Trace Element Concentrations of Arsenic and Selenium in Toenails and Risk of Prostate Cancer among Pesticide Applicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Survey of Subjects
2.3. Trace Element Analyses
2.4. Limit of Detection (LOD)
2.5. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Orsted, D.D.; Bojesen, S.E.; Nielsen, S.F.; Nordestgaard, B.G. Association of clinical benign prostate hyperplasia with prostate cancer incidence and mortality revisited: A nationwide cohort study of 3,009,258 men. Eur. Urol. 2011, 60, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Bostwick, D.G.; Burke, H.B.; Djakiew, D.; Euling, S.; Ho, S.M.; Landolph, J.; Morrison, H.; Sonawane, B.; Shifflett, T.; Waters, D.J.; et al. Human prostate cancer risk factors. Cancer 2004, 101 (Suppl. S10), 2371–2490. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, W.; Wang, X.; Zhao, K.; Negi, D.S.; Zhuo, L.; Qi, M.; Wang, X.; Zhang, X. Lycopene and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Medicine 2015, 94, e1260. [Google Scholar] [CrossRef] [PubMed]
- Cantor, K.P. Drinking water and cancer. Cancer Causes Control 1997, 8, 292–308. [Google Scholar] [CrossRef]
- Karagas, M.R.; Tosteson, T.D.; Blum, J.; Morris, J.S.; Baron, J.A.; Klaue, B. Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a U.S. population. Environ. Health Perspect. 1998, 106 (Suppl. S4), 1047–1050. [Google Scholar] [CrossRef]
- Brooks, J.D.; Metter, E.J.; Chan, D.W.; Sokoll, L.J.; Landis, P.; Nelson, W.G.; Muller, D.; Andres, R.; Carter, H.B. Plasma selenium level before diagnosis and the risk of prostate cancer development. J. Urol. 2001, 166, 2034–2038. [Google Scholar] [CrossRef]
- Clark, L.C.; Dalkin, B.; Krongrad, A.; Combs, G.F., Jr.; Turnbull, B.W.; Slate, E.H.; Witherington, R.; Herlong, J.H.; Janosko, E.; Carpenter, D.; et al. Decreased incidence of prostate cancer with selenium supplementation: Results of a double-blind cancer prevention trial. Br. J. Urol. 1998, 81, 730–734. [Google Scholar] [CrossRef]
- Helzlsouer, K.J.; Huang, H.Y.; Alberg, A.J.; Hoffman, S.; Burke, A.; Norkus, E.P.; Morris, J.S.; Comstock, G.W. Association between alpha-tocopherol, gamma-tocopherol, selenium, and subsequent prostate cancer. J. Natl. Cancer Inst. 2000, 92, 2018–2023. [Google Scholar] [CrossRef]
- Li, H.; Stampfer, M.J.; Giovannucci, E.L.; Morris, J.S.; Willett, W.C.; Gaziano, J.M.; Ma, J. A prospective study of plasma selenium levels and prostate cancer risk. J. Natl. Cancer Inst. 2004, 96, 696–703. [Google Scholar] [CrossRef]
- Nomura, A.M.; Lee, J.; Stemmermann, G.N.; Combs, G.F., Jr. Serum selenium and subsequent risk of prostate cancer. Cancer Epidemiol. Biomark. Prev. 2000, 9, 883–887. [Google Scholar]
- van den Brandt, P.A.; Zeegers, M.P.; Bode, P.; Goldbohm, R.A. Toenail selenium levels and the subsequent risk of prostate cancer: A prospective cohort study. Cancer Epidemiol. Biomark. Prev. 2003, 12, 866–871. [Google Scholar]
- MacInnis, R.J.; English, D.R. Body size and composition and prostate cancer risk: Systematic review and meta-regression analysis. Cancer Causes Control 2006, 17, 989–1003. [Google Scholar] [CrossRef]
- Dennis, L.K.; Snetselaar, L.G.; Smith, B.J.; Stewart, R.E.; Robbins, M.E. Problems with the assessment of dietary fat in prostate cancer studies. Am. J. Epidemiol. 2004, 160, 436–444. [Google Scholar] [CrossRef]
- Lin, P.H.; Aronson, W.; Freedland, S.J. Nutrition, dietary interventions and prostate cancer: The latest evidence. BMC Med. 2015, 13, 3. [Google Scholar] [CrossRef]
