Population Pharmacokinetics of Tamibarotene in Pediatric and Young Adult Patients with Recurrent or Refractory Solid Tumors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Sample Collection and Extraction
2.3. Determination of Serum Tamibarotene Levels
2.4. Method Validation
2.5. Non-Compartmental Model Analysis
2.6. The Development of a Tamibarotene popPK Model
2.7. The Evaluation of a Tamibarotene popPK Model
3. Results
3.1. Non-Compartmental Analysis
3.2. Tamibarotene popPK Analysis
3.3. Model Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakata, K.; Matsuda, T.; Hori, M.; Sugiyama, H.; Tabuchi, K.; Miyashiro, I.; Matsumoto, K.; Yoneda, A.; Takita, J.; Shimizu, C.; et al. Cancer incidence and type of treatment hospital among children, adolescents, and young adults in Japan, 2016–2018. Cancer Sci. 2023, 114, 3770–3782. [Google Scholar] [CrossRef] [PubMed]
- Brodeur, G.M. Neuroblastoma: Biological insights into a clinical enigma. Nat. Rev. Cancer 2003, 3, 203–216. [Google Scholar] [CrossRef]
- Mueller, S.; Matthay, K.K. Neuroblastoma: Biology and staging. Curr. Oncol. Rep. 2009, 11, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Whittle, S.B.; Smith, V.; Doherty, E.; Zhao, S.; McCarty, S.; Zage, P.E. Overview and recent advances in the treatment of neuroblastoma. Expert. Rev. Anticancer Ther. 2017, 17, 369–386. [Google Scholar] [CrossRef]
- London, W.B.; Castel, V.; Monclair, T.; Ambros, P.F.; Pearson, A.D.J.; Cohn, S.L.; Berthold, F.; Nakagawara, A.; Ladenstein, R.L.; Iehara, T.; et al. Clinical and biologic features predictive of survival after relapse of neuroblastoma: A report from the International Neuroblastoma Risk Group project. J. Clin. Oncol. 2011, 29, 3286–3292. [Google Scholar] [CrossRef]
- Matthay, K.K.; Villablanca, J.G.; Seeger, R.C.; Stram, D.O.; Harris, R.E.; Ramsay, N.K.; Swift, P.; Shimada, H.; Black, C.T.; Brodeur, G.M.; et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N. Engl. J. Med. 1999, 341, 1165–1173. [Google Scholar] [CrossRef]
- Matthay, K.K.; Reynolds, C.P.; Seeger, R.C.; Shimada, H.; Adkins, E.S.; Haas-Kogan, D.; Gerbing, R.B.; London, W.B.; Villablanca, J.G. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: A children’s oncology group study. J. Clin. Oncol. 2009, 27, 1007–1013. [Google Scholar] [CrossRef]
- Ablain, J.; de Thé, H. Retinoic acid signaling in cancer: The parable of acute promyelocytic leukemia. Int. J. Cancer 2014, 135, 2262–2272. [Google Scholar] [CrossRef]
- di Masi, A.; Leboffe, L.; De Marinis, E.; Pagano, F.; Cicconi, L.; Rochette-Egly, C.; Lo-Coco, F.; Ascenzi, P.; Nervi, C. Retinoic acid receptors: From molecular mechanisms to cancer therapy. Mol. Asp. Med. 2015, 41, 1–115. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Kagechika, H.; Kawachi, E.; Shudo, K. Specific uptake of retinoids into human promyelocytic leukemia cells HL-60 by retinoid-specific binding protein: Possibly the true retinoid receptor. Jpn. J. Cancer Res. 1988, 79, 473–483. [Google Scholar] [CrossRef]
