The Significance of Thyroid Hormone Receptors in Breast Cancer: A Hypothesis-Generating Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Cohort and Clinical Data
3.2. Expression of THRβs and Their Predominant Localization in Human BC Cells
3.3. Patient Prognosis and Clinicopathological Parameters According to THRβ1 Expression
3.4. Thyroid Hormones within Patient Cohorts
4. Discussion
5. Challenges/Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Akt | Protein kinase B |
BC | Breast cancer |
DFS | Disease-free survival |
ER | Estrogen receptor |
fT3 | Free triiodothyronine |
fT4 | Free thyroxine |
GC-1 | Sobetirome |
HER2 | Human epidermal growth factor receptor 2 |
HR | Hazard ratio |
IC50 | Half-maximal inhibitory concentration |
IHC | Immunohistochemistry |
IRS | Immunoreactive score |
JAK-STAT | Janus kinase/signal transducers and activators of transcription |
KB2115 | Eprotirome |
OS | Overall survival |
PFS | Progression free survival |
PR | Progesterone receptor |
RXR | Retinoid X receptor |
TH | Thyroid hormone |
THR | Thyroid hormone receptor |
TRE | Thyroid response element |
THRα | Thyroid hormone receptor alpha |
THRβ | Thyroid hormone receptor beta |
TNBC | Triple negative breast cancer |
References
- Tao, Z.; Shi, A.; Lu, C.; Song, T.; Zhang, Z.; Zhao, J. Breast Cancer: Epidemiology and Etiology. Cell Biochem. Biophys. 2014, 72, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Sorlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-Y.; Wu, C.-Y.; Petrossian, K.; Huang, T.-T.; Tseng, L.-M.; Chen, S. Treatment for the endocrine resistant breast cancer: Current options and future perspectives. J. Steroid Biochem. Mol. Biol. 2017, 172, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Jerzak, K.J.; Cockburn, J.; Pond, G.R.; Pritchard, K.I.; Narod, S.A.; Dhesy-Thind, S.K.; Bane, A. Thyroid hormone receptor α in breast cancer: Prognostic and therapeutic implications. Breast Cancer Res. Treat. 2014, 149, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.H.; Saadatpour, Z.; Salmaninejad, A.; Momeni, F.; Mokhtari, M.; Nahand, J.S.; Rahmati, M.; Mirzaei, H.; Kianmehr, M. Breast cancer diagnosis: Imaging techniques and biochemical markers. J. Cell. Physiol. 2018, 233, 5200–5213. [Google Scholar] [CrossRef] [PubMed]
- Abel, E.D.; Boers, M.-E.; Pazos-Moura, C.; Moura, E.; Kaulbach, H.; Zakaria, M.; Lowell, B.; Radovick, S.; Liberman, M.C.; Wondisford, F. Divergent roles for thyroid hormone receptor β isoforms in the endocrine axis and auditory system. J. Clin. Investig. 1999, 104, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Ortiga-Carvalho, T.M.; Sidhaye, A.R.; Wondisford, F.E. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat. Rev. Endocrinol. 2014, 10, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Davidson, C.D.; Gillis, N.E.; Carr, F.E. Thyroid Hormone Receptor Beta as Tumor Suppressor: Untapped Potential in Treatment and Diagnostics in Solid Tumors. Cancers 2021, 13, 4254. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Kuhn, C.; Mayr, D.; Ditsch, N.; Kailuweit, M.; Wolf, V.; Harbeck, N.; Mahner, S.; Jeschke, U.; Cavaillès, V.; et al. Cytoplasmic and Nuclear Forms of Thyroid Hormone Receptor β1 Are Inversely Associated with Survival in Primary Breast Cancer. Int. J. Mol. Sci. 2020, 21, 330. [Google Scholar] [CrossRef] [PubMed]