- Koutros, S.; Cross, A.J.; Sandler, D.P.; Hoppin, J.A.; Ma, X.; Zheng, T.; Alavanja, M.C.; Sinha, R. Meat and meat mutagens and risk of prostate cancer in the Agricultural Health Study. Cancer Epidemiol. Biomark. Prev. 2008, 17, 80–87. [Google Scholar] [CrossRef]
- Alavanja, M.C.; Samanic, C.; Dosemeci, M.; Lubin, J.; Tarone, R.; Lynch, C.F.; Knott, C.; Thomas, K.; Hoppin, J.A.; Barker, J.; et al. Use of agricultural pesticides and prostate cancer risk in the Agricultural Health Study cohort. Am. J. Epidemiol. 2003, 157, 800–814. [Google Scholar] [CrossRef] [PubMed]
- Blair, A.; Malker, H.; Cantor, K.P.; Burmeister, L.; Wiklund, K. Cancer among farmers. A review. Scand. J. Work. Environ. Health 1985, 11, 397–407. [Google Scholar] [CrossRef]
- Brownson, R.C.; Chang, J.C.; Davis, J.R.; Bagby, J.R., Jr. Occupational risk of prostate cancer: A cancer registry-based study. J. Occup. Med. 1988, 30, 523–526. [Google Scholar] [CrossRef]
- Carter, B.S.; Carter, H.B.; Isaacs, J.T. Epidemiologic evidence regarding predisposing factors to prostate cancer. Prostate 1990, 16, 187–197. [Google Scholar] [CrossRef]
- Checkoway, H.; DiFerdinando, G.; Hulka, B.S.; Mickey, D.D. Medical, life-style, and occupational risk factors for prostate cancer. Prostate 1987, 10, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.M.; Mahajan, R.; Beane Freeman, L.E.; Hoppin, J.A.; Alavanja, M.C. Cancer incidence among pesticide applicators exposed to butylate in the Agricultural Health Study (AHS). Environ. Res. 2009, 109, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Morrison, H.; Savitz, D.; Semenciw, R.; Hulka, B.; Mao, Y.; Morison, D.; Wigle, D. Farming and prostate cancer mortality. Am. J. Epidemiol. 1993, 137, 270–280. [Google Scholar] [CrossRef]
- Ragin, C.; Davis-Reyes, B.; Tadesse, H.; Daniels, D.; Bunker, C.H.; Jackson, M.; Ferguson, T.S.; Patrick, A.L.; Tulloch-Reid, M.K.; Taioli, E. Farming, reported pesticide use, and prostate cancer. Am. J. Mens. Health 2013, 7, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.E.; Dennis, L.K.; Dawson, D.V.; Resnick, M.I. A meta-analysis of risk estimates for prostate cancer related to tire and rubber manufacturing operations. J. Occup. Environ. Med. 1999, 41, 1079–1084. [Google Scholar] [CrossRef]
- Silvera, S.A.; Rohan, T.E. Trace elements and cancer risk: A review of the epidemiologic evidence. Cancer Causes Control 2007, 18, 7–27. [Google Scholar] [CrossRef]
- Benbrahim-Tallaa, L.; Waterland, R.A.; Styblo, M.; Achanzar, W.E.; Webber, M.M.; Waalkes, M.P. Molecular events associated with arsenic-induced malignant transformation of human prostatic epithelial cells: Aberrant genomic DNA methylation and K-ras oncogene activation. Toxicol. Appl. Pharmacol. 2005, 206, 288–298. [Google Scholar] [CrossRef]
- Shearer, J.J.; Wold, E.A.; Umbaugh, C.S.; Lichti, C.F.; Nilsson, C.L.; Figueiredo, M.L. Inorganic Arsenic-Related Changes in the Stromal Tumor Microenvironment in a Prostate Cancer Cell-Conditioned Media Model. Environ. Health Perspect. 2016, 124, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Borek, C. Dietary antioxidants and human cancer. Integr. Cancer Ther. 2004, 3, 333–341. [Google Scholar] [CrossRef]
- Garland, M.; Morris, J.S.; Rosner, B.A.; Stampfer, M.J.; Spate, V.L.; Baskett, C.J.; Willett, W.C.; Hunter, D.J. Toenail trace element levels as biomarkers: Reproducibility over a 6-year period. Cancer Epidemiol. Biomark. Prev. 1993, 2, 493–497. [Google Scholar]
- Croghan, C.; Egeghy, P.P. Methods of Dealing with Values Below the Limit of Detection Using SAS. 2003. Available online: https://analytics.ncsu.edu/sesug/2003/SD08-Croghan.pdf (accessed on 29 November 2018).
