugh, S.; Tome, W.A.; Wefel, J.S.; Armstrong, T.S.; Bovi, J.A.; Robinson, C.; Konski, A.; Khuntia, D.; et al. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients with Brain Metastases: Phase III Trial NRG Oncology CC001. J. Clin. Oncol. 2020, 38, 1019–1029. [Google Scholar] [CrossRef]
- Vogelbaum, M.A.; Brown, P.D.; Messersmith, H.; Brastianos, P.K.; Burri, S.; Cahill, D.; Dunn, I.F.; Gaspar, L.E.; Gatson, N.T.N.; Gondi, V.; et al. Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. J. Clin. Oncol. 2022, 40, 492–516. [Google Scholar] [CrossRef]
- Wegner, R.E.; Olson, A.C.; Kondziolka, D.; Niranjan, A.; Lundsford, L.D.; Flickinger, J.C. Stereotactic radiosurgery for patients with brain metastases from small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e21–e27. [Google Scholar] [CrossRef]
- Robin, T.P.; Jones, B.L.; Amini, A.; Koshy, M.; Gaspar, L.E.; Liu, A.K.; Nath, S.K.; Kavanagh, B.D.; Camidge, D.R.; Rusthoven, C.G. Radiosurgery alone is associated with favorable outcomes for brain metastases from small-cell lung cancer. Lung Cancer 2018, 120, 88–90. [Google Scholar] [CrossRef]
- Rusthoven, C.G.; Yamamoto, M.; Bernhardt, D.; Smith, D.E.; Gao, D.; Serizawa, T.; Yomo, S.; Aiyama, H.; Higuchi, Y.; Shuto, T.; et al. Evaluation of First-line Radiosurgery vs. Whole-Brain Radiotherapy for Small-cell Lung Cancer Brain Metastases: The FIRE-SCLC Cohort Study. JAMA Oncol. 2020, 6, 1028–1037. [Google Scholar] [CrossRef]
- Gaebe, K.; Li, A.Y.; Park, A.; Parmar, A.; Lok, B.H.; Sahgal, A.; Chan, K.K.W.; Erickson, A.W.; Das, S. Stereotactic radiosurgery versus whole brain radiotherapy in patients with intracranial metastatic disease and small-cell lung cancer: A systematic review and meta-analysis. Lancet Oncol. 2022, 23, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Klingbeil, O.; He, X.Y.; Wu, X.S.; Arun, G.; Lu, B.; Somerville, T.D.D.; Milazzo, J.P.; Wilkinson, J.E.; Demerdash, O.E.; et al. POU2F3 is a master regulator of a tuft cell-like variant of small-cell lung cancer. Genes. Dev. 2018, 32, 915–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudin, C.M.; Poirier, J.T.; Byers, L.A.; Dive, C.; Dowlati, A.; George, J.; Heymach, J.V.; Johnson, J.E.; Lehman, J.M.; MacPherson, D.; et al. Molecular subtypes of small-cell lung cancer: A synthesis of human and mouse model data. Nat. Rev. Cancer 2019, 19, 289–297. [Google Scholar] [CrossRef]
- Gay, C.M.; Stewart, C.A.; Park, E.M.; Diao, L.; Groves, S.M.; Heeke, S.; Nabet, B.Y.; Fujimoto, J.; Solis, L.M.; Lu, W.; et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell 2021, 39, 346–360. [Google Scholar] [CrossRef]
- McColl, K.; Wildey, G.; Sakre, N.; Lipka, M.B.; Behtaj, M.; Kresak, A.; Chen, Y.; Yang, M.; Velcheti, V.; Fu, P.; et al. Reciprocal expression of INSM1 and YAP1 defines subgroups in small-cell lung cancer. Oncotarget 2017, 8, 73745–73756. [Google Scholar] [CrossRef] [Green Version]
- Skoulidis, F.; Byers, L.A.; Diao, L.; Papadimitrakopoulou, V.A.; Tong, P.; Izzo, J.; Behrens, C.; Kadara, H.; Parra, E.R.; Canales, J.R.; et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 2015, 5, 860–877. [Google Scholar] [CrossRef] [Green Version]
