The Landscape of Breast Cancer Molecular and Histologic Subtypes in Canada
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Distribution Analysis
3.2. Net Survival Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Histologic Subtype | Cases | % |
---|---|---|
Infiltrating duct and lobular carcinoma | 4449 | 4.1% |
Infiltrating duct mixed with other types of carcinoma | 3619 | 3.4% |
Carcinoma, not otherwise specified | 2079 | 1.9% |
Mucinous adenocarcinoma | 2000 | 1.9% |
Intraductal micropapillary carcinoma | 926 | 0.9% |
Metaplastic carcinoma, not otherwise specified | 684 | 0.6% |
Tubular adenocarcinoma | 564 | 0.5% |
Adenocarcinoma, not otherwise specified | 564 | 0.5% |
Apocrine adenocarcinoma | 545 | 0.5% |
Neoplasm, malignant | 527 | 0.5% |
Intraductal papillary adenocarcinoma with invasion | 478 | 0.4% |
References
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, E.; Ulaner, G.A.; Chin, S.F. Molecular classification of breast cancer. PET Clin. 2018, 13, 325–338. [Google Scholar] [CrossRef]
- Partridge, A.H.; Hughes, M.E.; Warner, E.T.; Ottesen, R.A.; Wong, Y.-N.; Edge, S.B.; Theriault, R.L.; Blayney, D.W.; Niland, J.C.; Winer, E.P.; et al. Subtype-dependent relationship between young age at diagnosis and breast cancer survival. J. Clin. Oncol. 2016, 34, 3308–3314. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Li, T.; Bai, Z.; Yang, Y.; Liu, X.; Zhan, J.; Shi, B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res. 2015, 5, 2929. [Google Scholar] [PubMed]
- Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thürlimann, B.; Senn, H.J. Strategies for subtypes—Dealing with the diversity of breast cancer: Highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol. 2011, 22, 1736–1747. [Google Scholar] [CrossRef] [PubMed]
- Tran, B.; Bedard, P.L. Luminal-B breast cancer and novel therapeutic targets. Breast Cancer Res. 2011, 13, 221. [Google Scholar] [CrossRef]
- Metzger-Filho, O.; Sun, Z.; Viale, G.; Price, K.N.; Crivellari, D.; Snyder, R.D.; Gelber, R.D.; Castiglione-Gertsch, M.; Coates, A.S.; Goldhirsch, A.; et al. Patterns of recurrence and outcome according to breast cancer subtypes in lymph node–negative disease: Results from International Breast Cancer Study Group Trials VIII and IX. J. Clin. Oncol. 2013, 31, 3083. [Google Scholar] [CrossRef] [PubMed]
- Prat, A.; Pineda, E.; Adamo, B.; Galván, P.; Fernández, A.; Gaba, L.; Díez, M.; Viladot, M.; Arance, A.; Muñoz, M. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 2015, 24, S26–S35. [Google Scholar] [CrossRef]
- Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. New Engl. J. Med. 2010, 363, 1938–1948. [Google Scholar] [CrossRef]
- Dogan, B.E.; Turnbull, L.W. Imaging of triple-negative breast cancer. Ann. Oncol. 2012, 23, vi23–vi29. [Google Scholar] [CrossRef]
- Cho, N. Molecular subtypes and imaging phenotypes of breast cancer. Ultrasonography 2016, 35, 281. [Google Scholar] [CrossRef] [PubMed]
- Fallahpour, S.; Navaneelan, T.; De, P.; Borgo, A. Breast cancer survival by molecular subtype: A population-based analysis of cancer registry data. Can. Med. Assoc. Open Access J. 2017, 5, E734–E739. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, A.N.; Seely, J.M.; Rushton, M.; Williams, P.; Cordeiro, E.; Allard-Coutu, A.; Hong, N.J.L.; Moideen, N.; Robinson, J.; Renaud, J.; et al. Capturing the true cost of breast cancer treatment: Molecular subtype and stage-specific per-case activity-based costing. Curr. Oncol. 2023, 30, 7860–7873. [Google Scholar] [CrossRef] [PubMed]
- Statistics Canada: Canadian Cancer Registry 1992 to 2017. Available online: https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=1215604 (accessed on 10 September 2024).
- Ellison, L.F.; Saint-Jacques, N. Five-year cancer survival by stage at diagnosis in Canada. Health Rep. 2023, 34, 3–15. [Google Scholar] [PubMed]
- Fritz, A.; Percy, C.; Jack, A.; Shanmugaratnam, K.; Sobin, L.; Parkin, D.M.; Whelan, S. (Eds.) International Classification of Diseases for Oncology, First Revision, 3rd ed.; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2018; National Cancer Institute: Bethesda, MD, USA, 2021.