- Ditsch, N.; Toth, B.; Himsl, I.; Lenhard, M.; Ochsenkühn, R.; Friese, K.; Mayr, D.; Jeschke, U. Thyroid hormone receptor (TR)alpha and TRbeta expression in breast cancer. Histol. Histopathol. 2013, 28, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Jerzak, K.J.; Cockburn, J.G.; Dhesy-Thind, S.K.; Pond, G.R.; Pritchard, K.I.; Nofech-Mozes, S.; Sun, P.; Narod, S.A.; Bane, A. Thyroid hormone receptor beta-1 expression in early breast cancer: A validation study. Breast Cancer Res. Treat. 2018, 171, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Heublein, S.; Mayr, D.; Meindl, A.; Angele, M.; Gallwas, J.; Jeschke, U.; Ditsch, N. Thyroid Hormone Receptors Predict Prognosis in BRCA1 Associated Breast Cancer in Opposing Ways. PLoS ONE 2015, 10, e0127072. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.-Y.; Leonard, J.L.; Davis, P.J. Molecular Aspects of Thyroid Hormone Actions. Endocr. Rev. 2010, 31, 139–170. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Yeh, C.-T.; Lin, K.-H. Molecular Functions of Thyroid Hormone Signaling in Regulation of Cancer Progression and Anti-Apoptosis. Int. J. Mol. Sci. 2019, 20, 4986. [Google Scholar] [CrossRef]
- Harrison, D.A. The Jak/STAT pathway. Cold Spring Harb. Perspect. Biol. 2012, 4, a011205. [Google Scholar] [CrossRef] [PubMed]
- Muscat, G.E.O.; Eriksson, N.A.; Byth, K.; Loi, S.; Graham, D.; Jindal, S.; Davis, M.J.; Clyne, C.; Funder, J.W.; Simpson, E.R.; et al. Research Resource: Nuclear Receptors as Transcriptome: Discriminant and Prognostic Value in Breast Cancer. Mol. Endocrinol. 2013, 27, 350–365. [Google Scholar] [CrossRef] [PubMed]
- Gu, G.; Gelsomino, L.; Covington, K.R.; Beyer, A.R.; Wang, J.; Rechoum, Y.; Huffman, K.; Carstens, R.; Andò, S.; Fuqua, S.A.W. Targeting thyroid hormone receptor beta in triple-negative breast cancer. Breast Cancer Res. Treat. 2015, 150, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Calvo, V.; Beato, M. BRCA1 Counteracts Progesterone Action by Ubiquitination Leading to Progesterone Receptor Degradation and Epigenetic Silencing of Target Promoters. Cancer Res 2011, 71, 3422–3431. [Google Scholar] [CrossRef] [PubMed]
- Moeller, L.C.; Führer, D. Thyroid hormone, thyroid hormone receptors, and cancer: A clinical perspective. Endocrine-Related Cancer 2013, 20, R19–R29. [Google Scholar] [CrossRef] [PubMed]
- Topper, Y.J.; Freeman, C.S.; Chu, M.; Zhao, Y.; Yu, S.; Hao, Y.; Zhang, P.; Feng, Y.; Zhang, H.; Ma, D.; et al. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 1980, 60, 1049–1106. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Gray, R.; Braybrooke, J.; Davies, C.; Taylor, C.; McGale, P.; Peto, R.; Pritchard, K.I.; Bergh, J.; Dowsett, M.; et al. 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. N. Engl. J. Med. 2017, 377, 1836–1846. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.C.; Oliveira, M.; Howell, S.J.; Dalenc, F.; Cortes, J.; Moreno, H.L.G.; Hu, X.; Jhaveri, K.; Krivorotko, P.; Loibl, S.; et al. Capivasertib in Hormone Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2023, 388, 2058–2070. [Google Scholar] [CrossRef] [PubMed]