- Kagechika, H.; Kawachi, E.; Hashimoto, Y.; Himi, T.; Shudo, K. Retinobenzoic acids. 1. Structure-activity relationships of aromatic amides with retinoidal activity. J. Med. Chem. 1988, 31, 2182–2192. [Google Scholar] [CrossRef] [PubMed]
- Miwako, I.; Kagechika, H. Tamibarotene. Drugs Today 2007, 43, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Sanford, D.; Lo-Coco, F.; Sanz, M.A.; Di Bona, E.; Coutre, S.; Altman, J.K.; Wetzler, M.; Allen, S.L.; Ravandi, F.; Kantarjian, H.; et al. Tamibarotene in patients with acute promyelocytic leukaemia relapsing after treatment with all-trans retinoic acid and arsenic trioxide. Br. J. Haematol. 2015, 171, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Shinagawa, K.; Yanada, M.; Sakura, T.; Ueda, Y.; Sawa, M.; Miyatake, J.; Dobashi, N.; Kojima, M.; Hatta, Y.; Emi, N.; et al. Tamibarotene as maintenance therapy for acute promyelocytic leukemia: Results from a randomized controlled trial. J. Clin. Oncol. 2014, 32, 3729–3735. [Google Scholar] [CrossRef]
- Takeshita, A.; Asou, N.; Atsuta, Y.; Sakura, T.; Ueda, Y.; Sawa, M.; Dobashi, N.; Taniguchi, Y.; Suzuki, R.; Nakagawa, M.; et al. Tamibarotene maintenance improved relapse-free survival of acute promyelocytic leukemia: A final result of prospective, randomized, JALSG-APL204 study. Leukemia 2019, 33, 358–370. [Google Scholar] [CrossRef]
- Kanai, F.; Obi, S.; Fujiyama, S.; Shiina, S.; Tamai, H.; Mochizuki, H.; Koike, Y.; Imamura, J.; Yamaguchi, T.; Saida, I.; et al. An open-label phase I/II study of tamibarotene in patients with advanced hepatocellular carcinoma. Hepatol. Int. 2014, 8, 94–103. [Google Scholar] [CrossRef]
- Shiohira, H.; Kitaoka, A.; Shirasawa, H.; Enjoji, M.; Nakashima, M. Am80 induces neuronal differentiation in a human neuroblastoma NH-12 cell line. Int. J. Mol. Med. 2010, 26, 393–399. [Google Scholar]
- Shiohira, H.; Kitaoka, A.; Enjoji, M.; Uno, T.; Nakashima, M. Am80 induces neuronal differentiation via increased tropomyosin-related kinase B expression in a human neuroblastoma SH-SY5Y cell line. Biomed. Res. 2012, 33, 291–297. [Google Scholar] [CrossRef]
- Hattori, N.; Asada, K.; Miyajima, N.; Mori, A.; Nakanishi, Y.; Kimura, K.; Wakabayashi, M.; Takeshima, H.; Nitani, C.; Hara, J.; et al. Combination of a synthetic retinoid and a DNA demethylating agent induced differentiation of neuroblastoma through retinoic acid signal reprogramming. Br. J. Cancer 2021, 125, 1647–1656. [Google Scholar] [CrossRef]
- Package Inserts of Tamibarotene. Available online: https://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/480114_4291014F1021_1_14 (accessed on 30 October 2024). (In Japanese).
- Nitani, C.; Hara, J.; Kawamoto, H.; Taguchi, T.; Kimura, T.; Yoshimura, K.; Hamada, A.; Kitano, S.; Hattori, N.; Ushijima, T.; et al. Phase I study of tamibarotene monotherapy in pediatric and young adult patients with recurrent/refractory solid tumors. Cancer Chemother. Pharmacol. 2021, 88, 99–107. [Google Scholar] [CrossRef]