- George, J.; Lim, J.S.; Jang, S.J.; Cun, Y.; Ozretić, L.; Kong, G.; Leenders, F.; Lu, X.; Fernández-Cuesta, L.; Bosco, G.; et al. Comprehensive genomic profiles of small-cell lung cancer. Nature 2015, 524, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baine, M.K.; Hsieh, M.S.; Lai, W.V.; Egger, J.V.; Jungbluth, A.A.; Daneshbod, Y.; Beras, A.; Spencer, R.; Lopardo, J.; Bodd, F.; et al. SCLC Subtypes Defined by ASCL1, NEUROD1, POU2F3, and YAP1: A Comprehensive Immunohistochemical and Histopathologic Characterization. J. Thorac. Oncol. 2020, 15, 1823–1835. [Google Scholar] [CrossRef]
- Megyesfalvi, Z.; Barany, N.; Lantos, A.; Valko, Z.; Pipek, O.; Lang, C.; Schwendenwein, A.; Oberndorfer, F.; Paku, S.; Ferencz, B.; et al. Expression patterns and prognostic relevance of subtype-specific transcription factors in surgically resected small-cell lung cancer: An international multicenter study. J. Pathol. 2022, 257, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Dora, D.; Rivard, C.; Yu, H.; Pickard, S.L.; Laszlo, V.; Harko, T.; Megyesfalvi, Z.; Gerdan, C.; Dinya, E.; Hoetzenecker, K.; et al. Protein Expression of immune checkpoints STING and MHCII in small-cell lung cancer. Cancer Immunol. Immunother. 2023, 72, 561–578. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.M.; Zhan, L.J.; Liu, G.; Rittberg, R.; Patel, D.; Chowdhury, D.; Leung, B.; Cheng, S.; Mckinnon, M.; Khan, K.; et al. EP03.01-016 The Canadian Small-cell Lung Cancer Database (CASCADE): Results from a Multi-Institutional Real-World Evidence Collaboration. J. Thorac. Oncol. 2022, 17, S244. [Google Scholar] [CrossRef]
Recommendations for Pathological Assessment | |
1. | SCLC should be diagnosed according to the most recent World Health Organization criteria. |
2. | If available, tissue biopsies and cytology samples should be correlated to ensure accurate diagnosis of SCLC. |
3. | The presence of any adenocarcinoma component in a C-SCLC or a new diagnosis of SCLC in a non-smoker should prompt molecular testing for driver mutations for the consideration of targeted therapy. |
4. | Currently there is no routine predictive biomarker available for SCLC and biomarker testing is not recommended in routine clinical practice. |
Recommendations for Diagnosis and Staging | |
5. | A complete diagnostic/staging workup should include a physical examination, hematologic and biochemical laboratory profiles, CT chest, abdomen, and pelvis, as well as MRI or CT imaging of the brain.
|
6. | Prompt treatment initiation is of greater importance than complete staging once the extensive disease is evident due to the rapid progression of untreated ES-SCLC. Staging may continue during and immediately after the initiation of treatment. |
Recommendations for First-line Systemic Therapy in ES-SCLC | |
7. | Preferred first-line systemic therapy for ES-SCLC should include four cycles of EP in combination with a PD-L1 inhibitor (atezolizumab or durvalumab) if there are no contraindications.
|
8. | Alternatives could include platinum with irinotecan or treating with CAV for a platinum-free regimen. These regimens have not been approved in combination with PD-L1/PD-1 inhibitors.
|
9. | Patients with poor PS (Eastern Cooperative Oncology Group [ECOG] ≥ 3) may become eligible for a PD-L1 inhibitor if their PS improves after 1–2 cycles of chemotherapy.