- Brenner, D.R.; Poirier, A.; Woods, R.R.; Ellison, L.F.; Billette, J.-M.; Demers, A.A.; Zhang, S.X.; Yao, C.; Finley, C.; Fitzgerald, N.; et al. Projected estimates of cancer in Canada in 2022. Can. Med Assoc. J. 2022, 194, E601–E607. [Google Scholar] [CrossRef]
- Ellison, L.F. Measuring the effect of including multiple cancers in survival analyses using data from the Canadian Cancer Registry. Cancer Epidemiol. 2010, 34, 550–555. [Google Scholar] [CrossRef]
- Ellis, L.; Woods, L.M.; Estève, J. Cancer incidence, survival and mortality: Explaining the concepts. Int. J. Cancer 2014, 135, 1774–1782. [Google Scholar] [CrossRef]
- Edge, S.; Byrd, D.R.; Compton, C.C.; Fritz, A.G.; Greene, F.L.; Trotti, A., III (Eds.) AJCC Cancer Staging Manual, 7th ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Dickman, P.W. Estimating and Modelling Relative Survival Using SAS. Available online: http://www.pauldickman.com/software/sas (accessed on 10 September 2024).
- Perme, M.P.; Stare, J.; Estève, J. On estimation in relative survival. Biometrics 2012, 68, 113–120. [Google Scholar] [CrossRef]
- Ellison, L.F. An empirical evaluation of period survival analysis using data from the Canadian Cancer Registry. Ann. Epidemiol. 2006, 16, 191–196. [Google Scholar] [CrossRef]
- Statistics Canada. Life Tables, Canada, Provinces and Territories, 1980/1982 to 2016/2018 (Catalogue No. 84-537-X); Statistics Canada: Ottawa, ON, Canada, 2020.
- Ellison, L.F. The cancer survival index: Measuring progress in cancer survival to help evaluate cancer control efforts in Canada. Health Rep. 2021, 32, 14–26. [Google Scholar]
- Dossus, L.; Benusiglio, P.R. Lobular breast cancer: Incidence and genetic and non-genetic risk factors. Breast Cancer Res. 2015, 17, 37. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lei, C.; Zhang, Y.; Zhang, J.; Ji, F.; Pan, W.; Zhang, L.; Gao, H.; Yang, M.; Li, J.; et al. Comparison of overall survival between invasive lobular breast carcinoma and invasive ductal breast carcinoma: A propensity score matching study based on SEER database. Front. Oncol. 2020, 10, 590643. [Google Scholar] [CrossRef] [PubMed]
- Seung, S.J.; Traore, A.N.; Pourmirza, B.; Fathers, K.E.; Coombes, M.; Jerzak, K.J. A population-based analysis of breast cancer incidence and survival by subtype in Ontario women. Curr. Oncol. 2020, 27, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Bilani, N.; Zabor, E.C.; Elson, L.; Elimimian, E.B.; Nahleh, Z. Breast cancer in the United States: A cross-sectional overview. J. Cancer Epidemiol. 2020, 2020, 6387378. [Google Scholar] [CrossRef] [PubMed]
- Acheampong, T.; Kehm, R.D.; Terry, M.B.; Argov, E.L.; Tehranifar, P. Incidence trends of breast cancer molecular subtypes by age and race/ethnicity in the US from 2010 to 2016. JAMA Netw. Open 2020, 3, e2013226. [Google Scholar] [CrossRef] [PubMed]
- Howlader, N.; Cronin, K.A.; Kurian, A.W.; Andridge, R. Differences in breast cancer survival by molecular subtypes in the United States. Cancer Epidemiol. Biomark. Prev. 2018, 27, 619–626. [Google Scholar] [CrossRef]
- Klarenbach, S.; Sims-Jones, N.; Lewin, G.; Singh, H.; Thériault, G.; Tonelli, M.; Doull, M.; Courage, S.; Garcia, A.J.; Thombs, B.D. Recommendations on screening for breast cancer in women aged 40–74 years who are not at increased risk for breast cancer. Can. Med Assoc. J. 2018, 190, E1441–E1451. [Google Scholar] [CrossRef]
