Evaluation of Creatine Monohydrate Supplementation on the Gastrocnemius Muscle of Mice with Muscular Dystrophy: A Preliminary Study
Abstract
:1. Introduction
- Does creatine supplementation influence the inflammatory infiltrate in dystrophic muscle tissue?
- What effects does creatine have on tissue fibrosis and muscle integrity in MDX mice?
- Can creatine supplementation interfere with energy metabolism by preserving intramuscular glycogen stores in dystrophic conditions?
2. Materials and Methods
2.1. Experimental Draw and Ethical Aspects
- Group I included 5 C57BL/10 mice serving as controls for the study.
- Group II included 5 C57BL/10 mice that underwent supplementation with creatine monohydrate for a duration of eight weeks.
- Group III included 5 MDX mice supplemented with creatine monohydrate for a period of eight weeks.
- Group IV included 5 MDX mice that did not receive creatine monohydrate supplementation during the experiment.
2.2. Creatine Supplementation
2.3. Histomorphological and Histomorphometric Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atilano-Miguel, S.; Barbosa-Cortés, L.; Ortiz-Muñiz, R. Duchenne muscular dystrophy: RANK/RANKL/OPG (receptor activator of nuclear factor-kB/RANK ligand/osteoprotegerin) system and glucocorticoids. Bol. Med. Hosp. Infant. Mex. 2022, 79, 275–283. [Google Scholar] [CrossRef]
- Kariyawasam, D.; D’Silva, A.; Mowat, D.; Russell, J.; Sampaio, H.; Jones, K.; Taylor, P.; Farrar, M. Incidence of Duchenne muscular dystrophy in the modern era; an Australian study. Eur. J. Hum. Genet. 2022, 30, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Salmaninejad, A.; Jafari Abarghan, Y.; Bozorg Qomi, S.; Bayat, H.; Yousefi, M.; Azhdari, S.; Talebi, S.; Mojarrad, M. Common therapeutic advances for Duchenne muscular dystrophy (DMD). Int. J. Neurosci. 2021, 131, 370–389. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, F.; Farnè, M.; Ferlini, A. The DMD gene and therapeutic approaches to restore dystrophin. Neuromuscul. Disord. 2021, 31, 1013–1020. [Google Scholar] [CrossRef]
- Juan, A.S.; Grayhack, J.J. Duchenne Muscular Dystrophy. Orthop. Newborn Young Child. Pract. Clin. Guid. 2022, 7, 363–370. [Google Scholar] [CrossRef]
- Birnkrant, D.J.; Bushby, K.; Bann, C.M.; Apkon, S.D.; Blackwell, A.; Brumbaugh, D.; Case, L.E.; Clemens, P.R.; Hadjiyannakis, S.; Pandya, S.; et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: Diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018, 17, 251–267. [Google Scholar] [CrossRef] [PubMed]
- Timpani, C.A.; Goodman, C.A.; Stathis, C.G.; White, J.D.; Mamchaoui, K.; Butler-Browne, G.; Gueven, N.; Hayes, A.; Rybalka, E. Adenylosuccinic acid therapy ameliorates murine Duchenne Muscular Dystrophy. Sci. Rep. 2020, 10, 1125. [Google Scholar] [CrossRef]
- Forbes, S.C.; Cordingley, D.M.; Cornish, S.M.; Gualano, B.; Roschel, H.; Ostojic, S.M.; Rawson, E.S.; Roy, B.D.; Prokopidis, K.; Giannos, P.; et al. Effects of Creatine Supplementation on Brain Function and Health. Nutrients 2022, 14, 921. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef]
- Wax, B.; Kerksick, C.M.; Jagim, A.R.; Mayo, J.J.; Lyons, B.C.; Kreider, R.B. Creatine for Exercise and Sports Performance, with Recovery Considerations for Healthy Populations. Nutrients 2021, 13, 1915. [Google Scholar] [CrossRef] [PubMed]
