Impact of the COVID-19 Pandemic on Thyroid Cancer Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population and Covariates
2.3. Statistical Analysis
3. Results
3.1. Changes in Thyroid Cancer Demographics and Treatment Times from 2004 to 2020
3.2. Clinical and Demographic Characteristics of Thyroid Cancer Patients in 2020 versus 2019
3.3. Linear Regression Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Mayo, M.; Potugari, B.; Bzeih, R.; Scheidel, C.; Carrera, C.; Shellenberger, R.A. Cancer Screening during the COVID-19 Pandemic: A Systematic Review and Meta-analysis. Mayo Clin. Proc. Innov. Qual. Outcomes 2021, 5, 1109–1117. [Google Scholar] [CrossRef]
- Richards, M.; Anderson, M.; Carter, P.; Ebert, B.L.; Mossialos, E. The impact of the COVID-19 pandemic on cancer care. Nat. Cancer 2020, 1, 565–567. [Google Scholar] [CrossRef]
- Patt, D.; Gordan, L.; Diaz, M.; Okon, T.; Grady, L.; Harmison, M.; Markward, N.; Sullivan, M.; Peng, J.; Zhou, A. Impact of COVID-19 on Cancer Care: How the Pandemic Is Delaying Cancer Diagnosis and Treatment for American Seniors. JCO Clin. Cancer Inform. 2020, 4, 1059–1071. [Google Scholar] [CrossRef]
- Hanna, T.P.; King, W.D.; Thibodeau, S.; Jalink, M.; Paulin, G.A.; Harvey-Jones, E.; O’Sullivan, D.E.; Booth, C.M.; Sullivan, R.; Aggarwal, A. Mortality due to cancer treatment delay: Systematic review and meta-analysis. BMJ 2020, 371, m4087. [Google Scholar] [CrossRef]
- Chavez-MacGregor, M.; Lei, X.; Zhao, H.; Scheet, P.; Giordano, S.H. Evaluation of COVID-19 Mortality and Adverse Outcomes in US Patients With or Without Cancer. JAMA Oncol. 2022, 8, 69–78. [Google Scholar] [CrossRef]
- Blay, J.Y.; Boucher, S.; Le Vu, B.; Cropet, C.; Chabaud, S.; Perol, D.; Barranger, E.; Campone, M.; Conroy, T.; Coutant, C.; et al. Delayed care for patients with newly diagnosed cancer due to COVID-19 and estimated impact on cancer mortality in France. ESMO Open 2021, 6, 100134. [Google Scholar] [CrossRef]
- Malagón, T.; Yong, J.H.E.; Tope, P.; Miller, W.H.; Franco, E.L.; McGill Task Force on the Impact of COVID-19 on Cancer Control and Care. Predicted long-term impact of COVID-19 pandemic-related care delays on cancer mortality in Canada. Int. J. Cancer 2022, 150, 1244–1254. [Google Scholar] [CrossRef]
- Tsang, V.H.M.; Gild, M.; Glover, A.; Clifton-Bligh, R.; Robinson, B.G. Thyroid cancer in the age of COVID-19. Endocr.-Relat. Cancer 2020, 27, R407–R416. [Google Scholar] [CrossRef]
- Palladino, R.; Migliatico, I.; Sgariglia, R.; Nacchio, M.; Iaccarino, A.; Malapelle, U.; Vigliar, E.; Salvatore, D.; Troncone, G.; Bellevicine, C. Thyroid fine-needle aspiration trends before, during, and after the lockdown: What we have learned so far from the COVID-19 pandemic. Endocrine 2021, 71, 20–25. [Google Scholar] [CrossRef]
- Liu, H.; Zhan, L.; Guo, L.; Yu, X.; Li, L.; Feng, H.; Yang, D.; Xu, Z.; Tu, Y.; Chen, C.; et al. More Aggressive Cancer Behaviour in Thyroid Cancer Patients in the Post-COVID-19 Pandemic Era: A Retrospective Study. Int. J. Gen. Med. 2021, 14, 7197–7206. [Google Scholar] [CrossRef]
- Kim, S.H.; Min, E.; Hwang, Y.M.; Choi, Y.S.; Yi, J.W. Impact of COVID-19 Pandemic on Thyroid Surgery in a University Hospital in South Korea. Cancers 2022, 14, 4338. [Google Scholar] [CrossRef]
- Vigliar, E.; Cepurnaite, R.; Iaccarino, A.; Pisapia, P.; De Luca, C.; Malapelle, U.; Bellevicine, C.; Troncone, G. Cytopathology practice during the COVID-19 postlockdown: An Italian experience. Cancer Cytopathol. 2021, 129, 548–554. [Google Scholar] [CrossRef]
- Tunca, F. Impact of the COVID-19 Pandemic on the Annual Thyroid, Parathyroid, and Adrenal Surgery Volume in a Tertiary Refferal Endocrine Surgery Center in 2020. Sisli Etfal [Internet]. 2021. Available online: https://sislietfaltip.org/jvi.aspx?un=SETB-64920&volume= (accessed on 17 August 2023).
