Exploring Prostate Cancer Incidence Trends and Age Change in Cancer Registration Areas of Jiangsu Province, China, 2009 to 2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Source and Quality Control
2.3. Statistical Analysis
2.3.1. Incidence Trend Analysis
2.3.2. Analysis of Age Characteristics
3. Results
3.1. Trend in PCa Incidence
3.2. Age-Specific Incidence and Birth Cohort Analysis
3.3. Analysis of Age-Related Changes in PCa Incidence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Liang, L.; Han, D.; Xu, F.; Lyu, J. Different Trends in the Incidence and Mortality Rates of Prostate Cancer between China and the USA: A Joinpoint and Age-Period-Cohort Analysis. Front. Med. 2022, 9, 824464. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, B.; He, M.; Wang, Y.; Wang, Z.; Du, L. Prostate Cancer Incidence and Mortality: Global Status and Temporal Trends in 89 Countries From 2000 to 2019. Front. Public Health 2022, 10, 811044. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.K.; Check, D.P.; Lortet-Tieulent, J.; Laversanne, M.; Jemal, A.; Ferlay, J.; Bray, F.; Cook, M.B.; Devesa, S.S. Prostate cancer incidence in 43 populations worldwide: An analysis of time trends overall and by age group. Int. J. Cancer 2015, 138, 1388–1400. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Zheng, R.; Zeng, H.; Wang, S.; Sun, K.; Chen, R.; Li, L.; Wei, W.; He, J. Cancer incidence and mortality in China, 2022. J. Natl. Cancer Cent. 2024, 4, 47–53. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.; Xia, H.; Lin, Y.; Zhang, D.; Yin, P.; Yao, S. Burden of Prostate Cancer in China, 1990–2019: Findings from the 2019 Global Burden of Disease Study. Front. Endocrinol. 2022, 13, 853623. [Google Scholar] [CrossRef]
- Tian, Y.Q.; Yang, J.C.; Hu, J.J.; Ding, R.; Ye, D.W.; Shang, J.W. Trends and risk factors of global incidence, mortality, and disability of genitourinary cancers from 1990 to 2019: Systematic analysis for the Global Burden of Disease Study 2019. Front. Public Health 2023, 11, 1119374. [Google Scholar] [CrossRef]
- Støyten, M.; Knutsen, T.; Stikbakke, E.; Agledahl, I.; Wilsgaard, T.; Eggen, A.E.; Richardsen, E.; Giovannucci, E.; Thune, I.; Haugnes, H.S. Excess weight, weight gain, and prostate cancer risk and prognosis: The PROCA-life study. Acta Oncol. 2024, 63, 154–163. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, D.; Zhang, Y.; Wang, X.; Wu, J.; Hong, D. Global burden of prostate cancer attributable to smoking among males in 204 countries and territories, 1990–2019. BMC Cancer 2023, 23, 92. [Google Scholar] [CrossRef]
- Fathollahi, F.; Khazaei, Z.; Abbasi, M.; Goodarzi, E. Burden of prostate cancer and relationship with the human development index (HDI) in Asia: A study of Global Burden disease in 2019. Casp. J. Intern. Med. 2023, 14, 710–719. [Google Scholar]
- Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the Human Development Index (2008–2030): A population-based study. Lancet Oncol. 2012, 13, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, M.; Wang, F.; Mubarik, S.; Wang, Y.; Meng, R.; Shi, F.; Wen, H.; Yu, C. Secular Trend of Cancer Death and Incidence in 29 Cancer Groups in China, 1990–2017: A Joinpoint and Age-Period-Cohort Analysis. Cancer Manag. Res. 2020, 12, 6221–6238. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Parkin, D.M. Evaluation of data quality in the cancer registry: Principles and methods. Part I: Comparability, validity and timeliness. Eur. J. Cancer 2009, 45, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Parkin, D.M.; Bray, F. Evaluation of data quality in the cancer registry: Principles and methods Part II. Completeness. Eur. J. Cancer 2009, 45, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Jack, A.; Percy, C.; Sobin, L.; Whelan, S. International Classification of Diseases for Oncology; ICD-O; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Version. 2016. Available online: https://icd.who.int/browse10/2019/en (accessed on 18 March 2022).