- Antonio, J.; Candow, D.G.; Forbes, S.C.; Gualano, B.; Jagim, A.R.; Kreider, R.B.; Rawson, E.S.; Smith-Ryan, A.E.; VanDusseldorp, T.A.; Willoughby, D.S.; et al. Common questions and misconceptions about creatine supplementation: What does the scientific evidence really show? J. Int. Soc. Sports Nutr. 2021, 18, 13. [Google Scholar] [CrossRef]
- Roschel, H.; Gualano, B.; Ostojic, S.M.; Rawson, E.S. Creatine Supplementation and Brain Health. Nutrients 2021, 13, 586. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, D.A.; Kreider, R.B.; Stout, J.R.; Forero, D.A.; Kerksick, C.M.; Roberts, M.D.; Rawson, E.S. Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients 2021, 13, 1238. [Google Scholar] [CrossRef] [PubMed]
- Farshidfar, F.; Pinder, M.A.; Myrie, S.B. Creatine Supplementation and Skeletal Muscle Metabolism for Building Muscle Mass- Review of the Potential Mechanisms of Action. Curr. Protein Pept. Sci. 2017, 18, 1273–1287. [Google Scholar] [CrossRef] [PubMed]
- Ramos Fernandes, V.A.; Delforno, M.C.; Banov, G.C.; Shmayev, M.; Alves Leandro, J.V.; Gonçalves Teixeira, K.F.; Iatecola, A.; Inácio Cardozo, M.F.; Caldeira, E.J.; Rodrigues da Cunha, M. Renal, hepatic and muscle effects of creatine supplementation in an older adults experimental model. Clin. Nutr. ESPEN 2022, 48, 464–471. [Google Scholar] [CrossRef]
- Dupuy, O.; Douzi, W.; Theurot, D.; Bosquet, L.; Dugué, B. An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, Soreness, fatigue, and inflammation: A systematic review with meta-analysis. Front. Physiol. 2018, 9, 403. [Google Scholar] [CrossRef]
- Fernandes, V.A.R.; Iatecola, A.; Da Cunha, M.R.; Patah, G.C.; Guarnier, D.; De Oliveira, J.V.M.; Delforno, M.C.; Banov, G.C.; Shmayev, M.; Leandro, J.V.A.; et al. Use of Creatine Monohydrate in MDX Mice: Morphometric and Stereological Analysis of the Diaphragm. Med. Mod. 2023, 30, 191–197. [Google Scholar] [CrossRef]
- Wallimann, T.; Hall, C.H.T.; Colgan, S.P.; Glover, L.E. Creatine Supplementation for Patients with Inflammatory Bowel Diseases: A Scientific Rationale for a Clinical Trial. Nutrients 2021, 13, 1429. [Google Scholar] [CrossRef] [PubMed]
- Larcher, T.; Lafoux, A.; Tesson, L.; Remy, S.V.; Thepenier, V.; François, V.; Le Guiner, C.; Goubin, H.; Dutilleul, M.V.; Guigand, L.; et al. Characterization of dystrophin deficient rats: A new model for duchenne muscular dystrophy. PLoS ONE 2014, 9, e110371. [Google Scholar] [CrossRef] [PubMed]
- Arruda, I.F.S.; Iatecola, A.; Carvalhaes, V.Z.; Da Cunha, M.R.; Fernandes, V.A.R. Histological Effects of Creatine Monohydrate Supplementation on Muscle Tissue in Wistar Rats. Med. Mod. 2023, 30, 111–115. [Google Scholar] [CrossRef]
- Banov, G.C.; Delforno, M.C.; da Silva, I.F.; Iatecolas, A.; de Jesus, G.C.; Cardozo, M.F.I.; de Carvalho, G.M.A.; da Cunha, M.R.; Fernandes, V.A.R.; Gagliardi, P.C. Efeitos da suplementação de creatina sobre o tecido muscular de idosos: Revisão sistemática de literatura. Rev. Multidiscip. Saúde 2022, 4, 38–58. [Google Scholar]
- Young, R.E.; Young, J.C. The effect of creatine supplementation on mass and performance of rat skeletal muscle. Life Sci. 2007, 81, 710–716. [Google Scholar] [CrossRef]
- Edouard, P.; Reurink, G.; Mackey, A.L.; Lieber, R.L.; Pizzari, T.; Järvinen, T.A.H.; Gronwald, T.; Hollander, K. Traumatic muscle injury. Nat. Rev. Dis. Prim. 2023, 9, 56. [Google Scholar] [CrossRef]
- Csapo, R.; Gumpenberger, M.; Wessner, B. Skeletal Muscle Extracellular Matrix—What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. Front. Physiol. 2020, 11, 253. [Google Scholar] [CrossRef] [PubMed]