- Medas, F.; Ansaldo, G.L.; Avenia, N.; Basili, G.; Boniardi, M.; Bononi, M.; Bove, A.; Carcoforo, P.; Casaril, A.; Cavallaro, G.; et al. The THYCOVIT (Thyroid Surgery during COVID-19 pandemic in Italy) study: Results from a nationwide, multicentric, case-controlled study. Updates Surg. 2021, 73, 1467–1475. [Google Scholar] [CrossRef]
- Medas, F.; Dobrinja, C.; Al-Suhaimi, E.A.; Altmeier, J.; Anajar, S.; Arikan, A.E.; Azaryan, I.; Bains, L.; Basili, G.; Bolukbasi, H.; et al. Effect of the COVID-19 pandemic on surgery for indeterminate thyroid nodules (THYCOVID): A retrospective, international, multicentre, cross-sectional study. Lancet Diabetes Endocrinol. 2023, 11, 402–413. [Google Scholar] [CrossRef]
- Cheng, F.; Xiao, J.; Huang, F.; Shao, C.; Ding, S.; Yun, C.; Jia, H. Delay of initial radioactive iodine therapy beyond 3 months has no effect on clinical responses and overall survival in patients with thyroid carcinoma: A cohort study and a meta-analysis. Cancer Med. 2022, 11, 2386–2396. [Google Scholar] [CrossRef]
- Li, M.; Dal Maso, L.; Vaccarella, S. Global trends in thyroid cancer incidence and the impact of overdiagnosis. Lancet Diabetes Endocrinol. 2020, 8, 468–470. [Google Scholar] [CrossRef]
- Nickel, B.; Glover, A.; Miller, J.A. Delays to Low-risk Thyroid Cancer Treatment during COVID-19—Refocusing from What Has Been Lost to What May Be Learned and Gained. JAMA Otolaryngol.–Head Neck Surg. 2021, 147, 5–6. [Google Scholar] [CrossRef]
- Powers, A.E.; Marcadis, A.R.; Lee, M.; Morris, L.G.T.; Marti, J.L. Changes in Trends in Thyroid Cancer Incidence in the United States, 1992 to 2016. JAMA 2019, 322, 2440–2441. [Google Scholar] [CrossRef]
- Megwalu, U.C.; Moon, P.K. Thyroid Cancer Incidence and Mortality Trends in the United States: 2000–2018. Thyroid 2022, 32, 560–570. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Suman, P.; Wang, C.H.; Abadin, S.S.; Block, R.; Raghavan, V.; Moo-Young, T.A.; Prinz, R.A.; Winchester, D.J. Timing of radioactive iodine therapy does not impact overall survival in high-risk papillary thyroid carcinoma. Endocr. Pract. 2016, 22, 822–831. [Google Scholar] [CrossRef]
- Kim, M.; Han, M.; Jeon, M.J.; Kim, W.G.; Kim, I.J.; Ryu, J.S.; Kim, W.B.; Shong, Y.K.; Kim, T.Y.; Kim, B.H. Impact of delayed radioiodine therapy in intermediate-/high-risk papillary thyroid carcinoma. Clin. Endocrinol. 2019, 91, 449–455. [Google Scholar] [CrossRef]
- Matrone, A.; Gambale, C.; Torregrossa, L.; Piaggi, P.; Bianchi, F.; Valerio, L.; Viola, D.; Agate, L.; Molinaro, E.; Materazzi, G.; et al. Delayed 131-I first treatment after surgery has no impact on the median term outcome of patients with intermediate risk differentiated thyroid cancer. Endocr. Pract. 2020, 26, 58–71. [Google Scholar] [CrossRef]
