Evaluating the Efficacy of Immunotherapy in Fragile Hospitalized Patients
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Patient Enrollment
2.3. Data Collection
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Treatment Characteristics
3.3. ICI-Related Adverse Events
3.4. Effectiveness of Immunotherapy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Mollica, V.; Santoni, M.; Massari, F. Cancer Immunotherapy: Current and Future Perspectives on a Therapeutic Revolution. J. Clin. Med. 2021, 10, 5246. [Google Scholar] [CrossRef] [PubMed]
- Korman, A.J.; Garrett-Thomson, S.C.; Lonberg, N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat. Rev. Drug Discov. 2022, 21, 509–528. [Google Scholar] [CrossRef] [PubMed]
- Scott, E.C.; Baines, A.C.; Gong, Y.; Moore, R., Jr.; Pamuk, G.E.; Saber, H.; Subedee, A.; Thompson, M.D.; Xiao, W.; Pazdur, R.; et al. Trends in the approval of cancer therapies by the FDA in the twenty-first century. Nat. Rev. Drug Discov. 2023, 22, 625–640. [Google Scholar] [CrossRef]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Iranzo, P.; Callejo, A.; Assaf, J.D.; Molina, G.; Lopez, D.E.; Garcia-Illescas, D.; Pardo, N.; Navarro, A.; Martinez-Marti, A.; Cedres, S.; et al. Overview of Checkpoint Inhibitors Mechanism of Action: Role of Immune-Related Adverse Events and Their Treatment on Progression of Underlying Cancer. Front. Med. 2022, 9, 875974. [Google Scholar] [CrossRef]
- Waldmann, T.A. Immunotherapy: Past, present and future. Nat. Med. 2003, 9, 269–277. [Google Scholar] [CrossRef]
- Hodi, F.S.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomized, phase 3 trial. Lancet Oncol. 2018, 19, 1480–1492. [Google Scholar] [CrossRef]
- Toribio-Vazquez, C.; Gomez Rivas, J.; Yebes, A.; Carrion, D.M.; Quesada-Olarte, J.; Trelles, C.R.; Alvarez-Maestro, M.; van der Poel, H.; Martinez-Pineiro, L. Immunotherapy toxicity. Diagnosis and treatment. Arch. Esp. Urol. 2020, 73, 906–917. [Google Scholar] [PubMed]
- Darnell, E.P.; Mooradian, M.J.; Baruch, E.N.; Yilmaz, M.; Reynolds, K.L. Immune-Related Adverse Events (irAEs): Diagnosis, Management, and Clinical Pearls. Curr. Oncol. Rep. 2020, 22, 39. [Google Scholar] [CrossRef]
- Sosa, A.; Lopez Cadena, E.; Simon Olive, C.; Karachaliou, N.; Rosell, R. Clinical assessment of immune-related adverse events. Ther. Adv. Med. Oncol. 2018, 10, 1758835918764628. [Google Scholar] [CrossRef] [PubMed]
- Pierro, M.; Baldini, C.; Auclin, E.; Vincent, H.; Varga, A.; Martin Romano, P.; Vuagnat, P.; Besse, B.; Planchard, D.; Hollebecque, A.; et al. Predicting Immunotherapy Outcomes in Older Patients with Solid Tumors Using the LIPI Score. Cancers 2022, 14, 5078. [Google Scholar] [CrossRef] [PubMed]
- Muchnik, E.; Loh, K.P.; Strawderman, M.; Magnuson, A.; Mohile, S.G.; Estrah, V.; Maggiore, R.J. Immune Checkpoint Inhibitors in Real-World Treatment of Older Adults with Non-Small Cell Lung Cancer. J. Am. Geriatr. Soc. 2019, 67, 905–912. [Google Scholar] [CrossRef]
- Nie, N.F.; Liu, Z.L.; Feng, M.X.; Liu, L.; Luo, N.; Li, L.; He, Y. Lazarus type response to immunotherapy in three patients with poor performance status and locally advanced NSCLC: A case series and literature review. Ann. Palliat. Med. 2021, 10, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Magee, D.E.; Hird, A.E.; Klaassen, Z.; Sridhar, S.S.; Nam, R.K.; Wallis, C.J.D.; Kulkarni, G.S. Adverse event profile for immunotherapy agents compared with chemotherapy in solid organ tumors: A systematic review and meta-analysis of randomized clinical trials. Ann. Oncol. 2020, 31, 50–60. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Fountzilas, E.; Nikanjam, M.; Kurzrock, R. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treat. Rev. 2020, 86, 102019. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Loupakis, F.; Randon, G.; Raimondi, A.; Salati, M.; Trapani, D.; Pagani, F.; Depetris, I.; Maddalena, G.; Morano, F.; et al. Efficacy and Safety of Immune Checkpoint Inhibitors in Patients with Microsatellite Instability-High End-Stage Cancers and Poor Performance Status Related to High Disease Burden. Oncologist 2020, 25, 803–809. [Google Scholar] [CrossRef]