- Gesemann, M.; Cavalli, V.; Denzer, A.J.; Brancaccio, A.; Schumacher, B.; Ruegg, M.A. Alternative splicing of agrin alters its binding to heparin, dystroglycan, and the putative agrin receptor. Neuron 1996, 16, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; McNally, E. The Dystrophin Complex: Structure, function and implications for therapy. Compr. Physiol. 2015, 5, 1223–1239. [Google Scholar] [CrossRef] [PubMed]
- Happi Mbakam, C.; Lamothe, G.; Tremblay, G.; Tremblay, J.P. CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy. Neurotherapeutics 2022, 19, 931–941. [Google Scholar] [CrossRef]
- Elangkovan, N.; Dickson, G. Gene Therapy for Duchenne Muscular Dystrophy. J. Neuromuscul. Dis. 2021, 8, S303–S316. [Google Scholar] [CrossRef]
- Roberts, T.C.; Wood, M.J.A.; Davies, K.E. Therapeutic approaches for Duchenne muscular dystrophy. Nat. Rev. Drug Discov. 2023, 22, 917–934. [Google Scholar] [CrossRef]
- Danisovic, L.; Culenova, M.; Csobonyeiova, M. Induced pluripotent stem cells for duchenne muscular dystrophy modeling and therapy. Cells 2018, 7, 253. [Google Scholar] [CrossRef] [PubMed]
- Mukund, K.; Subramaniam, S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, 1–46. [Google Scholar] [CrossRef]
- Bez Batti Angulski, A.; Hosny, N.; Cohen, H.; Martin, A.A.; Hahn, D.; Bauer, J.; Metzger, J.M. Duchenne muscular dystrophy: Disease mechanism and therapeutic strategies. Front. Physiol. 2023, 14, 1183101. [Google Scholar] [CrossRef]
- Salera, S.; Menni, F.; Moggio, M.; Guez, S.; Sciacco, M.; Esposito, S. Nutritional Challenges in Duchenne Muscular Dystrophy. Nutrients 2017, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Lorena, M.D.S.V.; Santos, E.K.; Ferretti, R.; Gowda, G.A.N.; Odom, G.L.; Chamberlain, J.S.; Matsumura, C.Y. Biomarkers for Duchenne muscular dystrophy progression: Impact of age in the mdx tongue spared muscle. Skelet. Muscle. 2023, 13, 16. [Google Scholar] [CrossRef]
- Febbraio, M.A.; Flanagan, T.R.; Snow, R.J.; Zhao, S.; Carey, M.F. Effect of creatine supplementation on intramuscular TCr, metabolism and performance during intermittent, supramaximal exercise in humans. Acta Physiol. Scand. 1995, 155, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Volek, J.S.; Rawson, E.S. Scientific basis and practical aspects of creatine supplementation for athletes. Nutrition. 2004, 20, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.C.; Candow, D.G.; Neto, J.H.F.; Kennedy, M.D.; Forbes, J.L.; Machado, M.; Bustillo, E.; Gomez-Lopez, J.; Zapata, A.; Antonio, J. Creatine supplementation and endurance performance: Surges and sprints to win the race. J. Int. Soc. Sports Nutr. 2023, 20, 2204071. [Google Scholar] [CrossRef] [PubMed]
- Vigh-Larsen, J.F.; Ørtenblad, N.; Spriet, L.L.; Overgaard, K.; Mohr, M. Muscle Glycogen Metabolism and High-Intensity Exercise Performance: A Narrative Review. Sport. Med. 2021, 51, 1855–1874. [Google Scholar] [CrossRef]
- Alghannam, A.F.; Gonzalez, J.T.; Betts, J.A. Restoration of muscle glycogen and functional capacity: Role of post-exercise carbohydrate and protein co-ingestion. Nutrients 2018, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- Houang, E.M.; Sham, Y.Y.; Bates, F.S.; Metzger, J.M. Muscle membrane integrity in Duchenne muscular dystrophy: Recent advances in copolymer-based muscle membrane stabilizers. Skelet. Muscle 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.S.; McCormick, M.C.; Robergs, R.A. Interaction among skeletal muscle metabolic energy systems during intense exercise. J. Nutr. Metab. 2010, 2010, 905612. [Google Scholar] [CrossRef]