- Fukaya, Y.; Kimura, T.; Hamada, Y.; Yoshimura, K.; Hiraga, H.; Yuza, Y.; Ogawa, A.; Hara, J.; Koh, K.; Kikuta, A.; et al. Development of a population pharmacokinetics and pharmacodynamics model of glucarpidase rescue treatment after high-dose methotrexate therapy. Front. Oncol. 2023, 13, 1003633. [Google Scholar] [CrossRef] [PubMed]
- Meibohm, B.; Läer, S.; Panetta, J.C.; Barrett, J.S. Population pharmacokinetic studies in pediatrics: Issues in design and analysis. AAPS J. 2005, 7, E475–E487. [Google Scholar] [CrossRef]
- Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 2020, 77, 1745–1770. [Google Scholar] [CrossRef] [PubMed]
- Thurber, G.M.; Weissleder, R. A systems approach for tumor pharmacokinetics. PLoS ONE 2011, 6, e24696. [Google Scholar] [CrossRef]
- Tortorici, M.A.; Cohen, E.E.W.; Pithavala, Y.K.; Garrett, M.; Ruiz-Garcia, A.; Kim, S.; Fruehauf, J.P. Pharmacokinetics of single-agent axitinib across multiple solid tumor types. Cancer Chemother. Pharmacol. 2014, 74, 1279–1289. [Google Scholar] [CrossRef]
- Biesdorf, C.; Guan, X.; Siddani, S.R.; Hoffman, D.; Boehm, N.; Medeiros, B.C.; Doi, T.; de Jonge, M.; Rasco, D.; Menon, R.M.; et al. Pharmacokinetics and immunogenicity of eftozanermin alfa in subjects with previously-treated solid tumors or hematologic malignancies: Results from a phase 1 first-in-human study. Cancer Chemother. Pharmacol. 2024, 93, 329–339. [Google Scholar] [CrossRef]
Characteristics | Number | Percentage |
---|---|---|
Male | 15 | 68.2 |
Female | 7 | 32.8 |
Value (units) | Median (Range) | Mean (Standard deviation) |
Age (years) | 8 (4–23) | 9.8 (5.7) |
Body weight (kg) | 19.9 (14.5–76.6) | 28.4 (17.2) |
Height (cm) | 119 (96.3–185.7) | 129.1 (26.9) |
Body surface area (m2) | 0.805 (0.63–1.97) | 0.995 (0.389) |
Patient ID | Kel (/h) | T1/2 (h) | Tmax (h) | Cmax (ng/mL) | AUC0–10 (ng·h/mL) | AUC0–∞ (ng·h/mL) | Vz/F (L) | CL/F (L/h) |
---|---|---|---|---|---|---|---|---|
1 | 0.372 | 1.86 | 4.00 | 83.9 | 330.75 | 353.91 | 22.80 | 8.48 |
2 | 0.022 | 31.24 | 4.00 | 34.7 | 235.56 | 1610.14 | 55.98 | 1.24 |
3 | 0.249 | 2.78 | 4.00 | 70.8 | 366.98 | 430.41 | 55.96 | 13.94 |
4 | 0.328 | 2.12 | 2.00 | 69.1 | 363.40 | 393.34 | 62.09 | 20.34 |
5 | 0.229 | 3.03 | 4.00 | 131.0 | 589.23 | 735.04 | 23.76 | 5.44 |
6 | 0.364 | 1.90 | 2.08 | 113.0 | 363.96 | 377.94 | 36.33 | 13.23 |
7 | 0.426 | 1.63 | 1.98 | 131.0 | 336.34 | 342.28 | 27.41 | 11.69 |
8 | 0.275 | 2.52 | 2.00 | 259.0 | 934.41 | 1011.82 | 21.55 | 5.93 |
9 | 0.266 | 2.60 | 2.00 | 64.0 | 327.68 | 365.64 | 30.83 | 8.20 |
10 | 0.418 | 1.66 | 4.00 | 121.0 | 404.30 | 429.41 | 33.42 | 13.97 |
11 | 0.379 | 1.83 | 1.92 | 147.0 | 463.29 | 477.30 | 33.17 | 12.57 |
12 | 0.326 | 2.13 | 1.83 | 144.0 | 628.71 | 675.02 | 13.63 | 4.44 |
13 | 0.253 | 2.74 | 1.93 | 125.0 | 473.06 | 524.90 | 30.16 | 7.62 |
14 | 0.265 | 2.61 | 2.00 | 128.0 | 331.59 | 353.30 | 42.68 | 11.32 |
15 | 0.207 | 3.36 | 4.00 | 52.7 | 271.91 | 340.17 | 56.93 | 11.76 |
16 | 0.200 | 3.46 | 2.07 | 109.0 | 455.60 | 544.89 | 54.93 | 11.01 |
17 | 0.424 | 1.63 | 1.87 | 91.1 | 418.53 | 435.19 | 21.66 | 9.19 |