- Canales, R.A.; Wilson, A.M.; Pearce-Walker, J.I.; Verhougstraete, M.P.; Reynolds, K.A. Methods for Handling Left-Censored Data in Quantitative Microbial Risk Assessment. Appl. Environ. Microbiol. 2018, 84, e01203-18. [Google Scholar] [CrossRef] [PubMed]
- Kroll, C.N.; Stedinger, J.R. Estimation of moments and quantiles using censored data. Water Resour. Res. 1996, 32, 1005–1012. [Google Scholar] [CrossRef]
- Roh, T.; Lynch, C.F.; Weyer, P.; Wang, K.; Kelly, K.M.; Ludewig, G. Low-level arsenic exposure from drinking water is associated with prostate cancer in Iowa. Environ. Res. 2017, 159, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Esquinas, E.; Pollan, M.; Umans, J.G.; Francesconi, K.A.; Goessler, W.; Guallar, E.; Howard, B.; Farley, J.; Best, L.G.; Navas-Acien, A. Arsenic exposure and cancer mortality in a US-based prospective cohort: The strong heart study. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1944–1953. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Kuo, T.L.; Wu, M.M. Arsenic and cancers. Lancet 1988, 1, 414–415. [Google Scholar] [CrossRef]
- Tsai, S.M.; Wang, T.N.; Ko, Y.C. Mortality for certain diseases in areas with high levels of arsenic in drinking water. Arch. Environ. Health 1999, 54, 186–193. [Google Scholar] [CrossRef]
- Nunez, O.; Fernandez-Navarro, P.; Martin-Mendez, I.; Bel-Lan, A.; Locutura, J.F.; Lopez-Abente, G. Arsenic and chromium topsoil levels and cancer mortality in Spain. Environ. Sci. Pollut. Res. Int. 2016, 23, 17664–17675. [Google Scholar] [CrossRef]
- Lewis, D.R.; Southwick, J.W.; Ouellet-Hellstrom, R.; Rench, J.; Calderon, R.L. Drinking water arsenic in Utah: A cohort mortality study. Environ. Health Perspect. 1999, 107, 359–365. [Google Scholar] [CrossRef]
- Pearce, D.C.; Dowling, K.; Sim, M.R. Cancer incidence and soil arsenic exposure in a historical gold mining area in Victoria, Australia: A geospatial analysis. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 248–257. [Google Scholar] [CrossRef]
- Hinwood, A.L.; Sim, M.R.; Jolley, D.; de Klerk, N.; Bastone, E.B.; Gerostamoulos, J.; Drummer, O.H. Hair and toenail arsenic concentrations of residents living in areas with high environmental arsenic concentrations. Environ. Health Perspect. 2003, 111, 187–193. [Google Scholar] [CrossRef]
- Aballay, L.R.; Diaz Mdel, P.; Francisca, F.M.; Munoz, S.E. Cancer incidence and pattern of arsenic concentration in drinking water wells in Cordoba, Argentina. Int. J. Environ. Health Res. 2012, 22, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Baastrup, R.; Sorensen, M.; Balstrom, T.; Frederiksen, K.; Larsen, C.L.; Tjonneland, A.; Overvad, K.; Raaschou-Nielsen, O. Arsenic in drinking-water and risk for cancer in Denmark. Environ. Health Perspect. 2008, 116, 231–237. [Google Scholar] [CrossRef]
- Bulka, C.M.; Jones, R.M.; Turyk, M.E.; Stayner, L.T.; Argos, M. Arsenic in drinking water and prostate cancer in Illinois counties: An ecologic study. Environ. Res. 2016, 148, 450–456. [Google Scholar] [CrossRef]