- Kim, H.J.; Fay, M.P.; Feuer, E.J.; Midthune, D.N. Permutation tests for joinpoint regression with applications to cancer rates. Stat. Med. 2000, 19, 335–351. [Google Scholar] [CrossRef]
- Bidoli, E.; Lamaj, E.; Angelin, T.; Forgiarini, O.; De Santis, E.; Serraino, D. Linearity of Age at Cancer Onset Worldwide: 25-Year Population-Based Cancer Registry Study. Cancers 2021, 13, 5589. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Everatt, R.; Gudavičienė, D. An analysis of time trends in breast and prostate cancer mortality rates in Lithuania, 1986–2020. BMC Public Health 2022, 22, 1812. [Google Scholar] [CrossRef]
- Arık, A.; Dodd, E.; Streftaris, G. Cancer morbidity trends and regional differences in England—A Bayesian analysis. PLoS ONE 2020, 15, e0232844. [Google Scholar] [CrossRef]
- Luo, A.; Dong, H.; Lin, X.; Liao, Y.; Liang, B.; Chen, L.; Lin, G.; Hao, Y. Time trends of major cancers incidence and mortality in Guangzhou, China 2004–2015: A Joinpoint and Age-Period-Cohort Analysis. Cancer Med. 2021, 10, 2865–2876. [Google Scholar] [CrossRef]
- Sun, D.; Cao, M.; Li, H.; He, S.; Chen, W. Cancer burden and trends in China: A review and comparison with Japan and South Korea. Chin. J. Cancer Res. 2020, 32, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Kim, D.K.; Doo, S.W.; Yang, W.J.; Song, Y.S.; Lee, B.; Kim, J.H. Time Trends for Prostate Cancer Incidence from 2003 to 2013 in South Korea: An Age-Period-Cohort Analysis. Cancer Res. Treat. 2020, 52, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Cook, L.S.; Goldoft, M.; Schwartz, S.M.; Weiss, N.S. Incidence of adenocarcinoma of the prostate in Asian immigrants to the United States and their descendants. J. Urol. 1999, 161, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Mo, M.; Wei, Y.; Wu, J.; Pan, J.; Freedland, S.J.; Zheng, Y.; Ye, D. Epidemiology and genomics of prostate cancer in Asian men. Nat. Rev. Urol. 2021, 18, 282–301. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.; Zheng, R.; Zhang, S.; Zeng, H.; Sun, K.; Wang, S.; Chen, R.; Li, L.; Wei, W.; He, J. Cancer statistics in Chinese older people, 2022: Current burden, time trends, and comparisons with the US, Japan, and the Republic of Korea. Sci. China Life Sci. 2023, 66, 1079–1091. [Google Scholar] [CrossRef]
- Kimura, T.; Takahashi, H.; Okayasu, M.; Kido, M.; Inaba, H.; Kuruma, H.; Yamamoto, T.; Furusato, B.; Furusato, M.; Wada, T.; et al. Time trends in histological features of latent prostate cancer in Japan. J. Urol. 2016, 195, 1415–1420. [Google Scholar] [CrossRef]
- Kye, S.Y.; Lee, M.H.; Yoo, J.; Oh, K.H.; Jun, J.K. Factors affecting satisfaction with cancer information provided through the social networking services of the National Cancer Information Center in Korea. Epidemiol. Health 2017, 39, e2017057. [Google Scholar] [CrossRef]