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Saponaro, F.; Sestito, S.; Runfola, M.; Rapposelli, S.; Chiellini, G. Selective Thyroid Hormone Receptor-Beta (TRβ) Agonists: New Perspectives for the Treatment of Metabolic and Neurodegenerative Disorders. Front. Med. 2020, 7, 331. [Google Scholar] [CrossRef] [PubMed]
Study | Shao et al. [9] | Ditsch et al. [10] | Jerzak et al. [11] | Heublein et al. [12] | Jerzak et al. [4] | Muscat et al. [16] | Gu et al. [17] |
---|---|---|---|---|---|---|---|
Cohort size | n = 271 | n = 82 | n = 796 | n = 124 | n = 130 | n = 66 | n = 1752 |
Study location | University Hospital, Munich, Germany | Großhadern, Ludwig-Maximilians University, Munich, Germany. | University of Toronto, Toronto, Canada. | Ludwig-Maximilians-University, Munich, Germany. | University of Toronto, Toronto, Canada. | University of Queensland, Queensland, Australia. | Baylor College of Medicine, Texas, USA. |
Median age at initial diagnosis (years) | 57 | 68 | 57 | 50 | 65 | 53 **** | NA |
Mean follow-up time (months) | 126 | 144 | 115 | 79 | NA | NA | 87 |
T stage | |||||||
T1 | 169 (65%) | 44 (54%) | 65 (8%) | 46 (37%) | 40 (31%) | NA | 614 (30%) |
T2 | 78 (30%) | 17 (21%) | 289 (36%) | ** see notes below | 73 (56%) | NA | *** |
T3 | 4 (2%) | n/a | 390 (49%) | ** see notes below | 16 (12%) | NA | *** |
T4 | 10 (4%) | 2 (2%) | 48 (6%) | ** see notes below | 1 (<1%) | NA | *** |
Tumor grade | |||||||
1 | 13 (9%) | 9 (11%) | NA | ** see notes below | 27 (21%) | NA | 208 (10%) |
2 | 95 (63%) | 40 (49%) | NA | ** see notes below | 70 (54%) | NA | *** |
3 | 44 (29%) | 33 (40%) | NA | 77 (62%) | 32 (25%) | NA | *** |
Nodal status | |||||||
Positive | 112 (44%) | 38 (46%) | 377 (55%) | 66 (53%) | NA | NA | 630 (31%) |
Negative | 144 (56%) | NA | 314 (45%) | NA | NA | NA | 1034 (51%) |
ER status | |||||||
Positive | 219 (81%) | NA | 616 (78%) | 55 (44%) | 95 (73%) | 33 (50%) | 1309 (64%) |
Negative | 53 (19%) | 176 (22%) | 54 (43%) | NA | 33 (50%) | 614 (30%) | |
PR status | |||||||
Positive | 160 (59%) | NA | 479 (60%) | 57 (46%) | 77 (59%) | NA | 378 (19%) |
Negative | 112 (41%) | NA | 313 (40%) | 52 (42%) | NA | NA | 279 (14%) |
HER2 status | |||||||
Positive | 27 (10%) | NA | 219 (31%) | 26 (21%) | 17 (13%) | NA | NA |
Negative | 246 (90%) | NA | 491 (69%) | 51 (41%) | NA | NA | NA |
Molecular subtype | |||||||
Luminal A (Ki-67 ≤ 14%) | 152 (56%) | NA | NA | NA | NA | NA | 653 (32%) |
Luminal B (Ki-67 > 14%) | 60 (22%) | NA | NA | NA | NA | NA | 359 (18%) |
HER2 positive luminal | 20 (7%) | NA | NA | NA | NA | NA | NA |
HER2 positive non-luminal | 7 (3%) | NA | NA | NA | NA | NA | NA |
Triple negative | 34 (12%) | NA | 101 (13%) | 19 (15%) | 28 (22%) | NA | NA |
Study | Sample Size | Sporadic vs. Non-Sporadic | Thyroid Receptor Isoform | Method for Biomarker Detection | Receptor Antibody (Working Dilution) | TRβ Predominant Localization | TRβ1 Expression * |
---|---|---|---|---|---|---|---|
Shao et al. [9] | 271 | Sporadic | THRβ1 | THRβ1: Zytomed, 520–4074, Berlin, Germany Scoring: Percent positive cells, intensity, distribution | Anti-THRβ1 (1:200) | Nuclear | Nuclear: 159 (60%), Cytoplasmic: 114 (43%) |
Ditsch et al. [10] | 82 | Sporadic | THRβ1, THRβ2 | Immunohistochemistry THRβ1 and THRβ2: Millipore, Schwalbach, Germany Scoring: Percent positive cells, intensity | Rabbit IgG polyclonal: Anti- Anti-THRβ1/2 (1:200), anti-THRβ1 (1:200), Anti-THRβ2 (1:200) | Nuclear | Nuclear: 43 (52%), Cytoplasmic: NA |