|
10. | During systemic therapy and PD-L1 maintenance, patients with ES-SCLC could be assessed with imaging every 2–3 months, depending on disease sites and the burden of the disease. |
Recommendations for Subsequent Lines of Therapy | |
11. | Retreatment with the initial platinum-based doublet chemotherapy should be considered for platinum-sensitive patients (treatment-free interval ≥ 90 days) who are able to tolerate it. |
12. | For patients with ES-SCLC who experience progression on or within 3 months of completing first-line chemotherapy, one should consider CAV or IV topotecan. Lurbinectedin could also be considered. Irinotecan is an option. |
13. | For patients with poor PS (ECOG ≥ 3) with progression while on or after initial therapy, symptom management with best supportive care should be considered. |
14. | Upon the second progression, subsequent lines of therapy are generally less effective than the initial treatment but may provide significant palliation for some patients. Symptom control and improved quality of life are the primary goals of treatment. |
Recommendations for Thoracic Radiation Therapy | |
15. | RT to the residual primary tumour and lymph nodes could be offered to patients with documented response to systemic therapy presenting with residual thoracic disease, limited extra-thoracic disease and ECOG PS 0–2 who achieve a response after chemotherapy +/− PD-L1 inhibitor.
|
Recommendations for PCI | |
16. | For ES-SCLC patients with good PS who have had a complete or very good partial response to chemotherapy +/− PD-L1 inhibitor as part of their first-line systemic therapy, both PCI and observation with regular brain MRI surveillance are acceptable options. An individualized discussion should be held with patients to evaluate the risks and benefits of each approach.
|
17. | Due to the high risk of developing brain metastases, MRI surveillance imaging (every 3 months during the first year and every 6 months thereafter) for brain metastases should be recommended for all patients regardless of PCI status. |
Recommendations for ES-SCLC Patients with Brain Metastases | |
18. | Patients with ES-SCLC who present with asymptomatic brain metastases could receive systemic therapy, followed by radiation therapy upon completion of induction therapy. |
19. | Those with symptomatic brain metastases should receive radiation therapy, followed by systemic therapy. |
20. | Serial brain MRI imaging is recommended in patients who have asymptomatic brain metastases and are receiving systemic therapy before brain RT
|
21. | In patients with solitary brain metastases, SRS may be an acceptable alternative to WBRT +/− HA, despite the lack of trial data; however, the choice between SRS and WBRT +/− HA depends on the location, size, and number of intracranial lesions and extent of extracranial disease. |
Recommendation for Emerging Biomarkers | |
22. | Although one can assess novel biomarkers and SCLC subtypes, at present, they should not be used to make treatment-related decisions. Testing for the biomarkers is a research tool that may be used for screening potential trial candidates. |
Study (Drug) | Trial Design | N Randomization | Median OS (Months) Treatment vs. Control | HR (95% CI) | p-Value | Median Follow-Up (Months) | 2-Year OS Treatment vs. Control | Health Canada Approved |
---|---|---|---|---|---|---|---|---|
IMPOWER133 (Atezolizumab) | Double-blind, placebo-controlled | 403 1:1 carboplatin and etoposide with atezolizumab or placebo | 12.3 vs. 10.3 | 0.76 (0.60–0.95) | 0.0154 | 22.9 | 22.0% vs. 16.8% | Yes |
