Cystatin B Promotes the Proliferation, Migration, and Invasion of Intrahepatic Cholangiocarcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Patient Cohort
2.2. Cell Lines
2.3. RT-qPCR
2.4. Western Blot
2.5. Lentivirus-Mediated Construction of Stable Cell Lines
2.6. Assessment of Cell Proliferation Ability
2.7. Evaluation of Cell Invasion Ability
2.8. Apoptosis Analyses
2.9. Animal Care and Use
2.10. Subcutaneous Xenograft Tumor Model
2.11. Tissue Microarray (TMA) and Immunohistochemistry (IHC) Staining
2.12. RNA-Seq
2.13. Statistical Analysis
3. Results
3.1. Selection of Molecules Associated with Prognosis and Clinical Features of Intrahepatic Cholangiocarcinoma
3.2. CSTB Is Highly Expressed in Intrahepatic Cholangiocarcinoma and Associated with Poor Clinical Prognosis
3.3. CSTB Promotes Intrahepatic Cholangiocarcinoma Proliferation and Colony Formation
3.4. CSTB Enhances the Migration and Invasion Abilities of iCCA and Inhibits Apoptosis
3.5. CSTB Plays a Role in the Growth of iCCA In Vivo
3.6. Exploration of the Mechanism by Which CSTB Promotes iCCA Progression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Kendre, G.; Marhenke, S.; Lorz, G.; Becker, D.; Reineke-Plaass, T.; Poth, T.; Murugesan, K.; Kuhnel, F.; Woller, N.; Wirtz, R.M.; et al. The Co-mutational Spectrum Determines the Therapeutic Response in Murine FGFR2 Fusion-Driven Cholangiocarcinoma. Hepatology 2021, 74, 1357–1370. [Google Scholar] [CrossRef]
- Guglielmi, A.; Ruzzenente, A.; Campagnaro, T.; Pachera, S.; Valdegamberi, A.; Nicoli, P.; Cappellani, A.; Malfermoni, G.; Iacono, C. Intrahepatic cholangiocarcinoma: Prognostic factors after surgical resection. World J. Surg. 2009, 33, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Brown, Z.J.; Hewitt, D.B.; Pawlik, T.M. Biomarkers of intrahepatic cholangiocarcinoma: Diagnosis and response to therapy. Front. Biosci. 2022, 27, 85. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.J.; Jabbour, S.; Parekh, N.; Lin, Y.; Moss, R.A. Increasing mortality in the United States from cholangiocarcinoma: An analysis of the National Center for Health Statistics Database. BMC Gastroenterol. 2016, 16, 117. [Google Scholar] [CrossRef]
- Ke, Q.; Wang, L.; Lin, Z.; Liu, H.; Lou, J.; Zheng, S.; Bi, X.; Wang, J.; Guo, W.; Li, F.; et al. Anatomic versus non-anatomic resection for early-stage intrahepatic cholangiocarcinoma: A propensity score matching and stabilized inverse probability of treatment weighting analysis. BMC Cancer 2023, 23, 850. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.H.; Xin, H.Y.; Li, J.L.; Li, N.; Pan, S.Y.; Chen, L.; Pan, J.Y.; Hu, Z.Q.; Wang, P.C.; Luo, C.B.; et al. Development and Validation of a Stromal-Immune Signature to Predict Prognosis in Intrahepatic Cholangiocarcinoma. Clin. Mol. Hepatol. 2024, 30, 914–928. [Google Scholar] [CrossRef]
- Moris, D.; Palta, M.; Kim, C.; Allen, P.J.; Morse, M.A.; Lidsky, M.E. Advances in the treatment of intrahepatic cholangiocarcinoma: An overview of the current and future therapeutic landscape for clinicians. CA Cancer J. Clin. 2023, 73, 198–222. [Google Scholar] [CrossRef]
- Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet 2014, 383, 2168–2179. [Google Scholar] [CrossRef]
- Sarcognato, S.; Sacchi, D.; Fassan, M.; Fabris, L.; Cadamuro, M.; Zanus, G.; Cataldo, I.; Capelli, P.; Baciorri, F.; Cacciatore, M.; et al. Cholangiocarcinoma. Pathologica 2021, 113, 158–169. [Google Scholar] [CrossRef]
- Wang, X.; Gui, L.; Zhang, Y.; Zhang, J.; Shi, J.; Xu, G. Cystatin B is a progression marker of human epithelial ovarian tumors mediated by the TGF-beta signaling pathway. Int. J. Oncol. 2014, 44, 1099–1106. [Google Scholar] [CrossRef]