- Cai, X.; Wang, C.; Yu, W.; Fan, W.; Wang, S.; Shen, N.; Wu, P.; Li, X.; Wang, F. Selenium Exposure and Cancer Risk: An Updated Meta-analysis and Meta-regression. Sci. Rep. 2016, 6, 19213. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Allen, N.E.; Travis, R.C.; Appleby, P.N.; Albanes, D.; Barnett, M.J.; Black, A.; Bueno-de-Mesquita, H.B.; Deschasaux, M.; Galan, P.; Goodman, G.E.; et al. Selenium and Prostate Cancer: Analysis of Individual Participant Data From Fifteen Prospective Studies. J. Natl. Cancer Inst. 2016, 108, djw153. [Google Scholar] [CrossRef] [PubMed]
- Sayehmiri, K.; Azami, M.; Mohammadi, Y.; Soleymani, A.; Tardeh, Z. The association between Selenium and Prostate Cancer: A Systematic Review and Meta-Analysis. Asian Pac. J. Cancer Prev. 2018, 19, 1431–1437. [Google Scholar] [CrossRef]
- Le, T.T.; Kim, K.W.; Nguyen, D.Q.; Ngo, H.T.T. Trace element contamination in rice and its potential health risks to consumers in North-Central Vietnam. Environ. Geochem. Health 2023, 45, 3361–3375. [Google Scholar] [CrossRef]
- Nozadi, F.; Azadi, N.; Mansouri, B.; Tavakoli, T.; Mehrpour, O. Association between trace element concentrations in cancerous and non-cancerous tissues with the risk of gastrointestinal cancers in Eastern Iran. Environ. Sci. Pollut. Res. Int. 2021, 28, 62530–62540. [Google Scholar] [CrossRef]
- Takahashi, E.; Imai, K.; Fukuyama, M.; Terata, K.; Nanjo, H.; Ishiyama, K.; Hiroshima, Y.; Yatsuyanagi, M.; Kudo, C.; Morishita, A.; et al. Changes in Serum Trace Element Concentrations Before and After Surgery in Resectable Breast Cancer. Anticancer Res. 2022, 42, 5323–5334. [Google Scholar] [CrossRef]
- Yu, K.; Liu, S.; Lin, Z.; Song, J.; Zeng, Q.; Zhou, J.; Zhang, J.; Zhang, S.; Lin, J.; Xiang, Z.; et al. Effect of trace element mixtures on the outcome of patients with esophageal squamous cell carcinoma: A prospective cohort study in Fujian, China. BMC Cancer 2024, 24, 24. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.H.; Shahid, M.; Tahir, M.; Natasha, N.; Bibi, I.; Tariq, T.Z.; Khalid, S.; Nadeem, M.; Abbas, G.; Saeed, M.F.; et al. Risk assessment of trace element accumulation in soil and Brassica oleracea after wastewater irrigation. Environ. Geochem. Health 2023, 45, 8929–8942. [Google Scholar] [CrossRef] [PubMed]
- Henke, G.; Nucci, A.; Queiroz, L.S. Detection of repeated arsenical poisoning by neutron activation analysis of foot nail segments. Arch. Toxicol. 1982, 50, 125–131. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Cases N (%) | Controls N (%) | p-Value 2 |
---|---|---|---|
Age at pilot enrollment | |||
40–59 | 11 (19%) | 46 (27%) | 0.78 |
60–69 | 34 (58%) | 82 (47%) | |
70–79 | 10 (17%) | 35 (20%) | |
80–89 | 4 (7%) | 10 (6%) | |
Mean age, years | 65.7 | 65.3 | 0.72 |
Married (at cohort enrollment) | 57 (97%) | 160 (92%) | 0.27 |
Education at enrollment | |||
Less than high school graduate | 1 (2%) | 9 (5%) | 0.44 |
High school graduate/GED | 31 (53%) | 89 (52%) | |
Some college or vocational education | 10 (17%) | 34 (20%) | |
College graduate | 15 (17%) | 38 (22%) | |