- Munoz, D.F.; Plevritis, S.K. Estimating breast cancer survival by molecular subtype in the absence of screening and adjuvant treatment. Med. Decis. Mak. 2018, 38 (Suppl. 1), 32S–43S. [Google Scholar] [CrossRef]
- Sturesdotter, L.; Sandsveden, M.; Johnson, K.; Larsson, A.M.; Zackrisson, S.; Sartor, H. Mammographic tumour appearance is related to clinicopathological factors and surrogate molecular breast cancer subtype. Sci. Rep. 2020, 10, 20814. [Google Scholar] [CrossRef]
- Schopp, J.G.; Polat, D.S.; Arjmandi, F.; Hayes, J.C.; Ahn, R.W.; Sullivan, K.; Sahoo, S.; Porembka, J.H. Imaging challenges in diagnosing triple-negative breast cancer. Radiographics 2023, 43, e230027. [Google Scholar] [CrossRef]
- Wilson, N.; Ironside, A.; Diana, A.; Oikonomidou, O. Lobular breast cancer: A review. Front. Oncol. 2021, 10, 591399. [Google Scholar] [CrossRef]
- Bayard, S.; Fasano, G.; Chen, Y.; Davis, M.; Drotman, M.; Bensenhaver, J.; Swistel, A.; Simmons, R.; Marti, J.; Newman, L. Screening mammography mitigates breast cancer disparities through early detection of triple negative breast cancer. Clin. Imaging 2021, 80, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Caswell-Jin, J.L.; Sun, L.P.; Munoz, D.; Lu, Y.; Li, Y.; Huang, H.; Hampton, J.M.; Song, J.; Jayasekera, J.; Schechter, C.; et al. Analysis of Breast Cancer Mortality in the US—1975 to 2019. JAMA 2024, 331, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 524–541. [Google Scholar] [CrossRef] [PubMed]
- Hayse, B.; Hooley, R.J.; Killelea, B.K.; Horowitz, N.R.; Chagpar, A.B.; Lannin, D.R. Breast cancer biology varies by method of detection and may contribute to overdiagnosis. Surgery 2016, 160, 454–462. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef]
(a) | |||||||
Age Group/Stage | Histologic Subtype | ||||||
Infiltrating Ductal Carcinoma | Lobular Carcinoma | Other | |||||
n = 79,039 | n = 9369 | n = 18,863 | |||||
Age group | |||||||
15–39 | 5.0% | 1.1% | 3.9% | ||||
40–49 | 14.9% | 10.4% | 11.8% | ||||
50–59 | 24.7% | 20.7% | 20.8% | ||||
60–69 | 27.3% | 29.7% | 25.4% | ||||
70–79 | 17.8% | 23.6% | 21.6% | ||||
80–99 | 10.3% | 14.5% | 16.4% | ||||
Stage at diagnosis | |||||||
I | 45.9% | 33.6% | 40.4% | ||||
II | 37.1% | 40.6% | 36.4% | ||||
III | 11.6% | 18.1% | 12.8% | ||||
IV | 4.5% | 6.6% | 8.0% | ||||
Unknown | 0.8% | 1.1% | 2.4% | ||||
(b) | |||||||
Age group/stage | Molecular subtype | ||||||
All subtypes | Luminal A | Luminal B | Luminal B like | HER-2 enriched | Triple negative | Unknown | |
n = 107,271 | n = 50,394 | n = 19,859 | n = 10,854 | n = 4684 | n = 10,220 | n = 11,260 | |
Age group | |||||||
15–39 | 4.5% | 2.2% | 5.5% | 8.1% | 7.7% | 8.5% | 4.0% |
40–49 | 14.0% | 12.5% | 14.0% | 19.3% | 18.0% | 16.2% | 11.9% |
50–59 | 23.7% | 22.9% | 23.7% | 28.0% | 29.7% | 24.7% | 19.4% |
60–69 | 27.2% | 30.0% | 27.2% | 23.3% | 23.8% | 24.4% | 22.2% |
70–79 | 19.0% | 21.8% | 18.3% | 13.3% | 13.2% | 16.2% | 18.1% |
80–99 | 11.7% | 10.7% | 11.2% | 7.9% | 7.7% | 10.0% | 24.3% |
Stage at diagnosis | |||||||
I | 43.8% | 57.3% | 33.1% | 31.7% | 28.2% | 29.1% | 34.1% |