- Okuhara, T.; Ishikawa, H.; Urakubo, A.; Hayakawa, M.; Yamaki, C.; Takayama, T.; Kiuchi, T. Cancer information needs according to cancer type: A content analysis of data from Japan’s largest cancer information website. Prev. Med. Rep. 2018, 12, 245–252. [Google Scholar] [CrossRef]
- Li, X.; Deng, Y.; Tang, W.; Sun, Q.; Chen, Y.; Yang, C.; Yan, B.; Wang, Y.; Wang, J.; Wang, S.; et al. Urban-Rural Disparity in Cancer Incidence, Mortality, and Survivals in Shanghai, China, during 2002 and 2015. Front. Oncol. 2018, 8, 579. [Google Scholar] [CrossRef]
- Yuan, S.; Xie, S.H. Urban-rural disparity in cancer incidence in China, 2008–2012: A cross-sectional analysis of data from 36 cancer registers. BMJ Open 2021, 11, e042762. [Google Scholar] [CrossRef]
- Newby, J.A.; Busby, C.C.; Howard, C.V.; Platt, M.J. The cancer incidence temporality index: An index to show temporal changes in the age of onset of overall and specific cancer (England and Wales, 1971–1999). Biomed. Pharmacother. 2007, 61, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xu, L.; Sun, J.; Song, M.; Wang, L.; Yuan, S.; Zhu, Y.S.; Wan, Z.W.; Larsson, S.; Tsilidis, K.; et al. Global trends in incidence, death, burden and risk factors of early-onset cancer from 1990 to 2019. BMJ Oncol. 2023, 2, e000049. [Google Scholar] [CrossRef]
- Bleyer, A.; Spreafico, F.; Barr, R. Prostate cancer in young men: An emerging young adult and older adolescent challenge. Cancer 2020, 126, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Salinas, C.A.; Tsodikov, A.; Ishak-Howard, M.; Cooney, K.A. Prostate cancer in young men: An important clinical entity. Nat. Rev. Urol. 2014, 11, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.M.; Turner, E.L.; Young, G.J.; Metcalfe, C.; Walsh, E.I.; Lane, J.A.; Sterne, J.A.C.; Noble, S.; Holding, P.; Ben-Shlomo, Y.; et al. Prostate-Specific Antigen Screening and 15-Year Prostate Cancer Mortality: A Secondary Analysis of the CAP Randomized Clinical Trial. JAMA 2024, 331, 1460–1470. [Google Scholar] [CrossRef]
- Fenton, J.J.; Weyrich, M.S.; Durbin, S.; Liu, Y.; Bang, H.; Melnikow, J. Prostate-Specific Antigen-Based Screening for Prostate Cancer: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2018, 319, 1914–1931. [Google Scholar] [CrossRef]
- Draisma, G.; De Koning, H.J. MISCAN: Estimating lead-time and over-detection by simulation. BJU Int. 2003, 92, 106–111. [Google Scholar] [CrossRef]
- Shao, Y.H.; Demissie, K.; Shih, W.; Mehta, A.R.; Stein, M.N.; Roberts, C.B.; Dipaola, R.S.; Lu-Yao, G.L. Contemporary risk profile of prostate cancer in the United States. JNCI J. Natl. Cancer Inst. 2009, 101, 1280–1283. [Google Scholar] [CrossRef]
- Lange, E.M.; Salinas, C.A.; Zuhlke, K.A.; Ray, A.M.; Wang, Y.; Lu, Y.; Ho, L.A.; Luo, J.; Cooney, K.A. Early onset prostate cancer has a significant genetic component. Prostate 2012, 72, 147–156. [Google Scholar] [CrossRef]
