Exploration of the Dual Role of Dectin-1 in Tumor Development and Its Therapeutic Potential
Abstract
:1. Introduction
2. The Dual Role of Dectin-1 in Cancer
2.1. The Anti-Tumor Role of Dectin-1
2.2. The Pro-Tumor Role of Dectin-1
2.3. Exploration of Novel Anti-Tumor Agents Targeting Dectin-1
3. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Larkin, J.; Tabernero, J.; Bonini, C. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet 2021, 397, 1010–1022. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011, 30, 16–34. [Google Scholar] [CrossRef]
- Brown, G.D.; Gordon, S. Immune recognition. A new receptor for beta-glucans. Nature 2001, 413, 36–37. [Google Scholar] [CrossRef]
- Tsang, E.; Giannetti, A.M.; Shaw, D.; Dinh, M.; Tse, J.K.; Gandhi, S.; Ho, H.; Wang, S.; Papp, E.; Bradshaw, J.M. Molecular mechanism of the Syk activation switch. J. Biol. Chem. 2008, 283, 32650–32659. [Google Scholar] [CrossRef]
- Li, X.J.; Goodwin, C.B.; Nabinger, S.C.; Richine, B.M.; Yang, Z.; Hanenberg, H.; Ohnishi, H.; Matozaki, T.; Feng, G.S.; Chan, R.J. Protein-tyrosine phosphatase Shp2 positively regulates macrophage oxidative burst. J. Biol. Chem. 2015, 290, 3894–3909. [Google Scholar] [CrossRef]
- Goodridge, H.S.; Simmons, R.M.; Underhill, D.M. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J. Immunol. 2007, 178, 3107–3115. [Google Scholar] [CrossRef]
- Gross, O.; Gewies, A.; Finger, K.; Schäfer, M.; Sparwasser, T.; Peschel, C.; Förster, I.; Ruland, J. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 2006, 442, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Pestka, S.; Krause, C.D.; Walter, M.R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 2004, 202, 8–32. [Google Scholar] [CrossRef] [PubMed]
- McNab, F.; Mayer-Barber, K.; Sher, A.; Wack, A.; O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 2015, 15, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D. Dectin-1: A signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 2006, 6, 33–43. [Google Scholar] [CrossRef]
- Sainz, J.; Lupiáñez, C.B.; Segura-Catena, J.; Vazquez, L.; Ríos, R.; Oyonarte, S.; Hemminki, K.; Försti, A.; Jurado, M. Dectin-1 and DC-SIGN polymorphisms associated with invasive pulmonary Aspergillosis infection. PLoS ONE 2012, 7, e32273. [Google Scholar] [CrossRef]
- Chiba, S.; Ikushima, H.; Ueki, H.; Yanai, H.; Kimura, Y.; Hangai, S.; Nishio, J.; Negishi, H.; Tamura, T.; Saijo, S.; et al. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. elife 2014, 3, e04177. [Google Scholar] [CrossRef]
- Zhao, Y.; Chu, X.; Chen, J.; Wang, Y.; Gao, S.; Jiang, Y.; Zhu, X.; Tan, G.; Zhao, W.; Yi, H.; et al. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat. Commun. 2016, 7, 12368. [Google Scholar] [CrossRef]
- Alaeddine, M.; Prat, M.; Poinsot, V.; Gouazé-Andersson, V.; Authier, H.; Meunier, E.; Lefèvre, L.; Alric, C.; Dardenne, C.; Bernad, J.; et al. IL13-Mediated Dectin-1 and Mannose Receptor Overexpression Promotes Macrophage Antitumor Activities through Recognition of Sialylated Tumor Cells. Cancer Immunol. Res. 2019, 7, 321–334. [Google Scholar] [CrossRef]
- Daley, D.; Mani, V.R.; Mohan, N.; Akkad, N.; Ochi, A.; Heindel, D.W.; Lee, K.B.; Zambirinis, C.P.; Pandian, G.S.B.; Savadkar, S.; et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat. Med. 2017, 23, 556–567. [Google Scholar] [CrossRef]
- Tang, C.; Sun, H.; Kadoki, M.; Han, W.; Ye, X.; Makusheva, Y.; Deng, J.; Feng, B.; Qiu, D.; Tan, Y.; et al. Blocking Dectin-1 prevents colorectal tumorigenesis by suppressing prostaglandin E2 production in myeloid-derived suppressor cells and enhancing IL-22 binding protein expression. Nat. Commun. 2023, 14, 1493. [Google Scholar] [CrossRef]
- Liu, X.; Lv, K.; Wang, J.; Lin, C.; Liu, H.; Zhang, H.; Li, H.; Gu, Y.; Li, R.; He, H.; et al. C-type lectin receptor Dectin-1 blockade on tumour-associated macrophages improves anti-PD-1 efficacy in gastric cancer. Br. J. Cancer 2023, 129, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Wattenberg, M.M.; Coho, H.; Herrera, V.M.; Graham, K.; Stone, M.L.; Xue, Y.; Chang, R.B.; Cassella, C.; Liu, M.; Choi-Bose, S.; et al. Cancer immunotherapy via synergistic coactivation of myeloid receptors CD40 and Dectin-1. Sci. Immunol. 2023, 8, eadj5097. [Google Scholar] [CrossRef] [PubMed]