- Blum, S.M.; Rouhani, S.J.; Sullivan, R.J. Effects of immune-related adverse events (irAEs) and their treatment on antitumor immune responses. Immunol. Rev. 2023, 318, 167–178. [Google Scholar] [CrossRef]
- Ao, G.; de Miguel, M.; Gomes, A.; Liu, R.; Boni, V.; Moreno, I.; Cardenas, J.M.; Cubillo, A.; Ugidos, L.; Calvo, E. Toxicity and antitumor activity of novel agents in elderly patients with cancer included in phase 1 studies. Investig. New Drugs 2021, 39, 1694–1701. [Google Scholar] [CrossRef]
- Marron, T.U.; Ryan, A.E.; Reddy, S.M.; Kaczanowska, S.; Younis, R.H.; Thakkar, D.; Zhang, J.; Bartkowiak, T.; Howard, R.; Anderson, K.G.; et al. Considerations for treatment duration in responders to immune checkpoint inhibitors. J. Immunother. Cancer 2021, 9, e001901. [Google Scholar] [CrossRef]
- Brands, X.; Haak, B.W.; Klarenbeek, A.M.; Otto, N.A.; Faber, D.R.; Lutter, R.; Scicluna, B.P.; Wiersinga, W.J.; van der Poll, T. Concurrent Immune Suppression and Hyperinflammation in Patients With Community-Acquired Pneumonia. Front. Immunol. 2020, 11, 796. [Google Scholar] [CrossRef]
- Yende, S.; Kellum, J.A.; Talisa, V.B.; Peck Palmer, O.M.; Chang, C.H.; Filbin, M.R.; Shapiro, N.I.; Hou, P.C.; Venkat, A.; LoVecchio, F.; et al. Long-term Host Immune Response Trajectories Among Hospitalized Patients with Sepsis. JAMA Netw. Open 2019, 2, e198686. [Google Scholar] [CrossRef]
- Yende, S.; D’Angelo, G.; Kellum, J.A.; Weissfeld, L.; Fine, J.; Welch, R.D.; Kong, L.; Carter, M.; Angus, D.C.; Gen, I.M.S.I. Inflammatory markers at hospital discharge predict subsequent mortality after pneumonia and sepsis. Am. J. Respir. Crit. Care Med. 2008, 177, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litiere, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef] [PubMed]
- Azam, F.; Latif, M.F.; Farooq, A.; Tirmazy, S.H.; AlShahrani, S.; Bashir, S.; Bukhari, N. Performance Status Assessment by Using ECOG (Eastern Cooperative Oncology Group) Score for Cancer Patients by Oncology Healthcare Professionals. Case Rep. Oncol. 2019, 12, 728–736. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute (U.S.). Common Terminology Criteria for Adverse Events (CTCAE); U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute: Bethesda, MD, USA, 2009; 194p. [Google Scholar]
- Nasser, N.J.; Gorenberg, M.; Agbarya, A. First line Immunotherapy for Non-Small Cell Lung Cancer. Pharmaceuticals 2020, 13, 373. [Google Scholar] [CrossRef]
- Grivas, P.; Plimack, E.R.; Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Bellmunt, J.; Powles, T.; Hahn, N.M.; de Wit, R.; Bajorin, D.F.; et al. Pembrolizumab as First-line Therapy in Cisplatin-ineligible Advanced Urothelial Cancer (KEYNOTE-052): Outcomes in Older Patients by Age and Performance Status. Eur. Urol. Oncol. 2020, 3, 351–359. [Google Scholar] [CrossRef]
- Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csoszi, T.; Fulop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G., Jr.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Mazza, C.; Escudier, B.; Albiges, L. Nivolumab in renal cell carcinoma: Latest evidence and clinical potential. Ther. Adv. Med. Oncol. 2017, 9, 171–181. [Google Scholar] [CrossRef]
- Sacchi de Camargo Correia, G.; Pai, T.; Li, S.; Connor, D.; Zhao, Y.; Lou, Y.; Manochakian, R. Immune-Related Adverse Events in Patients with Lung Cancer. Curr. Oncol. Rep. 2023, 25, 1259–1275. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zheng, Y.; Wang, P.P.; Ding, Z.Y. Toxicities of Immunotherapy for Small Cell Lung Cancer. Front. Oncol. 2021, 11, 603658. [Google Scholar] [CrossRef]