- Zi, H.; He, S.H.; Leng, X.Y.; Xu, X.F.; Huang, Q.; Weng, H.; Zhu, C.; Li, L.Y.; Gu, J.M.; Li, X.H.; et al. Global, regional, and national burden of kidney, bladder, and prostate cancers and their attributable risk factors, 1990–2019. Mil. Med. Res. 2021, 8, 60. [Google Scholar] [CrossRef]
- Chen, W.; Xia, C.; Zheng, R.; Zhou, M.; Lin, C.; Zeng, H.; Zhang, S.; Wang, L.; Yang, Z.; Sun, K.; et al. Disparities by province, age, and sex in site-specific cancer burden attributable to 23 potentially modifiable risk factors in China: A comparative risk assessment. Lancet Glob. Health 2019, 7, e257–e269. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Djenaba, J.A.; Soman, A.; Rim, S.H.; Master, V.A. Recent trends in prostate cancer incidence by age, cancer stage, and grade, the United States, 2001–2007. Prostate Cancer 2012, 2012, 691380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cao, G.; Wu, F.; Wang, Y.; Liu, Z.; Hu, H.; Xu, K. Global Burden of Prostate Cancer and Association with Socioeconomic Status, 1990–2019: A Systematic Analysis from the Global Burden of Disease Study. J. Epidemiol. Glob. Health 2023, 13, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Pilleron, S.; Soto-Perez-de-Celis, E.; Vignat, J.; Ferlay, J.; Soerjomataram, I.; Bray, F.; Sarfati, D. Estimated global cancer incidence in the oldest adults in 2018 and projections to 2050. Int. J. Cancer 2021, 148, 601–608. [Google Scholar] [CrossRef]
Year | Total | Urban Areas | Rural Areas |
---|---|---|---|
2009 | 8,019,671 | 4,174,296 | 3,845,375 |
2010 | 8,096,710 | 4,216,054 | 3,880,656 |
2011 | 8,522,229 | 4,642,339 | 3,879,890 |
2012 | 8,563,669 | 4,664,893 | 3,898,776 |
2013 | 8,700,871 | 4,713,718 | 3,987,153 |
2014 | 8,760,946 | 4,759,389 | 4,001,557 |
2015 | 8,787,737 | 4,775,387 | 4,012,350 |
2016 | 8,830,525 | 4,807,068 | 4,023,457 |
2017 | 8,832,074 | 4,820,577 | 4,011,497 |
2018 | 8,800,171 | 4,847,542 | 3,952,629 |
2019 | 8,813,575 | 4,883,057 | 3,930,518 |
Age | Total | Urban Areas | Rural Areas |
---|---|---|---|
0– | 876,834 | 507,130 | 369,704 |
1–4 | 3,888,093 | 2,251,306 | 1,636,787 |
5–9 | 5,190,691 | 2,851,884 | 2,338,807 |
10–14 | 5,197,631 | 2,658,435 | 2,539,196 |
15–19 | 5,126,747 | 2,628,907 | 2,497,840 |
20–24 | 6,015,093 | 3,224,387 | 2,790,706 |
25–29 | 7,212,431 | 3,898,368 | 3,314,063 |
30–34 | 7,092,290 | 3,836,622 | 3,255,668 |
35–39 | 6,703,990 | 3,516,748 | 3,187,242 |
40–44 | 7,326,266 | 3,928,026 | 3,398,240 |
45–49 | 8,308,845 | 4,516,319 | 3,792,526 |
50–54 | 7,597,445 | 4,031,210 | 3,566,235 |
55–59 | 6,289,065 | 3,384,198 | 2,904,867 |
60–64 | 5,824,887 | 3,305,588 | 2,519,299 |
65–69 | 4,387,011 | 2,483,050 | 1,903,961 |
70–74 | 3,181,717 | 1,745,891 | 1,435,826 |
75–79 | 2,255,873 | 1,250,760 | 1,005,113 |
80–84 | 1,391,122 | 790,115 | 601,007 |
85+ | 862,147 | 495,376 | 366,771 |
Year | Crude Rate (1/105) | ASIR (1/105) | ||||