- Železnik, T.Z.; Kadin, A.; Turk, V.; Dolenc, I. Aspartic cathepsin D degrades the cytosolic cysteine cathepsin inhibitor stefin B in the cells. Biochem. Biophys. Res. Commun. 2015, 465, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Tay, K.H.; Dong, L.; Thorne, R.F.; Jiang, C.C.; Yang, E.; Tseng, H.Y.; Liu, H.; Christopherson, R.; Hersey, P.; et al. Cystatin B inhibition of TRAIL-induced apoptosis is associated with the protection of FLIPL from degradation by the E3 ligase itch in human melanoma cells. Cell Death Differ. 2010, 17, 1354–1367. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Han, L.; Xue, M.; Wang, T.; Zhu, Y.; Xiong, C.; Shi, M.; Li, H.; Hai, W.; Huo, Y.; et al. Cystatin B increases autophagic flux by sustaining proteolytic activity of cathepsin B and fuels glycolysis in pancreatic cancer: CSTB orchestrates autophagy and glycolysis in PDAC. Clin. Transl. Med. 2022, 12, e1126. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Dong, X.; Tian, N.; Feng, Z.; Zhou, W.; Song, W. CSTB accelerates the progression of hepatocellular carcinoma via the ERK/AKT/mTOR signaling pathway. Heliyon 2024, 10, e23506. [Google Scholar] [CrossRef]
- Guan, W.; Wang, X.; Lin, Q.; Zhang, J.; Ren, W.; Xu, G. Transforming growth factor-beta/miR-143-3p/cystatin B axis is a therapeutic target in human ovarian cancer. Int. J. Oncol. 2019, 55, 267–276. [Google Scholar] [CrossRef]
- Ye, D.; Duan, X.; Guan, B.; Yuan, J.; Zhu, Y.; Shi, J.; Lu, Q.; Xu, G. Biomarker cystatin B expression correlates with pathogenesis in cervical cancer. J. Int. Med. Res. 2024, 52, 3000605241233959. [Google Scholar] [CrossRef]
- Dong, L.; Lu, D.; Chen, R.; Lin, Y.; Zhu, H.; Zhang, Z.; Cai, S.; Cui, P.; Song, G.; Rao, D.; et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma. Cancer Cell 2022, 40, 70–87.e15. [Google Scholar] [CrossRef]
- Andersen, J.B.; Spee, B.; Blechacz, B.R.; Avital, I.; Komuta, M.; Barbour, A.; Conner, E.A.; Gillen, M.C.; Roskams, T.; Roberts, L.R.; et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 2012, 142, 1021–1031.e15. [Google Scholar] [CrossRef]
- Ahn, K.S.; O’Brien, D.; Kang, Y.N.; Mounajjed, T.; Kim, Y.H.; Kim, T.S.; Kocher, J.A.; Allotey, L.K.; Borad, M.J.; Roberts, L.R.; et al. Prognostic subclass of intrahepatic cholangiocarcinoma by integrative molecular-clinical analysis and potential targeted approach. Hepatol. Int. 2019, 13, 490–500. [Google Scholar] [CrossRef]
- Jusakul, A.; Cutcutache, I.; Yong, C.H.; Lim, J.Q.; Huang, M.N.; Padmanabhan, N.; Nellore, V.; Kongpetch, S.; Ng, A.W.T.; Ng, L.M.; et al. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. Cancer Discov. 2017, 7, 1116–1135. [Google Scholar] [CrossRef]
- Kim, Y.; Moris, D.P.; Zhang, X.F.; Bagante, F.; Spolverato, G.; Schmidt, C.; Dilhoff, M.; Pawlik, T.M. Evaluation of the 8th edition American Joint Commission on Cancer (AJCC) staging system for patients with intrahepatic cholangiocarcinoma: A surveillance, epidemiology, and end results (SEER) analysis. J. Surg. Oncol. 2017, 116, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wu, Y.; Wang, C.; Wang, Z.; Li, Y.; Jiang, Z.; Zhao, W.; Pan, Z. Isoliquiritigenin inhibits non-small cell lung cancer progression via m(6)A/IGF2BP3-dependent TWIST1 mRNA stabilization. Phytomedicine 2022, 104, 154299. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.Y.; Yang, Z.F.; Wang, Z.T.; Liu, G.; Zhou, C.; Zhou, J.; Fan, J.; Gan, W.; Yi, Y.; Qiu, S.J. Integrative analyses identify CD73 as a prognostic biomarker and immunotherapeutic target in intrahepatic cholangiocarcinoma. World J. Surg. Oncol. 2023, 21, 90. [Google Scholar] [CrossRef]
