Advancing Radiobiology: Investigating the Effects of Photon, Proton, and Carbon-Ion Irradiation on PANC-1 Cells in 2D and 3D Tumor Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Irradiation
2.3. Clonogenic Survival Analysis
2.4. MTT Assay
2.5. Spheroid Formation and Growth Evaluation
2.6. Spheroid Viability
2.7. Statistical Analysis
3. Results
3.1. Clonogenic Survival
3.2. MTT Assay
3.3. Spheroid Growth
3.4. Spheroid Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pourshams, A.; Sadaf, G.S.; Kevin, S.I.; Catherine, B.; Saeid, S.; Gholamreza, R.; Mehdi, S.; Khatibian, M.; Fitzmaurice, C.; Nixon, M.R.; et al. The Global, Regional, and National Burden of Pancreatic Cancer and Its Attributable Risk Factors in 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2019, 4, 934–947. [Google Scholar] [CrossRef]
- Halbrook, C.J.; Lyssiotis, C.A.; Pasca di Magliano, M.; Maitra, A. Pancreatic Cancer: Advances and Challenges. Cell 2023, 186, 1729–1754. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Qian, L.C.; Cao, Y.Y.; Daniels, M.J.; Song, L.N.; Tian, Y.; Wang, Z.Q. Computed Tomography-Based Radiomics Diagnostic Approach for Differential Diagnosis Between Early- and Late-Stage Pancreatic Ductal Adenocarcinoma. World J. Gastrointest. Oncol. 2024, 16, 1256–1267. [Google Scholar] [CrossRef] [PubMed]
- Andrén-Sandberg, Å. Pancreatic Cancer: Chemotherapy and Radiotherapy. N. Am. J. Med. Sci. 2011, 3, 1. [Google Scholar] [CrossRef]
- Barcellini, A.; Peloso, A.; Pugliese, L.; Vitolo, V.; Cobianchi, L. Locally Advanced Pancreatic Ductal Adenocarcinoma: Challenges and Progress. OncoTargets Ther. 2020, 13, 12705–12720. [Google Scholar] [CrossRef] [PubMed]
- Sokol, O.; Durante, M. Carbon Ions for Hypoxic Tumors: Are We Making the Most of Them? Cancers 2023, 15, 4494. [Google Scholar] [CrossRef]
- Charalampopoulou, A.; Barcellini, A.; Frittitta, G.E.; Fulgini, G.; Ivaldi, G.B.; Magro, G.; Liotta, M.; Orlandi, E.; Pullia, M.G.; Tabarelli de Fatis, P.; et al. In Vitro Effects of Photon Beam and Carbon Ion Radiotherapy on the Perineural Invasion of Two Cell Lines of Neurotropic Tumours. Life 2023, 13, 794. [Google Scholar] [CrossRef]
- Okamoto, M.; Shiba, S.; Okazaki, S.; Miyasaka, Y.; Shibuya, K.; Kiyohara, H.; Ohno, T. Feasibility and Safety of Repeated Carbon Ion Radiotherapy for Locally Advanced Unresectable Pancreatic Cancer. Cancers 2021, 13, 665. [Google Scholar] [CrossRef] [PubMed]
- Durante, M.; Formenti, S. Harnessing Radiation to Improve Immunotherapy: Better with Particles? Br. J. Radiol. 2020, 93, 20190224. [Google Scholar] [CrossRef] [PubMed]
- Duval, K.; Grover, H.; Han, L.H.; Mou, Y.; Pegoraro, A.F.; Fredberg, J.; Chen, Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology 2017, 32, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Knight, E.; Przyborski, S. Advances in 3D Cell Culture Technologies Enabling Tissue-like Structures to Be Created in Vitro. J. Anat. 2015, 227, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Kimlin, L.C.; Casagrande, G.; Virador, V.M. In Vitro Three-Dimensional (3D) Models in Cancer Research: An Update. Mol. Carcinog. 2013, 52, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Charalampopoulou, A.; Barcellini, A.; Peloso, A.; Vanoli, A.; Cesari, S.; Icaro Cornaglia, A.; Bistika, M.; Croce, S.; Cobianchi, L.; Ivaldi, G.B.; et al. Unlocking the Potential Role of Decellularized Biological Scaffolds as a 3D Radiobiological Model for Low- and High-LET Irradiation. Cancers 2024, 16, 2582. [Google Scholar] [CrossRef] [PubMed]
- Charalampopoulou, A.; Barcellini, A.; Bistika, M.; Ivaldi, G.B.; Lillo, S.; Magro, G.; Orlandi, E.; Pullia, M.G.; Ronchi, S.; Tabarelli De Fatis, P.; et al. Vaginal Mucosal Melanoma Cell Activation in Response to Photon or Carbon Ion Irradiation. Int. J. Part. Ther. 2024, 14, 100630. [Google Scholar] [CrossRef]