---|---|---|---|---|---|---|
Total | Urban Areas | Rural Areas | Total | Urban Areas | Rural Areas | |
2009 | 4.60 | 6.25 | 2.81 | 2.88 | 3.83 | 1.78 |
2010 | 5.76 | 7.40 | 3.97 | 3.39 | 4.27 | 2.39 |
2011 | 6.23 | 7.84 | 4.30 | 3.54 | 4.31 | 2.51 |
2012 | 7.02 | 8.98 | 4.67 | 3.82 | 4.69 | 2.65 |
2013 | 8.37 | 10.67 | 5.64 | 4.32 | 5.42 | 2.95 |
2014 | 10.14 | 13.34 | 6.32 | 5.19 | 6.65 | 3.33 |
2015 | 11.74 | 14.87 | 8.03 | 5.78 | 7.05 | 4.17 |
2016 | 13.57 | 17.16 | 9.27 | 6.62 | 8.17 | 4.65 |
2017 | 14.96 | 18.21 | 11.04 | 7.15 | 8.51 | 5.40 |
2018 | 15.83 | 17.84 | 13.36 | 7.34 | 8.09 | 6.36 |
2019 | 18.47 | 20.56 | 15.88 | 8.38 | 9.13 | 7.41 |
AAPC (%) | 14.56 | 12.61 | 18.10 | 11.25 | 9.51 | 14.83 |
95% CI | 12.83, 16.31 | 10.16, 15.10 | 16.90, 19.31 | 10.09, 12.42 | 6.71, 120.38 | 13.49, 160.19 |
p | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | 0.05 |
Year | 0–59 years | 60–69 years | 70–79 years | ≥80 years | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Urban Areas | Rural Areas | Total | Urban Areas | Rural Areas | Total | Urban Areas | Rural Areas | Total | Urban Areas | Rural Areas | |
2009 | 0.22 | 0.34 | 0.09 | 9.72 | 13.47 | 5.38 | 47.18 | 61.38 | 30.75 | 72.04 | 89.85 | 50.26 |
2010 | 0.28 | 0.26 | 0.31 | 15.20 | 21.03 | 8.47 | 51.48 | 65.44 | 35.78 | 74.14 | 83.69 | 62.35 |
2011 | 0.47 | 0.55 | 0.37 | 13.59 | 18.00 | 7.91 | 50.55 | 59.54 | 39.10 | 89.35 | 103.76 | 68.23 |
2012 | 0.40 | 0.47 | 0.31 | 13.03 | 17.54 | 7.05 | 63.79 | 73.56 | 51.23 | 88.98 | 111.68 | 55.78 |
2013 | 0.51 | 0.73 | 0.24 | 17.08 | 20.68 | 12.34 | 65.44 | 84.93 | 42.04 | 104.46 | 120.46 | 83.60 |
2014 | 0.68 | 1.05 | 0.24 | 21.47 | 27.72 | 13.05 | 74.15 | 92.85 | 51.47 | 123.90 | 155.82 | 81.94 |
2015 | 0.71 | 0.81 | 0.58 | 21.29 | 23.65 | 18.12 | 85.65 | 108.56 | 57.95 | 148.48 | 188.28 | 95.85 |
2016 | 0.68 | 0.92 | 0.40 | 28.06 | 34.21 | 19.75 | 96.52 | 119.52 | 68.84 | 151.34 | 184.75 | 107.72 |
2017 | 1.01 | 1.06 | 0.96 | 29.81 | 35.65 | 21.79 | 99.22 | 122.78 | 70.23 | 167.88 | 191.15 | 138.28 |
2018 | 0.91 | 0.90 | 0.92 | 29.64 | 33.62 | 24.32 | 106.50 | 117.97 | 91.71 | 176.40 | 187.33 | 161.78 |
2019 | 0.90 | 1.05 | 0.71 | 33.91 | 36.31 | 30.72 | 130.01 | 144.14 | 111.73 | 186.29 | 194.16 | 175.48 |
AAPC (%) | 15.07 | 13.59 | 18.78 | 12.58 | 9.87 | 18.22 | 10.61 | 9.53 | 12.43 | 11.04 | 8.46 | 13.20 |
95% CI | 10.80, 19.52 | 7.55, 19.98 | 8.66, 29.84 | 9.76, 15.46 | 6.71, 13.13 | 14.68, 21.88 | 9.42, 11.82 | 7.67, 11.42 | 10.05, 14.86 | 9.56, 12.54 | 1.28, 16.14 | 10.49, 15.97 |
p | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Year | Average Age at Diagnosis (Years) | Standardized Average Age at Diagnosis (Years) | ||||
---|---|---|---|---|---|---|
Total | Urban Areas | Rural Areas | Total | Urban Areas | Rural Areas | |
2009 | 75.02 | 74.59 | 76.06 | 74.05 | 73.43 | 75.45 |