(missing) | 2 (3%) | 3 (2%) | |
Body Mass Index (kg/m2) at enrollment 1 | |||
Missing | 25 (42%) | 47 (27%) | 0.90 |
<25 | 8 (14%) | 30 (17%) | |
25–26.5 | 9 (15%) | 30 (17%) | |
26.6–29.9 | 7 (12%) | 35 (20%) | |
30+ | 10 (17%) | 31 (18%) | |
Smoking status | |||
Never | 34 (58%) | 93 (54%) | 0.83 |
Current | 20 (34%) | 71 (41%) | |
Former | 5 (8%) | 8 (5%) | |
Mean smoking pack-years | 8.5 | 5.9 | 0.23 |
Consumption of vegetables | |||
Tomatoes | 54 (96%) | 142 (93%) | 0.34 |
Fresh vegetables (other than tomatoes) | 31 (57%) | 101 (66%) | 0.28 |
Home grown vegetables (other than tomatoes) | 9 (17%) | 35 (23%) | 0.35 |
Know they take supplements with selenium | 22 (37%) | 61 (35%) | 0.78 |
Prostate cancer family history | 9 (16%) | 21 (12%) | 0.55 |
Risk Factors | Cases | Controls | Crude OR (95% CI) |
---|---|---|---|
Prostate Issues 1 | |||
Enlarged Prostate | 37/59 (63%) | 45/173 (26%) | 4.8 (2.6–9.3) |
Prostatitis | 11/59 (19%) | 17/173 (10%) | 1.9 (0.8–4.6) |
Arsenic Exposures 1,2 | |||
Lead Arsenate | 3/45 (7%) | 4/166 (2%) | 2.9 (0.6–13.4) |
Inorganic Arsenic | 0/45 (0%) | 0/166 (0%) | NA |
Organic Arsenic | 0/45 (0%) | 1/166 (0.6%) | NA |
Characteristic | Cases | Controls | Adjusted OR1 (95% CI) 1 | Cases | Controls | Adjusted OR2 (95% CI) 2 | ||
---|---|---|---|---|---|---|---|---|
Arsenic PPM 3 | ||||||||
<0.20 | 7 (12%) | 45 (26%) | Ref | 20 (34%) | 80 (46%) | Ref | ||
0.20–0.28 | 28 (47%) | 57 (33%) | 3.4 | 1.3–8.6 | 20 (34%) | 44 (26%) | 2.0 | 1.0–4.2 |
>0.28 | 24 41%) | 71 (41%) | 2.2 | 0.9–5.6 | 19 (32%) | 49 (28%) | 1.6 | 0.8–3.3 |
Selenium PPM 4 | ||||||||
<0.26 | 28 (47%) | 87 (50%) | Ref | 33 (56%) | 101 (58%) | Ref | ||
0.26–0.33 | 9 (15%) | 48 (28%) | 0.6 | 0.3–1.4 | 7 (12%) | 39 (23%) | 0.5 | 0.2–1.3 |
>0.33 | 22 (37%) | 38 (22%) | 2.0 | 1.0–4.0 | 19 (32%) | 33 (19%) | 2.0 | 1.0–4.0 |
Trace Element | All Subjects Combined | Prostate Cancer Cases | Healthy Male Controls | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Detectable N (%) | Mean | Median | Mode | Range of Detectable Values | Detect-able N (%) | Mean | Range of Detectable Values | Detect-able N (%) | Mean | Range of Detectable Values | |
Aluminum (al) | 239 (100%) | 108.31 | 48.3 | 11.3 | 8.5–1683.7 | 66 (100%) | 114.4 | 9.1–1347.4 | 173 (100%) | 106.0 | 8.5–1683.7 |
Antimony (sb) | 164 (69%) | 0.10 | 0.05 | 0.04 | 0.01–3.25 | 44 (67%) | 0.06 | 0.01–0.24 | 120 (69%) | 0.12 | 0.01–3.25 |
Arsenic (as) | 113 (47%) | 0.29 | 0.2 | 0.2 | 0.1–1.8 | 36 (55%) | 0.28 | 0.1–1.5 | 77 (45%) | 0.30 | 0.1–1.8 |
Bromine (br) | 239 (100%) | 5.43 | 2.6 | 2 | 0.02–486.0 | 66 (100%) | 11.0 | 1.4–486 | 173 (100%) | 3.28 | 0.02–41.1 |
Calcium (ca) | 130 (54%) | 0.32 | 0.24 | 0.16 | 0.07–1.59 | 36 (55%) | 0.38 | 0.07–1.59 | 94 (54%) | 0.30 | 0.08–1.44 |
Chlorine (cl) | 239 (100%) | 0.18 | 0.165 | 0.091 | 0.016–0.827 | 66 (100%) | 0.20 | 0.016–0.739 | 173 (100%) | 0.18 | 0.06–0.827 |
Chromium (cr) | 102 (43%) | 2.50 | 1.75 | 0.6 | 0.4–20.9 | 25 (38%) | 1.95 | 0.4–6.7 | 77 (45%) | 2.68 | 0.4–20.9 |