II | 37.3% | 32.8% | 46.4% | 42.3% | 39.1% | 46.9% | 26.8% |
III | 12.4% | 7.5% | 15.3% | 18.4% | 22.7% | 17.3% | 15.0% |
IV | 5.3% | 1.8% | 4.6% | 7.1% | 9.4% | 6.0% | 18.3% |
Unknown | 1.1% | 0.6% | 0.5% | 0.5% | 0.5% | 0.7% | 5.8% |
Stage at Diagnosis | Molecular Subtype | Histologic Subtype | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Luminal A | Luminal B | Luminal B Like | HER-2 Enriched | Triple Negative | Unknown | Infiltrating Ductal Carcinoma | Lobular Carcinoma | Other | ||
I | 102 (..) | 98 (96–99) | 100 (..) | 99 (92–100) | 96 (94–97) | 96 (93–98) | 100 (85–100) | 101 (..) | 101 (..) | |
II | 99 (97–99) | 90 (88–91) | 93 (91–94) | 90 (87–92) | 81 (79–83) | 78 (74–82) | 92 (91–93) | 96 (93–98) | 91 (88–92) | |
III | 89 (87–91) | 70 (67–73) | 81 (78–84) | 71 (67–75) | 47 (43–51) | 65 (61–70) | 73 (72–75) | 78 (74–82) | 73 (69–75) | |
IV | 38 (32–44) | 19 (15–24) | 34 (29–40) | 27 (20–35) | 7 (4–10) | 19 (16–22) | 26 (23–28) | 23 (18–29) | 18 (14–22) | |
Unknown | 70 (56–81) | 44 (25–62) | … | … | 43 (24–60) | 51 (43–58) | 63 (54–71) | … | 47 (39–56) |
Age at Diagnosis | Molecular Subtype | Histologic Subtype | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Luminal A | Luminal B | Luminal B Like | HER-2 Enriched | Triple Negative | Unknown | Infiltrating Duct Carcinoma | Lobular Carcinoma | Other | ||
15–99 | 98 (98–99) | 86 (85–87) | 89 (88–90) | 82 (80–84) | 74 (73–76) | 72 (70–73) | 90 (89–90) | 89 (87–90) | 86 (85–87) | |
15–39 | 93 (90–96) | 83 (79–87) | 89 (85–93) | 85 (78–89) | 73 (68–77) | 83 (78–87) | 84 (83–86) | 87 (73–94) | 87 (83–90) | |
40–49 | 98 (97–99) | 88 (86–90) | 91 (89–93) | 84 (80–87) | 76 (73–79) | 86 (83–88) | 91 (90–92) | 93 (90–95) | 89 (87–91) | |
50–59 | 98 (97–98) | 87 (85–88) | 92 (90–94) | 88 (85–90) | 79 (77–81) | 82 (80–84) | 92 (91–92) | 92 (89–94) | 88 (87–90) | |
60–69 | 98 (97–98) | 89 (87–90) | 91 (88–93) | 82 (78–85) | 78 (76–81) | 76 (74–79) | 92 (91–93) | 90 (87–91) | 89 (87–90) | |
70–79 | 98 (97–99) | 85(82–87) | 82 (77–85) | 81 (75–86) | 71 (66–74) | 67 (64–70) | 89 (88–90) | 87 (83–89) | 87 (85–89) | |
80–99 | 103 (..) | 78 (72–83) | 78 (68–85) | 54 (42–65) | 59 (51–66) | 52 (47–56) | 82 (79–85) | 84 (75–90) | 73 (68–78) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkinson, A.N.; Ellison, L.F.; McGee, S.F.; Billette, J.-M.; Seely, J.M. The Landscape of Breast Cancer Molecular and Histologic Subtypes in Canada. Curr. Oncol. 2024, 31, 5544-5556. https://doi.org/10.3390/curroncol31090411
Wilkinson AN, Ellison LF, McGee SF, Billette J-M, Seely JM. The Landscape of Breast Cancer Molecular and Histologic Subtypes in Canada. Current Oncology. 2024; 31(9):5544-5556. https://doi.org/10.3390/curroncol31090411
Chicago/Turabian StyleWilkinson, Anna N., Larry F. Ellison, Sharon F. McGee, Jean-Michel Billette, and Jean M. Seely. 2024. "The Landscape of Breast Cancer Molecular and Histologic Subtypes in Canada" Current Oncology 31, no. 9: 5544-5556. https://doi.org/10.3390/curroncol31090411
APA StyleWilkinson, A. N., Ellison, L. F., McGee, S. F., Billette, J. -M., & Seely, J. M. (2024). The Landscape of Breast Cancer Molecular and Histologic Subtypes in Canada. Current Oncology, 31(9), 5544-5556. https://doi.org/10.3390/curroncol31090411