2010 | 74.27 | 74.04 | 74.74 | 73.13 | 72.76 | 73.86 |
2011 | 74.58 | 74.60 | 74.54 | 73.51 | 73.37 | 73.63 |
2012 | 75.07 | 75.05 | 75.11 | 73.98 | 73.74 | 74.32 |
2013 | 74.92 | 74.78 | 75.26 | 73.45 | 73.40 | 73.56 |
2014 | 74.66 | 74.37 | 75.41 | 73.17 | 72.77 | 74.12 |
2015 | 75.20 | 75.65 | 74.21 | 73.65 | 74.12 | 72.56 |
2016 | 74.77 | 74.74 | 74.86 | 73.15 | 73.05 | 73.31 |
2017 | 74.63 | 74.58 | 74.72 | 73.02 | 73.11 | 72.93 |
2018 | 74.83 | 74.77 | 74.93 | 73.46 | 73.36 | 73.62 |
2019 | 74.75 | 74.72 | 74.78 | 73.32 | 73.25 | 73.39 |
β | 0.006 | 0.034 | −0.060 | −0.048 | 0.001 | −0.149 |
t | 0.247 | 0.887 | −1.331 | −1.604 | 0.019 | −2.547 |
p | 0.811 | 0.398 | 0.216 | 0.143 | 0.985 | 0.031 |
Year | Composition Ratio | Age-Standardized Composition Ratio | ||||
---|---|---|---|---|---|---|
Total | Urban Areas | Rural Areas | Total | Urban Areas | Rural Areas | |
2009 | 95.93 | 95.40 | 97.22 | 95.28 | 94.40 | 97.17 |
2010 | 95.92 | 97.12 | 93.51 | 95.58 | 96.81 | 93.07 |
2011 | 93.79 | 94.23 | 92.81 | 93.15 | 93.52 | 92.11 |
2012 | 95.34 | 95.70 | 94.51 | 94.81 | 95.05 | 94.11 |
2013 | 95.05 | 94.43 | 96.44 | 94.07 | 93.45 | 95.46 |
2014 | 94.59 | 93.70 | 96.84 | 93.51 | 92.18 | 96.39 |
2015 | 95.16 | 95.63 | 94.10 | 93.78 | 94.15 | 92.85 |
2016 | 95.99 | 95.76 | 96.51 | 94.66 | 94.05 | 95.68 |
2017 | 94.63 | 95.44 | 93.00 | 92.87 | 93.81 | 91.03 |
2018 | 95.48 | 96.07 | 94.51 | 94.02 | 94.44 | 93.26 |
2019 | 96.19 | 96.02 | 96.47 | 94.84 | 94.39 | 95.42 |
AAPC% | 0.03 | 0.04 | 0.03 | −0.10 | −0.09 | −0.10 |
95%CI | −0.14, 0.21 | −0.19, 0.27 | −0.37, 0.42 | −0.29, 0.10 | −0.36, 0.17 | −0.56, 0.36 |
p | 0.68 | 0.72 | 0.89 | 0.30 | 0.44 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Hong, X.; Miao, W.; Wang, W.; Wang, C.; Han, R.; Zhou, J. Exploring Prostate Cancer Incidence Trends and Age Change in Cancer Registration Areas of Jiangsu Province, China, 2009 to 2019. Curr. Oncol. 2024, 31, 5516-5527. https://doi.org/10.3390/curroncol31090408
Zhou H, Hong X, Miao W, Wang W, Wang C, Han R, Zhou J. Exploring Prostate Cancer Incidence Trends and Age Change in Cancer Registration Areas of Jiangsu Province, China, 2009 to 2019. Current Oncology. 2024; 31(9):5516-5527. https://doi.org/10.3390/curroncol31090408
Chicago/Turabian StyleZhou, Hairong, Xin Hong, Weigang Miao, Weiwei Wang, Chenchen Wang, Renqiang Han, and Jinyi Zhou. 2024. "Exploring Prostate Cancer Incidence Trends and Age Change in Cancer Registration Areas of Jiangsu Province, China, 2009 to 2019" Current Oncology 31, no. 9: 5516-5527. https://doi.org/10.3390/curroncol31090408
APA StyleZhou, H., Hong, X., Miao, W., Wang, W., Wang, C., Han, R., & Zhou, J. (2024). Exploring Prostate Cancer Incidence Trends and Age Change in Cancer Registration Areas of Jiangsu Province, China, 2009 to 2019. Current Oncology, 31(9), 5516-5527. https://doi.org/10.3390/curroncol31090408