- Higashi, T.; Nishii, R.; Yamada, S.; Nakamoto, Y.; Ishizu, K.; Kawase, S.; Togashi, K.; Itasaka, S.; Hiraoka, M.; Misaki, T.; et al. Delayed initial radioactive iodine therapy resulted in poor survival in patients with metastatic differentiated thyroid carcinoma: A retrospective statistical analysis of 198 cases. J. Nucl. Med. 2011, 52, 683–689. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.Q.; Wang, C.; Zhang, X.; Li, X.; Lin, Y.S. Delayed initial radioiodine therapy related to incomplete response in low- to intermediate-risk differentiated thyroid cancer. Clin. Endocrinol. 2018, 88, 601–606. [Google Scholar] [CrossRef]
- Gertz, A.H.; Pollack, C.C.; Schultheiss, M.D.; Brownstein, J.S. Delayed medical care and underlying health in the United States during the COVID-19 pandemic: A cross-sectional study. Prev. Med. Rep. 2022, 28, 101882. [Google Scholar] [CrossRef]
- Boffa, D.J.; Rosen, J.E.; Mallin, K.; Loomis, A.; Gay, G.; Palis, B.; Thoburn, K.; Gress, D.; McKellar, D.P.; Shulman, L.N.; et al. Using the National Cancer Database for Outcomes Research: A Review. JAMA Oncol. 2017, 3, 1722–1728. [Google Scholar] [CrossRef]
- us_regdiv.pdf [Internet]. Available online: https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf (accessed on 3 April 2023).
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13 (Suppl. S1), S31–S34. [Google Scholar] [CrossRef]
- Sharperson, C.; Hanna, T.N.; Herr, K.D.; Zygmont, M.E.; Gerard, R.L.; Johnson, J.O. The effect of COVID-19 on emergency department imaging: What can we learn? Emerg. Radiol. 2021, 28, 339–347. [Google Scholar] [CrossRef]
- Silveira, V.B.; Schwengber, W.K.; Hetzel, G.M.; Zanella, A.B.; Scheffel, R.S.; Maia, A.L.; Dora, J.M. Effect of COVID-19 pandemic on diagnosis and treatment of thyroid cancer in Brazil. Front. Endocrinol. 2022, 13, 995329. [Google Scholar] [CrossRef]
- Escobar, N.; DiMaggio, C.; Pocock, B.; Pescovitz, A.; McCalla, S.; Joseph, K.A. Effects of COVID-19 on Surgical Delays in Patients with Breast Cancer in NYC Public Hospitals: A Multicenter Study. Ann. Surg. Oncol. 2023, 30, 23–30. [Google Scholar] [CrossRef]
- Pergolotti, M.; Pisegna, J.; Chien, L.C.; BrintzenhofeSzoc, K.; Kaur, A.; Battisti, N.; Canin, B.; Malone, M.V.; Shahrokni, A.; Plotkin, E.; et al. Healthcare providers’ experiences of continuing care for older adults with cancer during the COVID-19 pandemic. J. Cancer Surviv. 2023, 1–8. [Google Scholar]
- Lopez, B.; Fligor, S.C.; Randolph, G.W.; James, B.C. Inequities in Thyroid Cancer Care: Populations Most at Risk for Delays in Diagnosis and Treatment. Thyroid 2023, 33, 724–731. [Google Scholar] [CrossRef]
- LeClair, K.; Bell, K.J.L.; Furuya-Kanamori, L.; Doi, S.A.; Francis, D.O.; Davies, L. Evaluation of Gender Inequity in Thyroid Cancer Diagnosis. JAMA Intern. Med. 2021, 181, 1351–1358. [Google Scholar] [CrossRef]
2019 N (%) | 2020 N (%) | p-Value | |
---|---|---|---|
Age (in years) | |||
≤50 | 14,962 (48.19) | 12,052 (48.28) | 0.265 |
Between 51 and 60 | 6624 (21.33) | 5174 (20.73) | |
Between 61 and 70 | 5745 (18.50) | 4660 (18.67) | |
Older than 70 | 3719 (11.98) | 3075 (12.32) | |
Sex | |||