Jerzak et al. [11] | 796 | Sporadic | THRβ1 | Immunohistochemistry (THRβ1: SC-737 antibody from Santa Cruz Biotechnology, Dallas, TX, USA) Scoring: Percent positive cells, intensity | SC-737 antibody from Santa Cruz Biotechnology (working dilution NA) | Cytoplasmic | Nuclear: NA, cytoplasmic: 318 (40%) high and 478 (60%) Low ** |
Heublein et al. [12] | 124 | Sporadic, BRCA1-associated BC | THRβ | Immunohistochemistry (THRβ: Zytomed, Berlin, Germany) Scoring: Percent positive cells, intensity | Anti-THRβ (1:400) | Nuclear | Nuclear and cytoplasmic: NA |
Jerzak et al. [4] | 130 | Sporadic | THRα1, THRα2, | Immunohistochemistry (THRα1: Polyclonal rabbit antibody (ab53729), from Abcam plc; THRα2: Monoclonal mouse antibody (MA1-4676), from Thermo Fisher Scientific Co., Ltd., Waltham, MA, USA) | THRα1 polyclonal rabbit Antibody and THRα2 Monoclonal mouse antibody | Nuclear | NA |
Muscat et al. [16] | 66 | Sporadic: ER+, ER− | THRβ | TaqMan Low Density Gene Signature Arrays (Applied Biosystems, Foster City, CA, USA; catalog item 4379961) | NA | NA | NA |
Gu et al. [17] | 1752 | Sporadic | THRβ | Affymetrix THRβ Probesets (Santa Clara, CA, USA) Cutpoint: 75th Percentile | NA | NA | NA |
Study | Sample Size (n) | HR for DFS | HR for OS | ||
---|---|---|---|---|---|
Univariable | Multivariable | Univariable | Multivariable | ||
Shao et al. [9] | 271 | Not Significant | NA | Not Reported | Cytoplasmic: 0.545 (p = 0.048) Nuclear: 2.860 (p = 0.0004) |
Ditsch et al. [10] | 82 | 0.41 (p = 0.090) | 0.83 (p = 0.091) | 0.55 (p = 0.189) | 0.97 (p = 0.716) |
Jerzak et al. [11] | 796 | Not Reported * | Not Reported | 0.46 (p < 0.0001) | 0.61 (p < 0.004) |
Heublein et al. [12] | 124 | NA | NA | KM (p = 0.007–0.0189) | NA |
Jerzak et al. [4] | 130 | NA | NA | Cytoplasmic: 0.85 (p = 0.19) Nuclear: 1.64 (p = 0.63) | Not Calculated |
Muscat et al. [16] | 66 | 0.48 (p = 0.001) | 0.51 (p = 0.010) | NA | NA |
Gu et al. [17] | 1752 | NA | NA | KM (p < 0.01) | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, T.; Cockburn, J.; Dhesy-Thind, S.; Bane, A.; Leong, H.; Geleff, C.; Devion, C.; Ajel, N.; Jerzak, K.J. The Significance of Thyroid Hormone Receptors in Breast Cancer: A Hypothesis-Generating Narrative Review. Curr. Oncol. 2024, 31, 2364-2375. https://doi.org/10.3390/curroncol31050176
Quan T, Cockburn J, Dhesy-Thind S, Bane A, Leong H, Geleff C, Devion C, Ajel N, Jerzak KJ. The Significance of Thyroid Hormone Receptors in Breast Cancer: A Hypothesis-Generating Narrative Review. Current Oncology. 2024; 31(5):2364-2375. https://doi.org/10.3390/curroncol31050176
Chicago/Turabian StyleQuan, Trinity, Jessica Cockburn, Sukhbinder Dhesy-Thind, Anita Bane, Hon Leong, Christopher Geleff, Catherine Devion, Noor Ajel, and Katarzyna J. Jerzak. 2024. "The Significance of Thyroid Hormone Receptors in Breast Cancer: A Hypothesis-Generating Narrative Review" Current Oncology 31, no. 5: 2364-2375. https://doi.org/10.3390/curroncol31050176
APA StyleQuan, T., Cockburn, J., Dhesy-Thind, S., Bane, A., Leong, H., Geleff, C., Devion, C., Ajel, N., & Jerzak, K. J. (2024). The Significance of Thyroid Hormone Receptors in Breast Cancer: A Hypothesis-Generating Narrative Review. Current Oncology, 31(5), 2364-2375. https://doi.org/10.3390/curroncol31050176