- Chumpraman, A.; Tannukit, S.; Chotigeat, W.; Kedjarune-Leggat, U. Biocompatibility and Mineralization Activity of Modified Glass Ionomer Cement in Human Dental Pulp Stem Cells. J. Dent. Sci. 2023, 18, 1055–1061. [Google Scholar] [CrossRef]
- Montel, F.; Delarue, M.; Elgeti, J.; Vignjevic, D.; Cappello, G.; Prost, J. Isotropic Stress Reduces Cell Proliferation in Tumor Spheroids. New J. Phys. 2012, 14, 055008. [Google Scholar] [CrossRef]
- Kulesza, J.; Pawłowska, M.; Augustin, E. The Influence of Antitumor Unsymmetrical Bisacridines on 3D Cancer Spheroids Growth and Viability. Molecules 2021, 26, 6262. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Matsui, Y.; Asano, T.; Kenmochi, T.; Iwakawa, M.; Imai, T.; Ochiai, T. Effects of Carbon-Ion Beams on Human Pancreatic Cancer Cell Lines That Differ in Genetic Status. Am. J. Clin. Oncol. 2004, 27, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Oonishi, K.; Cui, X.; Hirakawa, H.; Fujimori, A.; Kamijo, T.; Yamada, S.; Yokosuka, O.; Kamada, T. Different Effects of Carbon Ion Beams and X-Rays on Clonogenic Survival and DNA Repair in Human Pancreatic Cancer Stem-like Cells. Radiother. Oncol. 2012, 105, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Giustarini, G.; Teng, G.; Pavesi, A.; Adriani, G. Characterization of 3D Heterocellular Spheroids of Pancreatic Ductal Adenocarcinoma for the Study of Cell Interactions in the Tumor Immune Microenvironment. Front. Oncol. 2023, 13, 1156769. [Google Scholar] [CrossRef]
- Sereti, E.; Papapostolou, I.; Dimas, K. Pancreatic Cancer Organoids: An Emerging Platform for Precision Medicine? Biomedicines 2023, 11, 890. [Google Scholar] [CrossRef]
- Pandey, V.; Storz, P. Targeting the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Expert Rev. Anticancer Ther. 2019, 19, 473–482. [Google Scholar] [CrossRef]
- Seshacharyulu, P.; Baine, M.J.; Souchek, J.J.; Menning, M.; Kaur, S.; Yan, Y.; Ouellette, M.M.; Jain, M.; Lin, C.; Batra, S.K. Biological Determinants of Radioresistance and Their Remediation in Pancreatic Cancer. Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 69–92. [Google Scholar] [CrossRef] [PubMed]
- Formenti, S.C.; Demaria, S. Combining Radiotherapy and Cancer Immunotherapy: A Paradigm Shift. JNCI J. Natl. Cancer Inst. 2013, 105, 256–265. [Google Scholar] [CrossRef]
- McBride, W.H.; Chiang, C.S.; Olson, J.L.; Wang, C.C.; Hong, J.H.; Pajonk, F.; Dougherty, G.J.; Iwamoto, K.S.; Pervan, M.; Liao, Y.P. A Sense of Danger from Radiation. Radiat. Res. 2004, 162, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tang, Y.; Tan, Y.; Xiao, M.; Liu, L.; Yu, J.; Fan, H.; Zhang, H.; Wang, Y. Cancer-Associated Fibroblasts in Radiotherapy: Challenges and New Opportunities. Cell Commun. Signal. 2019, 17, 47. [Google Scholar] [CrossRef]
- Demaria, S.; Formenti, S.C. Sensors of Ionizing Radiation Effects on the Immunological Microenvironment of Cancer. Int. J. Radiat. Biol. 2007, 83, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Chen, L. B7-H1 Pathway and Its Role in the Evasion of Tumor Immunity. J. Mol. Med. 2003, 81, 281–287. [Google Scholar] [CrossRef]
- Wrzesinski, S.H.; Wan, Y.Y.; Flavell, R.A. Transforming Growth Factor-Beta and the Immune Response: Implications for Anticancer Therapy. Clin. Cancer Res. 2007, 13, 5262–5270. [Google Scholar] [CrossRef] [PubMed]
- Raitanen, J.; Barta, B.; Hacker, M.; Georg, D.; Balber, T.; Mitterhauser, M. Comparison of Radiation Response between 2D and 3D Cell Cultures in the Context of Targeted Radionuclide Therapy. Cancers 2023, 15, 1176. [Google Scholar] [CrossRef]