Male | 8134 (26.20) | 6659 (26.68) | 0.199 |
Female | 22,916 (73.80) | 18,302 (73.32) | |
Race | |||
White | 25,080 (80.77) | 20,210 (80.97) | 0.221 |
Black | 2427 (7.82) | 2006 (8.04) | |
Other | 3543 (11.41) | 2745 (11.00) | |
Proportion of adults from patient’s zip code not graduating high school, 2000 US Census data | |||
29.0% | 4061 (15.88) | 3238 (15.97) | 0.942 |
20% to 28.9% | 5448 (21.31) | 4358 (21.49) | |
14% to 19.9% | 5966 (23.33) | 4701 (23.19) | |
Less than 14% | 10,094 (39.48) | 7978 (39.35) | |
Median household income for patient’s zip code, 2000 US Census data | 0.081 | ||
<USD30,000 | 2715 (10.62) | 2252 (11.10) | |
USD30,000–USD34,999 | 3910 (15.29) | 3130 (15.43) | |
USD35,000–USD45,999 | 6768 (26.47) | 5469 (26.96) | |
USD46,000+ | 12,179 (47.63) | 9431 (46.50) | |
Distance from Facility (miles) | 0.002 | ||
≤10 | 11,900 (38.49) | 9325 (37.52) | |
11 to 20 | 6055 (19.58) | 4771 (19.20) | |
21 to 50 | 5261 (17.01) | 4195 (16.88) | |
51 to 100 | 1912 (6.18) | 1583 (6.37) | |
>100 | 5793 (18.73) | 4977 (20.03) | |
Insurance Status | |||
Uninsured | 1200 (3.86) | 860 (3.45) | =0.002 |
Private Insurance/Managed Care | 19,276 (62.08) | 15,281 (61.22) | |
Medicaid | 2980 (9.60) | 2524 (10.11) | |
Medicare | 7108 (22.89) | 5853 (23.45) | |
Other | 486 (1.57) | 443 (1.77) | |
Charlson–Deyo Score | |||
Score of 0 or 1 | 29,317 (94.42) | 23,506 (94.17) | 0.208 |
Score of 2 or 3 | 1733 (5.58) | 1455 (5.83) | |
Readmission | |||
No unplanned readmission | 30,359 (97.77) | 24,359 (97.59) | 0.288 |
Unplanned readmission | 429 (1.38) | 364 (1.46) | |
Unknown | 262 (0.84) | 238 (0.95) | |
Margins | |||
Negative | 25,846 (83.24) | 20,753 (83.14) | 0.366 |
Positive | 3241 (10.44) | 2562 (10.26) | |
Unknown | 1963 (6.32) | 1646 (6.59) | |
Region | 0.001 | ||
East | 5927 (19.09) | 4235 (16.97) | |
South | 5141 (16.56) | 4288 (17.18) | |
Midwest | 7735 (24.91) | 6409 (25.68) | |
West | 4145 (13.35) | 3257 (13.05) | |
Unknown | 8102 (26.09) | 6772 (27.13) | |
Rural–Urban | 0.003 | ||
Metro | 26,132 (84.16) | 20,932 (83.86) | |
Urban | 3690 (11.88) | 3094 (12.40) | |
Rural | 449 (1.45) | 403 (1.61) | |
Unknown | 779 (2.51) | 532 (2.13) |
2019 (N%) | 2020 N(%) | p-Value | |
---|---|---|---|
Pathological TNM Stage | 0.030 | ||
Stage 1 | 22,788 (73.39) | 18,495 (74.10) | |
Stage 2 | 3463 (11.15) | 2787 (11.17) | |
Stage 3 | 303 (.98) | 236 (.95) | |
Stage 4 | 259 (.83) | 241 (.97) | |
Other or Unknown | 4237 (13.65) | 3202 (12.83) | |
Clinical T Stage | |||
T1 | 9073 (41.26) | 7034 (40.93) | 0.001 |
T2 | 5011 (22.79) | 4106 (23.89) | |
T3 | 1897 (8.63) | 1630 (9.48) | |
T4 | 249 (1.13) | 200 (1.16) | |
Other or Unknown | 5760 (26.19) | 4217 (24.54) | |
Clinical N Stage | |||
N0 | 16,955 (54.61) | 13,332 (53.41) | 0.005 |
N+ | 2751 (8.86) | 2179 (8.73) | |
Other or Unknown | 11,344 (36.53) | 9450 (37.86) | |
Clinical Staging M | |||
M0 | 21,484 (69.19) | 16,946 (67.89) | 0.004 |
M1 | 371 (1.19) | 300 (1.20) | |