18 | 0.289 | 2.40 | 4.03 | 231.0 | 945.23 | 1079.41 | 12.82 | 3.71 |
19 | 0.361 | 1.92 | 1.83 | 178.0 | 658.83 | 690.65 | 20.03 | 7.24 |
20 | 0.270 | 2.56 | 1.92 | 102.0 | 330.45 | 358.23 | 92.92 | 25.12 |
21 | 0.257 | 2.70 | 1.87 | 110.0 | 425.88 | 486.58 | 31.99 | 8.22 |
22 | 0.339 | 2.04 | 2.03 | 79.4 | 305.67 | 323.33 | 36.47 | 12.37 |
Average * | 0.309 | 2.356 | 2.541 | 120.952 | 463.133 | 510.893 | 36.263 | 10.752 |
Minimum * | 0.200 | 1.626 | 1.830 | 52.700 | 271.907 | 323.332 | 12.815 | 3.706 |
Maximum * | 0.426 | 3.458 | 4.030 | 259.000 | 945.232 | 1079.409 | 92.924 | 25.124 |
SD * | 0.071 | 0.547 | 0.951 | 51.808 | 189.786 | 214.906 | 19.179 | 5.083 |
−2(LL) | ΔOFV | AIC | p Value | |
---|---|---|---|---|
One-compartment model | 984.020 | - | 998.020 | - |
Two-compartment model | 927.692 | 56.328 | 949.692 | <0.001 |
Two-compartment model with Tlag | 911.838 | 15.854 | 937.838 | <0.001 |
Final Model | Parameters | Original Estimate | Data (95% CI) | Bootstrap Median | Estimates (95% CI) |
---|---|---|---|---|---|
CL/F (L/h) = tvCL/F × BSA/mean | tvCL/F (L/h) | 8.73 | 7.12–10.35 | 9.1 | 7.61–10.81 |
Q/F (L/h) = tvQ/F | tvQ/F (L/h) | 3.45 | 1.25–5.65 | 3.39 | 2.89–4.70 |
V1/F (L) = tvV1/F × BSA/mean | tvV1/F (L) | 9.17 | 1.84–16.50 | 10.13 | 4.47–15.40 |
V2/F (L) = tvV2/F × BSA/mean | tvV2/F (L) | 60.28 | 11.10–109.47 | 48.64 | 28.67–68.94 |
Tlag (h) | tvTlag (h) | 0.95 (Fixed) | - | - | - |
Ka (/h) | tvKa (/h) | 0.415 | 0.270–0.560 | 0.429 | 0.350–0.546 |
Residual variability (%) | - | 42.4 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azechi, T.; Fukaya, Y.; Nitani, C.; Hara, J.; Kawamoto, H.; Taguchi, T.; Yoshimura, K.; Sato, A.; Hattori, N.; Ushijima, T.; et al. Population Pharmacokinetics of Tamibarotene in Pediatric and Young Adult Patients with Recurrent or Refractory Solid Tumors. Curr. Oncol. 2024, 31, 7155-7164. https://doi.org/10.3390/curroncol31110527
Azechi T, Fukaya Y, Nitani C, Hara J, Kawamoto H, Taguchi T, Yoshimura K, Sato A, Hattori N, Ushijima T, et al. Population Pharmacokinetics of Tamibarotene in Pediatric and Young Adult Patients with Recurrent or Refractory Solid Tumors. Current Oncology. 2024; 31(11):7155-7164. https://doi.org/10.3390/curroncol31110527
Chicago/Turabian StyleAzechi, Takuya, Yutaka Fukaya, Chika Nitani, Junichi Hara, Hiroshi Kawamoto, Tomoaki Taguchi, Kenichi Yoshimura, Akihiro Sato, Naoko Hattori, Toshikazu Ushijima, and et al. 2024. "Population Pharmacokinetics of Tamibarotene in Pediatric and Young Adult Patients with Recurrent or Refractory Solid Tumors" Current Oncology 31, no. 11: 7155-7164. https://doi.org/10.3390/curroncol31110527
APA StyleAzechi, T., Fukaya, Y., Nitani, C., Hara, J., Kawamoto, H., Taguchi, T., Yoshimura, K., Sato, A., Hattori, N., Ushijima, T., & Kimura, T. (2024). Population Pharmacokinetics of Tamibarotene in Pediatric and Young Adult Patients with Recurrent or Refractory Solid Tumors. Current Oncology, 31(11), 7155-7164. https://doi.org/10.3390/curroncol31110527