- Dhiman, N.; Shagaghi, N.; Bhave, M.; Sumer, H.; Kingshott, P.; Rath, S.N. Indirect Co-Culture of Lung Carcinoma Cells with Hyperthermia-Treated Mesenchymal Stem Cells Influences Tumor Spheroid Growth in a Collagen-Based 3-Dimensional Microfluidic Model. Cytotherapy 2021, 23, 25–36. [Google Scholar] [CrossRef]
- Fontana, F.; Raimondi, M.; Marzagalli, M.; Sommariva, M.; Gagliano, N.; Limonta, P. Three-Dimensional Cell Cultures as an In Vitro Tool for Prostate Cancer Modeling and Drug Discovery. Int. J. Mol. Sci. 2020, 21, 6806. [Google Scholar] [CrossRef]
- Pinto, B.; Henriques, A.C.; Silva, P.M.A.; Bousbaa, H. Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics 2020, 12, 1186. [Google Scholar] [CrossRef] [PubMed]
- El Harane, S.; Zidi, B.; El Harane, N.; Krause, K.-H.; Matthes, T.; Preynat-Seauve, O. Cancer Spheroids and Organoids as Novel Tools for Research and Therapy: State of the Art and Challenges to Guide Precision Medicine. Cells 2023, 12, 1001. [Google Scholar] [CrossRef]
- Brüningk, S.C.; Rivens, I.; Box, C.; Oelfke, U.; ter Haar, G. 3D Tumour Spheroids for the Prediction of the Effects of Radiation and Hyperthermia Treatments. Sci. Rep. 2020, 10, 1653. [Google Scholar] [CrossRef]
- Tinganelli, W.; Durante, M. Carbon Ion Radiobiology. Cancers 2020, 12, 3022. [Google Scholar] [CrossRef] [PubMed]
- Helm, A.; Tinganelli, W.; Durante, M. Advances in Radiation Biology of Particle Irradiation. Prog. Tumor Res. 2017, 44, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Barcellini, A.; Baumann, K.; Benje, M.; Bender, T.; Bragado, P.; Charalampopoulou, A.; Chowdhury, R.; Davis, A.J.; Ebner, D.K.; et al. Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology Subcommittee Report. Int. J. Part. Ther. 2024, 13, 100626. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.M.; Chen, C.S. Deconstructing the Third Dimension—How 3D Culture Microenvironments Alter Cellular Cues. J. Cell Sci. 2012, 125, jcs.079509. [Google Scholar] [CrossRef] [PubMed]
CTRL | 2 Gy | 4 Gy | 6 Gy | ||
---|---|---|---|---|---|
Photons | 0.4056 | −0.2313 | −0.2833 | −0.3931 | |
Protons | −0.2333 | −0.3167 | −0.4014 | ||
C-ions | −0.3104 | −0.4069 | −0.5097 |
Photons | Protons | C-Ions | |
---|---|---|---|
Slope | −0.028 | −0.03627 | −0.07938 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charalampopoulou, A.; Barcellini, A.; Magro, G.; Bellini, A.; Borgna, S.S.; Fulgini, G.; Ivaldi, G.B.; Mereghetti, A.; Orlandi, E.; Pullia, M.G.; et al. Advancing Radiobiology: Investigating the Effects of Photon, Proton, and Carbon-Ion Irradiation on PANC-1 Cells in 2D and 3D Tumor Models. Curr. Oncol. 2025, 32, 49. https://doi.org/10.3390/curroncol32010049
Charalampopoulou A, Barcellini A, Magro G, Bellini A, Borgna SS, Fulgini G, Ivaldi GB, Mereghetti A, Orlandi E, Pullia MG, et al. Advancing Radiobiology: Investigating the Effects of Photon, Proton, and Carbon-Ion Irradiation on PANC-1 Cells in 2D and 3D Tumor Models. Current Oncology. 2025; 32(1):49. https://doi.org/10.3390/curroncol32010049
Chicago/Turabian StyleCharalampopoulou, Alexandra, Amelia Barcellini, Giuseppe Magro, Anna Bellini, Sara Sevan Borgna, Giorgia Fulgini, Giovanni Battista Ivaldi, Alessio Mereghetti, Ester Orlandi, Marco Giuseppe Pullia, and et al. 2025. "Advancing Radiobiology: Investigating the Effects of Photon, Proton, and Carbon-Ion Irradiation on PANC-1 Cells in 2D and 3D Tumor Models" Current Oncology 32, no. 1: 49. https://doi.org/10.3390/curroncol32010049
APA StyleCharalampopoulou, A., Barcellini, A., Magro, G., Bellini, A., Borgna, S. S., Fulgini, G., Ivaldi, G. B., Mereghetti, A., Orlandi, E., Pullia, M. G., Savazzi, S., Tabarelli De Fatis, P., Volpi, G., & Facoetti, A. (2025). Advancing Radiobiology: Investigating the Effects of Photon, Proton, and Carbon-Ion Irradiation on PANC-1 Cells in 2D and 3D Tumor Models. Current Oncology, 32(1), 49. https://doi.org/10.3390/curroncol32010049