- Zhao, W.; Cui, Y.; Liu, L.; Qi, X.; Liu, J.; Ma, S.; Hu, X.; Zhang, Z.; Wang, Y.; Li, H.; et al. Splicing factor derived circular RNA circUHRF1 accelerates oral squamous cell carcinoma tumorigenesis via feedback loop. Cell Death Differ. 2020, 27, 919–933. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.Y.; Zhang, D.; Gan, W.; Wu, J.F.; Wang, Z.T.; Sun, G.Q.; Zhou, J.; Fan, J.; Yi, Y.; Hu, B.; et al. Targeting CD73 limits tumor progression and enhances anti-tumor activity of anti-PD-1 therapy in intrahepatic cholangiocarcinoma. J. Cancer Res. Clin. Oncol. 2024, 150, 348. [Google Scholar] [CrossRef]
- Gao, Q.; Qiu, S.J.; Fan, J.; Zhou, J.; Wang, X.Y.; Xiao, Y.S.; Xu, Y.; Li, Y.W.; Tang, Z.Y. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J. Clin. Oncol. 2007, 25, 2586–2593. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernandez, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef]
- Yoo, C.; Hyung, J.; Chan, S.L. Recent Advances in Systemic Therapy for Advanced Intrahepatic Cholangiocarcinoma. Liver Cancer 2024, 13, 119–135. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Z.; Zhu, H.; Lu, J.; Lei, Z.; Su, C.; Liu, F.; Zhang, H.; Huang, Q.; Han, S.; et al. Transcription factor EHF drives cholangiocarcinoma development through transcriptional activation of glioma-associated oncogene homolog 1 and chemokine CCL2. MedComm 2024, 5, e535. [Google Scholar] [CrossRef]
- Kubo, S.; Shinkawa, H.; Asaoka, Y.; Ioka, T.; Igaki, H.; Izumi, N.; Itoi, T.; Unno, M.; Ohtsuka, M.; Okusaka, T.; et al. Liver Cancer Study Group of Japan Clinical Practice Guidelines for Intrahepatic Cholangiocarcinoma. Liver Cancer 2022, 11, 290–314. [Google Scholar] [CrossRef]
- Yoo, T.; Park, S.J.; Han, S.S.; Kim, S.H.; Lee, S.D.; Kim, Y.K.; Kim, T.H.; Woo, S.M.; Lee, W.J.; Hong, E.K. Postoperative CA19-9 Change Is a Useful Predictor of Intrahepatic Cholangiocarcinoma Survival following Liver Resection. Dis. Markers 2015, 2015, 298985. [Google Scholar] [CrossRef] [PubMed]
- Moro, A.; Mehta, R.; Sahara, K.; Tsilimigras, D.I.; Paredes, A.Z.; Farooq, A.; Hyer, J.M.; Endo, I.; Shen, F.; Guglielmi, A.; et al. The Impact of Preoperative CA19-9 and CEA on Outcomes of Patients with Intrahepatic Cholangiocarcinoma. Ann. Surg. Oncol. 2020, 27, 2888–2901. [Google Scholar] [CrossRef]
- Munugala, N.; Maithel, S.K.; Shroff, R.T. Novel biomarkers and the future of targeted therapies in cholangiocarcinoma: A narrative review. Hepatobiliary Surg. Nutr. 2022, 11, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Dong, X.; Luo, S.; Guo, S.; Zhou, W.; Song, W. Transcriptional activation of CSTB gene expression by transcription factor Sp3. Biochem. Biophys. Res. Commun. 2023, 649, 71–78. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Sun, B.-Y.; Wu, J.-F.; Wang, Z.-T.; Zheng, S.-S.; Sun, G.-Q.; Gao, X.-K.; Zhou, J.; Fan, J.; Hu, B.; et al. Cystatin B Promotes the Proliferation, Migration, and Invasion of Intrahepatic Cholangiocarcinoma. Curr. Oncol. 2025, 32, 56. https://doi.org/10.3390/curroncol32020056
Zhang D, Sun B-Y, Wu J-F, Wang Z-T, Zheng S-S, Sun G-Q, Gao X-K, Zhou J, Fan J, Hu B, et al. Cystatin B Promotes the Proliferation, Migration, and Invasion of Intrahepatic Cholangiocarcinoma. Current Oncology. 2025; 32(2):56. https://doi.org/10.3390/curroncol32020056
Chicago/Turabian StyleZhang, Dai, Bao-Ye Sun, Jing-Fang Wu, Zhu-Tao Wang, Su-Su Zheng, Guo-Qiang Sun, Xu-Kang Gao, Jian Zhou, Jia Fan, Bo Hu, and et al. 2025. "Cystatin B Promotes the Proliferation, Migration, and Invasion of Intrahepatic Cholangiocarcinoma" Current Oncology 32, no. 2: 56. https://doi.org/10.3390/curroncol32020056
APA StyleZhang, D., Sun, B.-Y., Wu, J.-F., Wang, Z.-T., Zheng, S.-S., Sun, G.-Q., Gao, X.-K., Zhou, J., Fan, J., Hu, B., Qiu, S.-J., & Zhang, B.-H. (2025). Cystatin B Promotes the Proliferation, Migration, and Invasion of Intrahepatic Cholangiocarcinoma. Current Oncology, 32(2), 56. https://doi.org/10.3390/curroncol32020056