CASPIAN (Durvalumab) | Open label | 805 1:1 carboplatin or cisplatin and etoposide with durvalumab or placebo | 13.0 vs. 10.3 | 0.73 (0.59–0.91) | 0.003 | 39.4 | 22.9% vs. 13.9% | Yes |
KEYNOTE 604 (Pembrolizumab) | Double-blind, placebo-controlled | 453 1:1 carboplatin or cisplatin and etoposide with pembrolizumab or placebo | 10.8 vs. 9.7 | 0.80 (0.64 to 0.98) | 0.0164 b | 21.6 | 22.5% vs. 11.2% | No |
CheckMate 451 (Nivolumab) | Double-blind | 834 1:1:1 nivolumab plus ipilimumab or nivolumab or placebo | 9.2 (nivolumab + ipilimumab) vs. 10.4 (nivolumab) vs. 9.6 (placebo) | nivolumab + ipilimumab vs. placebo: 0.92 (0.75 to 1.12) nivolumab vs. placebo: 0.84 (0.69 to 1.02) | Nivolumab + ipilimumab vs. placebo: 0.37 | 8.9 | - | No |
ASTRUM-005 (Serplulimab) | Double-blind, placebo-controlled | 585 2:1 serplulimab plus chemotherapy or placebo plus chemotherapy | 15.4 vs. 10.9 | 0.63 (0.49–0.82) | <0.001 | 12.3 | - | No |
CAPSTONE-1 (Adebrelimab) | Double-blind, placebo-controlled | 462 1:1 | 15.3 vs. 12.8 | 0.72 (0.58–0.90) | 0.0017 | 13.5 | - | No |
SKYSCRAPER-02 a (Tiragolumab) | Double-blind, placebo-controlled | 490 1:1 tiragolumab plus atezolizumab plus chemotherapy or placebo plus atezolizumab plus chemotherapy | 13.6 (T + A + C) vs. 13.6 (P + A + C) | 1.04 (0.79–1.36) | 0.7963 | 14.3 | - | Not relevant |
Trial | Phase | Treatment | ORR | PFS (Months) | OS (Months) |
---|---|---|---|---|---|
Baize N [68] | 3 | Carboplatin plus etoposide (re-challenge with chemotherapy) | 49% | 4.7 | 7.5 |
Topotecan IV | 25% | 2.7 | 7.4 | ||
Von Pawel J [74] | 2 | Topotecan IV | 24% | 3.1 | - |
CAV | 18% | 2.9 | - | ||
Edelman MJ [75] | 3 | Dinutuximab/irinotecan | 17.1% | 3.5 | 6.9 |
Irinotecan | 18.9% | 3.0 | 7.0 | ||
Topotecan IV | 20.2% | 3.4 | 7.4 | ||
Trigo J [12] | 2 (Single arm, open-label) b | Lurbinectedin | 34.7% | 3.9 | 9.3 |
ATLANTIS [78] | 3 | Lurbinectedin/doxorubicin | 31.6% | 4 | 8.6 |
CAV or topotecan | 29.7% | 4 | 7.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melosky, B.L.; Leighl, N.B.; Dawe, D.; Blais, N.; Wheatley-Price, P.F.; Chu, Q.S.-C.; Juergens, R.A.; Ellis, P.M.; Sun, A.; Schellenberg, D.; et al. Canadian Consensus Recommendations on the Management of Extensive-Stage Small-Cell Lung Cancer. Curr. Oncol. 2023, 30, 6289-6315. https://doi.org/10.3390/curroncol30070465
Melosky BL, Leighl NB, Dawe D, Blais N, Wheatley-Price PF, Chu QS-C, Juergens RA, Ellis PM, Sun A, Schellenberg D, et al. Canadian Consensus Recommendations on the Management of Extensive-Stage Small-Cell Lung Cancer. Current Oncology. 2023; 30(7):6289-6315. https://doi.org/10.3390/curroncol30070465
Chicago/Turabian StyleMelosky, Barbara L., Natasha B. Leighl, David Dawe, Normand Blais, Paul F. Wheatley-Price, Quincy S.-C. Chu, Rosalyn A. Juergens, Peter M. Ellis, Alexander Sun, Devin Schellenberg, and et al. 2023. "Canadian Consensus Recommendations on the Management of Extensive-Stage Small-Cell Lung Cancer" Current Oncology 30, no. 7: 6289-6315. https://doi.org/10.3390/curroncol30070465
APA StyleMelosky, B. L., Leighl, N. B., Dawe, D., Blais, N., Wheatley-Price, P. F., Chu, Q. S. -C., Juergens, R. A., Ellis, P. M., Sun, A., Schellenberg, D., Ionescu, D. N., & Cheema, P. K. (2023). Canadian Consensus Recommendations on the Management of Extensive-Stage Small-Cell Lung Cancer. Current Oncology, 30(7), 6289-6315. https://doi.org/10.3390/curroncol30070465