Other or Unknown | 9195 (29.61) | 7715 (30.91) |
Independent Variable | Mean Difference (Days) | CI | p-Value |
---|---|---|---|
Year 2020 (ref: Year 2019) | −1.46 | −2.52 to 0.40 | 0.007 |
Age, y (ref: ≤50 y) | |||
51–60 y | 1.19 | −0.40 to 2.78 | 0.143 |
61–70 y | 0.72 | −1.14 to 2.59 | 0.447 |
71 y or older | 4.35 | 1.69 to 7.01 | 0.001 |
Sex (ref: Male) | −2.60 | −3.82 to −1.38 | <0.001 |
Race (ref: White) | |||
Black | −0.88 | −3.12 to 1.35 | 0.438 |
Other | 7.78 | 5.92 to 9.64 | <0.001 |
Proportion of adults from patient’s zip code not graduating high school (ref: 29.0%+) | |||
20% to 28.9% | −2.45 | −4.44 to 0.46 | 0.016 |
14% to 19.9% | −2.07 | −4.15 to 0.01 | 0.051 |
Less than 14% | −2.14 | −4.33 to 0.05 | 0.055 |
Median household income for patient’s zip code (ref: <$30,000) | |||
USD30,000–USD34,999 | −0.73 | −3.01 to 1.55 | 0.531 |
USD35,000–USD45,999 | 0.69 | −1.63 to 3.01 | 0.559 |
USD46,000+ | 0.85 | −1.65 to 3.35 | 0.507 |
Distance from treatment facility (ref: 0–10 miles away from treatment facility) | |||
11–20 miles | −0.16 | −1.54 to 1.22 | 0.818 |
21–50 miles | 0.27 | −1.20 to 1.74 | 0.714 |
51–100 miles | 5.05 | 2.77 to 7.33 | <0.001 |
>100 miles | 10.02 | 6.89 to 13.16 | <0.001 |
Insurance Status (ref: Uninsured or Unknown) | |||
Private Insurance or Managed Care | −7.93 | −11.09 to −4.78 | <0.001 |
Medicaid | −1.36 | −5.05 to 2.34 | 0.472 |
Medicare | −5.92 | −9.48 to −2.36 | 0.001 |
Other Government | −2.96 | −8.08 to 2.17 | 0.258 |
Charlson–Deyo Score of 2 or 3 (ref: score of 0 or 1) | 0.78 | −2.04 to 3.60 | 0.590 |
Readmission (ref: no unplanned readmission) | |||
Unplanned Readmission | −0.13 | −4.38 to 4.12 | 0.953 |
Unknown | 0.68 | −5.21 to 6.58 | 0.820 |
Region (ref: East) | |||
South | −3.93 | −5.74 to −2.12 | <0.001 |
Midwest | −1.44 | −3.19 to 0.32 | 0.109 |
West | 4.81 | 2.74 to 6.99 | <0.001 |
Unknown | 1.66 | −0.18 to 3.50 | 0.077 |
Rural/Urban (ref: Metro) | |||
Urban | −6.51 | −8.35 to 4.68 | <0.001 |
Rural | −10.58 | 14.03 to 7.12 | <0.001 |
Not Available/Unknown | −1.59 | −5.39 to 2.21 | 0.412 |
Clinical T Stage (ref: cT1) | |||
cT2 | −6.34 | −7.79 to 4.90 | <0.001 |
cT3 | −16.93 | −18.74 to −12.13 | <0.001 |
cT4 | −10.64 | −15.85 to −5.43 | <0.001 |
Other or Unknown | −25.56 | −26.95 to −24.17 | <0.001 |
Clinical N Stage (ref: N0) | |||
N+ | 0.60 | 1.11 to 2.30 | 0.491 |
Other/Unknown | −0.25 | −2.32 to 1.82 | 0.814 |
Clinical M Stage (ref: M0) | |||
M1 | 10.95 | 4.72 to 17.18 | 0.001 |
Other/Unknown | −5.29 | −8.09 to −2.49 | <0.001 |
Independent Variable | Mean Difference (Days) | CI | p-Value |
---|---|---|---|
Year 2020 (ref: Year 2019) | −0.01 | −0.02 to 0.01 | 0.358 |
Age, y (ref: ≤50 y) | |||
51–60 y | −0.01 | −0.03 to 0.01 | 0.542 |
61–70 y | −0.01 | −0.03 to 0.01 | 0.480 |
71 y or older | −0.02 | −0.05 to 0.01 | 0.193 |
Sex (ref: Male) | 0.01 | 0.00 to 0.02 | 0.059 |
Race (ref: White) | |||
Black | −0.01 | −0.04 to 0.02 | 0.484 |