- Sionov, R.V.; Lamagna, C.; Granot, Z. Recognition of Tumor Nidogen-1 by Neutrophil C-Type Lectin Receptors. Biomedicines 2022, 10, 908. [Google Scholar] [CrossRef] [PubMed]
- Mattiola, I.; Tomay, F.; De Pizzol, M.; Silva-Gomes, R.; Savino, B.; Gulic, T.; Doni, A.; Lonardi, S.; Astrid Boutet, M.; Nerviani, A.; et al. The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell-mediated resistance to metastasis. Nat. Immunol. 2019, 20, 1012–1022. [Google Scholar] [CrossRef]
- Wu, T.C.; Xu, K.; Banchereau, R.; Marches, F.; Yu, C.I.; Martinek, J.; Anguiano, E.; Pedroza-Gonzalez, A.; Snipes, G.J.; O’Shaughnessy, J.; et al. Reprogramming tumor-infiltrating dendritic cells for CD103+ CD8+ mucosal T-cell differentiation and breast cancer rejection. Cancer Immunol. Res. 2014, 2, 487–500. [Google Scholar] [CrossRef]
- Seifert, L.; Deutsch, M.; Alothman, S.; Alqunaibit, D.; Werba, G.; Pansari, M.; Pergamo, M.; Ochi, A.; Torres-Hernandez, A.; Levie, E.; et al. Dectin-1 Regulates Hepatic Fibrosis and Hepatocarcinogenesis by Suppressing TLR4 Signaling Pathways. Cell Rep. 2015, 13, 1909–1921. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, Y.; Chen, X.; Ning, T.; Chen, H.; Guo, Q.; Zhang, Y.; Liu, P.; Zhang, Y.; Li, C.; et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials 2021, 268, 120546. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, L.; Bai, Q.; Wang, J.; Xi, W.; Qu, Y.; Xiong, Y.; Long, Q.; Xu, J.; Guo, J. Dectin-1 predicts adverse postoperative prognosis of patients with clear cell renal cell carcinoma. Sci. Rep. 2016, 6, 32657. [Google Scholar] [CrossRef]
- Liu, N.N.; Yi, C.X.; Wei, L.Q.; Zhou, J.A.; Jiang, T.; Hu, C.C.; Wang, L.; Wang, Y.Y.; Zou, Y.; Zhao, Y.K.; et al. The intratumor mycobiome promotes lung cancer progression via myeloid-derived suppressor cells. Cancer Cell 2023, 41, 1927–1944.e1929. [Google Scholar] [CrossRef]
- Bhaskaran, N.; Jayaraman, S.; Quigley, C.; Mamileti, P.; Ghannoum, M.; Weinberg, A.; Thuener, J.; Pan, Q.; Pandiyan, P. The Role of Dectin-1 Signaling in Altering Tumor Immune Microenvironment in the Context of Aging. Front. Oncol. 2021, 11, 669066. [Google Scholar] [CrossRef]
- Bao, M.; Ehexige, E.; Xu, J.; Ganbold, T.; Han, S.; Baigude, H. Oxidized curdlan activates dendritic cells and enhances antitumor immunity. Carbohydr. Polym. 2021, 264, 117988. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.; Wang, S.; Zhang, J.; Qiu, L.; Chen, J. Aminated yeast β-D-glucan for macrophage-targeted delivery of CpG oligodeoxynucleotides and synergistically enhanced cancer immunotherapy. Int. J. Biol. Macromol. 2023, 253, 126998. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, Y.; Li, Y.; Pan, Y.; Zhao, S.; Hou, Y. Ferumoxytol-β-glucan Inhibits Melanoma Growth via Interacting with Dectin-1 to Polarize Macrophages into M1 Phenotype. Int. J. Med. Sci. 2021, 18, 3125–3139. [Google Scholar] [CrossRef] [PubMed]
- Shiao, S.L.; Kershaw, K.M.; Limon, J.J.; You, S.; Yoon, J.; Ko, E.Y.; Guarnerio, J.; Potdar, A.A.; McGovern, D.P.B.; Bose, S.; et al. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy. Cancer Cell 2021, 39, 1202–1213.e1206. [Google Scholar] [CrossRef]
- Cardenas, F.I.; Mauguen, A.; Cheung, I.Y.; Kramer, K.; Kushner, B.H.; Ragupathi, G.; Cheung, N.V.; Modak, S. Phase I Trial of Oral Yeast-Derived β-Glucan to Enhance Anti-GD2 Immunotherapy of Resistant High-Risk Neuroblastoma. Cancers 2021, 13, 6265. [Google Scholar] [CrossRef]
- Fitzgerald, K.A.; Kagan, J.C. Toll-like Receptors and the Control of Immunity. Cell 2020, 180, 1044–1066. [Google Scholar] [CrossRef]
Tumor Type | The Anti/Pro-Tumoral Role of Dectin-1 | Mechanisms |
---|---|---|
Melanoma | Anti-tumor | Dectin-1 enhances the cytotoxicity of NK cells by recognizing N-glycosylated structures on the tumor surface, thereby promoting antitumor immunity. The Dectin-1 signaling pathway is associated with the IRF5-lnma axis, facilitating NK-cell-mediated tumor cell killing [16]. |
Breast Cancer | Anti-tumor | Dectin-1 activates macrophages through the Syk-P47phox-PPARγ signaling axis, enhancing ROS production and facilitating L-arginine-related suppressive effects on tumor cells [18]. |