Cobalt (co) | 227 (95%) | 0.86 | 0.6 | 0.4 | 0.1–23.2 | 64 (97%) | 1.07 | 0.2–23.2 | 163 (94%) | 0.78 | 0.1–2.7 |
Copper (cu) | 106 (44%) | 13.40 | 8.2 | 8 | 2.4–213.7 | 27 (41%) | 11.2 | 2.4–30.9 | 79 (46%) | 14.2 | 3.2–213.7 |
Gold (au) | 189 (79%) | 0.01 | 0.004 | 0.003 | 0.001–0.233 | 53 (80%) | 0.01 | 0.001–0.09 | 136 (79%) | 0.01 | 0.001–0.233 |
Iodine (i) | 57 (24%) | 61.80 | 2.7 | 0.8 | 0.21–2975.5 | 27 (41%) | 3.53 | 0.5–8.1 | 30 (17%) | 114.2 | 0.21–2975.5 |
Iron (fe) | 66 (28%) | 0.02 | 0.01 | 0.01 | 0.01–0.17 | 21 (32%) | 0.02 | 0.01–0.05 | 45 (26%) | 0.02 | 0.01–0.17 |
Lanthanum (la) | 152 (64%) | 0.21 | 0.095 | 0.07 | 0.02–5.44 | 44 (67%) | 0.19 | 0.03–1.3 | 108 (62%) | 0.22 | 0.02–5.44 |
Magnesium (mg) | 214 (90%) | 0.05 | 0.039 | 0.023 | 0.012–0.387 | 60 (91%) | 0.05 | 0.012–0.387 | 154 (89%) | 0.05 | 0.012–0.226 |
Manganese (mn) | 236 (99%) | 2.26 | 1.35 | 1 | 0.3–53.2 | 64 (97%) | 2.13 | 0.4–10 | 172 (99%) | 2.31 | 0.3–53.2 |
Mercury (hg) | 79 (33%) | 0.34 | 0.31 | 0.18 | 0.11–1.01 | 26 (39%) | 0.33 | 0.11–0.79 | 53 (31%) | 0.34 | 0.12–1.01 |
Potassium (k) | 201 (84%) | 0.14 | 0.119 | 0.058 | 0.013–0.687 | 55 (83%) | 0.14 | 0.033–0.657 | 146 (84%) | 0.14 | 0.013–0.687 |
Scandium (sc) | 88 (37%) | 0.16 | 0.02 | 0.02 | 0.01–6.24 | 30 (45%) | 0.02 | 0.01–0.05 | 58 (34%) | 0.22 | 0.01–6.24 |
Selenium (se) | 171 (72%) | 0.35 | 0.27 | 0.25 | 0.12–2.53 | 49 (74%) | 0.35 | 0.12–1.18 | 122 (71%) | 0.34 | 0.12–2.53 |
Sodium (na) | 239 (100%) | 0.14 | 0.1 | 0.06 | 0.01–1.52 | 66 (100%) | 0.11 | 0.02–0.51 | 173 (100%) | 0.15 | 0.01–1.52 |
Vanadium (va) | 111 (46%) | 0.40 | 0.23 | 0.07 | 0.05–4.74 | 34 (52%) | 0.34 | 0.05–1.75 | 77 (45%) | 0.42 | 0.06–4.74 |
Zinc (zn) | 239 (100%) | 139.00 | 117 | 83.8 | 0.07–1927.3 | 66 (100%) | 145.7 | 42.7–779.9 | 173 (100%) | 136.5 | 0.07–1927.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dennis, L.K.; Langston, M.E.; Beane Freeman, L.; Canales, R.A.; Lynch, C.F. Trace Element Concentrations of Arsenic and Selenium in Toenails and Risk of Prostate Cancer among Pesticide Applicators. Curr. Oncol. 2024, 31, 5472-5483. https://doi.org/10.3390/curroncol31090405
Dennis LK, Langston ME, Beane Freeman L, Canales RA, Lynch CF. Trace Element Concentrations of Arsenic and Selenium in Toenails and Risk of Prostate Cancer among Pesticide Applicators. Current Oncology. 2024; 31(9):5472-5483. https://doi.org/10.3390/curroncol31090405
Chicago/Turabian StyleDennis, Leslie K., Marvin E. Langston, Laura Beane Freeman, Robert A. Canales, and Charles F. Lynch. 2024. "Trace Element Concentrations of Arsenic and Selenium in Toenails and Risk of Prostate Cancer among Pesticide Applicators" Current Oncology 31, no. 9: 5472-5483. https://doi.org/10.3390/curroncol31090405
APA StyleDennis, L. K., Langston, M. E., Beane Freeman, L., Canales, R. A., & Lynch, C. F. (2024). Trace Element Concentrations of Arsenic and Selenium in Toenails and Risk of Prostate Cancer among Pesticide Applicators. Current Oncology, 31(9), 5472-5483. https://doi.org/10.3390/curroncol31090405