Other | 0.01 | −0.01 to 0.03 | 0.224 |
Proportion of adults from patient’s zip code not graduating high school (ref: 29.0%+) | |||
20% to 28.9% | −0.01 | −0.03 to 0.01 | 0.326 |
14% to 19.9% | −0.02 | −0.05 to 0.00 | 0.065 |
Less than 14% | −0.02 | −0.04 to 0.01 | 0.171 |
Median household income for patient’s zip code (ref: <$30,000) | |||
USD30,000–USD34,999 | 0.01 | −0.01 to 0.04 | 0.348 |
USD35,000–USD45,999 | 0.03 | 0.00 to 0.05 | 0.056 |
USD46,000+ | 0.02 | −0.01 to 0.05 | 0.187 |
Distance from treatment facility (ref: 0–10 miles away from treatment facility) | |||
11–20 miles | −0.02 | −0.03 to 0.00 | 0.062 |
21–50 miles | 0.01 | −0.01 to 0.03 | 0.219 |
51–100 miles | 0.05 | 0.02 to 0.08 | 0.001 |
>100 miles | 0.04 | 0.00 to 0.07 | 0.049 |
Insurance Status (ref: Uninsured/Unknown) | |||
Private Insurance or Managed Care | 0.00 | −0.03 to 0.03 | 0.988 |
Medicaid | 0.02 | −0.02 to 0.06 | 0.260 |
Medicare | 0.01 | −0.03 to 0.04 | 0.705 |
Other Government | 0.00 | −0.06 to 0.06 | 0.974 |
Charlson–Deyo Score of 2 or 3 (ref: score of 0 or 1) | 0.03 | 0.00 to 0.06 | 0.062 |
Readmission (ref no unplanned readmission) | |||
Unplanned Readmission | 0.05 | 0.01 to 0.09 | 0.019 |
Unknown | 0.02 | −0.02 to 0.07 | 0.325 |
Region (ref: East) | |||
South | −0.15 | −0.17 to −0.13 | <0.001 |
Midwest | −0.10 | −0.12 to −0.08 | <0.001 |
West | −0.05 | −0.07 to −0.03 | <0.001 |
Unknown | −0.09 | −0.11 to −0.07 | <0.001 |
Rural/Urban (ref: Metro) | |||
Urban | −0.03 | −0.05 to −0.01 | 0.015 |
Rural | −0.01 | −0.07 to 0.04 | 0.595 |
Not Available/Unknown | −0.07 | −0.12 to −0.02 | 0.008 |
Pathologic T Stage (ref: pT 1) | |||
pT2 | 0.02 | 0.00 to 0.03 | 0.047 |
pT3 | 0.01 | −0.01 to 0.02 | 0.265 |
pT4 | −0.01 | −0.05 to 0.02 | 0.437 |
Other or Unknown | 0.06 | 0.02 to 0.10 | 0.003 |
Pathologic N Stage (ref: N0) | |||
N+ | 0.02 | 0.00 to 0.03 | 0.041 |
Other/Unknown | −0.01 | −0.03 to 0.01 | 0.190 |
Pathologic M Stage (ref: M0) | |||
M1 | −0.02 | −0.07 to 0.03 | 0.435 |
Other/Unknown | 0.03 | −0.01 to 0.06 | 0.160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.L.; Megwalu, U.C.; Finegersh, A.; Noel, J.E.; Chen, M.M. Impact of the COVID-19 Pandemic on Thyroid Cancer Surgery. Curr. Oncol. 2024, 31, 3579-3590. https://doi.org/10.3390/curroncol31060263
Lee ML, Megwalu UC, Finegersh A, Noel JE, Chen MM. Impact of the COVID-19 Pandemic on Thyroid Cancer Surgery. Current Oncology. 2024; 31(6):3579-3590. https://doi.org/10.3390/curroncol31060263
Chicago/Turabian StyleLee, Max L., Uchechukwu C. Megwalu, Andrey Finegersh, Julia E. Noel, and Michelle M. Chen. 2024. "Impact of the COVID-19 Pandemic on Thyroid Cancer Surgery" Current Oncology 31, no. 6: 3579-3590. https://doi.org/10.3390/curroncol31060263
APA StyleLee, M. L., Megwalu, U. C., Finegersh, A., Noel, J. E., & Chen, M. M. (2024). Impact of the COVID-19 Pandemic on Thyroid Cancer Surgery. Current Oncology, 31(6), 3579-3590. https://doi.org/10.3390/curroncol31060263