Multiple Myeloma | Anti-tumor | Dectin-1 activates dendritic cells, enhancing their antigen-presenting capacity and promoting Th9 cell differentiation, which is dependent on the activation of the Syk-raf1 and NF-κB signaling pathways, thus augmenting adaptive immune responses [17]. |
Pancreatic Ductal Adenocarcinoma | Pro-tumor | Dectin-1 activation leads to the generation of tolerogenic macrophages, inhibiting adaptive immunity. The interaction between Dectin-1 and galectin-9 promotes the conversion of M2 macrophages, suppressing the activity of CD4+ and CD8+ T cells [27]. |
Colorectal Cancer | Pro-tumor | The Dectin-1 signaling pathway activates myeloid-derived suppressor cells, promoting the production of PGE2 and inhibiting the generation of IL-22BP, thereby facilitating tumor progression. The absence of Dectin-1 significantly suppresses tumor development [20]. |
Gastric Cancer | Pro-tumor | Dectin-1 is highly expressed in tumor-associated macrophages, resulting in decreased effector T cell function and promoting tumor progression. Dectin-1+ TAMs exhibit an immunosuppressive phenotype that inhibits antitumor immunity [21]. |
Renal Clear Cell Carcinoma | Pro-tumor | High tumoral DDectin-1 expression is an independent predictor of adverse clinical outcome in ccRCC patients, related to poorer patient RFS and OS [28]. |
Lung Adenocarcinoma | Pro-tumor | Dectin-1 activates MDSCs through the β-glucan/CARD9/IL-1β pathway, increasing the proportion of Tregs and PD-1+CD8+ T cells, thereby inhibiting antitumor immunity and facilitating tumor progression [29]. |
Key Strategies | Specific Objectives | Application Examples |
---|---|---|
Activation of Dectin-1 | To promote anti-tumor immune responses by enhancing both innate and adaptive immunity. | Activation of Dectin-1 in breast cancer enhances the anti-tumor activity of NK cells and dendritic cells [17,18]. |
Combined Use of Dectin-1 Agonists | To enhance anti-tumor immune responses through a combination with other immune stimulators, such as CD40 agonists. | In models of pancreatic ductal adenocarcinoma, the Dectin-1 agonist β-glucan combined with CD40 agonists eradicated tumors and induced immune memory [22]. |
Interference with Dectin-1 Signaling | To reverse the tumor-immunosuppressive microenvironment and restore anti-tumor immunity. | Interfering with the signaling pathway between Dectin-1 and galectin-9 restores the anti-tumor activity of T cells, inhibiting the progression of PDAC [27]. |
Drug Delivery Systems | To design drug delivery systems targeting Dectin-1 to enhance the efficacy of anti-tumor drugs. | Utilizing bone-marrow-mesenchymal-stem-cell-derived exosomes to deliver galectin-9 siRNA and oxaliplatin reverses the immunosuppressive phenotype and increases the proportion of effector T cells [27]. |
Improvement of Existing Dectin-1 Agonist Pharmacokinetics | To enhance the pharmacokinetic properties of Dectin-1 agonists to induce stronger anti-tumor immunity. | Development of partially oxidized curdlan derivant enhances binding to Dectin-1 and promotes immune responses against B16F10 melanoma [31]. |
Synergistic Use with Other Anti-tumor Drugs | To enhance anti-tumor immune responses through multiple mechanisms. | The combination of FDA-approved ferumoxytol nanoparticles with β-glucan in treating mice with B16F10 melanoma enhances M1 macrophage polarization and anti-tumor immunity [33]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Wu, K. Exploration of the Dual Role of Dectin-1 in Tumor Development and Its Therapeutic Potential. Curr. Oncol. 2024, 31, 7275-7286. https://doi.org/10.3390/curroncol31110536
Cai Y, Wu K. Exploration of the Dual Role of Dectin-1 in Tumor Development and Its Therapeutic Potential. Current Oncology. 2024; 31(11):7275-7286. https://doi.org/10.3390/curroncol31110536
Chicago/Turabian StyleCai, Yuxuan, and Ke Wu. 2024. "Exploration of the Dual Role of Dectin-1 in Tumor Development and Its Therapeutic Potential" Current Oncology 31, no. 11: 7275-7286. https://doi.org/10.3390/curroncol31110536
APA StyleCai, Y., & Wu, K. (2024). Exploration of the Dual Role of Dectin-1 in Tumor Development and Its Therapeutic Potential. Current Oncology, 31(11), 7275-7286. https://doi.org/10.3390/curroncol31110536