- Li, Y.; Meng, Y.; Sun, H.; Ye, L.; Zeng, F.; Chen, X.; Deng, G. The Prognostic Significance of Baseline Neutrophil-to-Lymphocyte Ratio in Melanoma Patients Receiving Immunotherapy. J. Immunother. 2022, 45, 43–50. [Google Scholar] [CrossRef]
- Popovic, A.; Petkovic, I.; Dimitrijevic, A.; Jovic, A. Prognostic Value of Lactate Dehydrogenase in Patients with Melanoma Treated with Pembrolizumab. Acta Dermatovenerol. Croat 2023, 31, 86–91. [Google Scholar]
- Wei, Y.; Xu, J.; Huang, X.; Xie, S.; Lin, P.; Wang, C.; Guo, Y.; Zou, S.; Zhao, Z.; Wen, W.; et al. C-reactive protein and lactate dehydrogenase serum levels potentially predict the response to checkpoint inhibitors in patients with advanced non-small cell lung cancer. J. Thorac. Dis. 2023, 15, 1892–1900. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Chen, Z.; Zhuang, Q.; Fan, M.; Ding, T.; Lu, H.; He, X. Prognostic Value of Serum Lactate Dehydrogenase in Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0166482. [Google Scholar] [CrossRef] [PubMed]
Characteristics | N (%) |
---|---|
Sex | |
| 21 (42.9) |
| 28 (57.1) |
Age | |
| 64 (37–85) |
| 64.4 ± 10 |
| 37–85 |
Cancer type | |
| 32 (65.3) |
| 7 (14.3) |
| 5 (10.2) |
| 2 (4.1) |
| 1 (2.0) |
| 2 (4.1) |
Stage | |
| 7 (14.3) |
| 42 (85.7) |
ECOG | |
| 4 (8.2) |
| 17 (34.7) |
| 14 (28.6) |
| 9 (18.4) |
| 1 (2.0) |
| 4 (8.2) |
BMI | |
| 3 (6.1) |
| 23 (46.9) |
| 14 (28.6) |
| 8 (16.3) |
| 0 (0) |
| 1 (2.0) |
Weight loss (≥10% in 6 months) | |
| 12 (24.5) |
| 12 (24.5) |
| 25 (51) |
Prior Treatment | N (%) |
---|---|
Chemotherapy | |
| 16 (32.7) |
| 33 (67.3) |
Radiation | |
| 20 (40.8) |
| 29 (59.2) |
Surgery | |
| 26 (53.1) |
| 23 (46.9) |
Variable | HR [IC 95%] | p-Value |
---|---|---|
Ratio N/L | 1.035 [0.985–1.088] | 0.168 |
CRP (mg/L) | 1.002 [0.998–1.007] | 0.302 |
Albumin (g/L) | 0.917 [0.852–0.987] | 0.021 |
LDH (U/L) | 2.224 [1.469–3.367] | <0.001 |
ECOG | ||
0 | Ref. | - |
1 | 1.057 [0.231–4.836] | 0.943 |
2 | 3.766 [0.845–16.787] | 0.082 |
3–4 | 5.666 [1.207–26.594] | 0.028 |
Number of cycles | ||
1–3 | Ref. | - |
4–6 | 0.335 [0.152–0.738] | 0.007 |
>6 | 0.040 [0.009–0.186] | <0.001 |
Line of treatment | ||
1 | Ref. | - |
≥2 | 2.603 [1.174–5.769] | 0.019 |
Weight loss (≥10% in 6 months) | 2.007 [0.803–5.014] | 0.136 |
Variable | HR [IC 95%] | p-Value |
---|---|---|
Ratio N/L | 1.070 [1.014–1.128] | 0.013 |
CRP (mg/L) | 1.002 [0.996–1.009] | 0.442 |
Albumin (g/L) | 0.971 [0.872–1.082] | 0.598 |
LDH (U/L) | 19.128 [0.031–11674.733] | 0.367 |
ECOG | ||
0 | Ref. | - |
1 | 0.833 [0.230–3.014] | 0.781 |
2 | 1.391 [0.307–6.300] | 0.668 |
3–4 | 4.136 [0.867–19.733] | 0.075 |
Number of cycles | ||
1–3 | Ref. | - |
4–6 | 0.477 [0.193–1.178] | 0.109 |
>6 | 0.123 [0.039–0.384] | <0.001 |
Line of treatment | ||
1 | Ref. | - |
≥2 | 2.486 [0.719–8.595] | 0.150 |
Weight loss (≥10% within 6 months) | 2.849 [0.865–9.382] | 0.085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajadurai, C.V.; Gagnon, G.; Allard, C.; Malick, M.; Pavic, M. Evaluating the Efficacy of Immunotherapy in Fragile Hospitalized Patients. Curr. Oncol. 2024, 31, 7040-7050. https://doi.org/10.3390/curroncol31110518
Rajadurai CV, Gagnon G, Allard C, Malick M, Pavic M. Evaluating the Efficacy of Immunotherapy in Fragile Hospitalized Patients. Current Oncology. 2024; 31(11):7040-7050. https://doi.org/10.3390/curroncol31110518
Chicago/Turabian StyleRajadurai, Charles Vincent, Guillaume Gagnon, Catherine Allard, Mandy Malick, and Michel Pavic. 2024. "Evaluating the Efficacy of Immunotherapy in Fragile Hospitalized Patients" Current Oncology 31, no. 11: 7040-7050. https://doi.org/10.3390/curroncol31110518
APA StyleRajadurai, C. V., Gagnon, G., Allard, C., Malick, M., & Pavic, M. (2024). Evaluating the Efficacy of Immunotherapy in Fragile Hospitalized Patients. Current Oncology, 31(11), 7040-7050. https://doi.org/10.3390/curroncol31110518