- Padilha, C.S.; Cella, P.S.; Salles, L.R.; Deminice, R. Oral creatine supplementation attenuates muscle loss caused by limb immobilization: A systematic review. Fisioter. Em Mov. 2017, 30, 831–838. [Google Scholar] [CrossRef]
- Aguiar Bonfim Cruz, A.J.; Brooks, S.J.; Kleinkopf, K.; Brush, C.J.; Irwin, G.L.; Schwartz, M.G.; Candow, D.G.; Brown, A.F. Creatine Improves Total Sleep Duration Following Resistance Training Days versus Non-Resistance Training Days among Naturally Menstruating Females. Nutrients 2024, 16, 2772. [Google Scholar] [CrossRef] [PubMed]
- Lis-López, L.; Bauset, C.; Seco-Cervera, M.; Cosín-Roger, J. Is the macrophage phenotype determinant for fibrosis development? Biomedicines 2021, 9, 1747. [Google Scholar] [CrossRef]
- Long, H.; Lichtnekert, J.; Andrassy, J.; Schraml, B.U.; Romagnani, P.; Anders, H.J. Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes account for organ injury, regeneration or atrophy. Front. Immunol. 2023, 14, 1194988. [Google Scholar] [CrossRef]
- Kornegay, J.N.; Childers, M.K.; Bogan, D.J.; Bogan, J.R.; Nghiem, P.; Wang, J.; Fan, Z.; Howard, J.F., Jr.; Schatzberg, S.J.; Dow, J.L.; et al. The Paradox of Muscle Hypertrophy in Muscular Dystrophy. Phys. Med. Rehabil. Clin. N. Am. 2018, 23, 149–172. [Google Scholar] [CrossRef]
- Delaney, R.; O’Halloran, K.D. Respiratory performance in Duchenne muscular dystrophy: Clinical manifestations and lessons from animal models. Exp. Physiol. 2024, 109, 1426–1445. [Google Scholar] [CrossRef] [PubMed]
- Walters, J. Muscle hypertrophy and pseudohypertrophy. Pract. Neurol. 2017, 17, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Florczyk-Soluch, U.; Polak, K.; Dulak, J. The multifaceted view of heart problem in Duchenne muscular dystrophy. Cell. Mol. Life Sci. 2021, 78, 5447–5468. [Google Scholar] [CrossRef]
Group | Mean | Standard Deviation | p Value |
---|---|---|---|
MDX (IV) | 121.6 | 21.9 | 0.0893 |
MDX + creatine (III) | 98.0 | 16.3 | 0.0893 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, V.A.R.; dos Santos, G.P.; Iatecola, A.; Buchaim, D.V.; Garcia, I.J.F.; Reis, C.H.B.; Bueno, L.M.M.; Pagani, B.T.; Buchaim, R.L.; da Cunha, M.R. Evaluation of Creatine Monohydrate Supplementation on the Gastrocnemius Muscle of Mice with Muscular Dystrophy: A Preliminary Study. Pathophysiology 2025, 32, 2. https://doi.org/10.3390/pathophysiology32010002
Fernandes VAR, dos Santos GP, Iatecola A, Buchaim DV, Garcia IJF, Reis CHB, Bueno LMM, Pagani BT, Buchaim RL, da Cunha MR. Evaluation of Creatine Monohydrate Supplementation on the Gastrocnemius Muscle of Mice with Muscular Dystrophy: A Preliminary Study. Pathophysiology. 2025; 32(1):2. https://doi.org/10.3390/pathophysiology32010002
Chicago/Turabian StyleFernandes, Victor Augusto Ramos, Gabriela Pereira dos Santos, Amilton Iatecola, Daniela Vieira Buchaim, Ionaly Judith Faria Garcia, Carlos Henrique Bertoni Reis, Lívia Maluf Menegazzo Bueno, Bruna Trazzi Pagani, Rogerio Leone Buchaim, and Marcelo Rodrigues da Cunha. 2025. "Evaluation of Creatine Monohydrate Supplementation on the Gastrocnemius Muscle of Mice with Muscular Dystrophy: A Preliminary Study" Pathophysiology 32, no. 1: 2. https://doi.org/10.3390/pathophysiology32010002
APA StyleFernandes, V. A. R., dos Santos, G. P., Iatecola, A., Buchaim, D. V., Garcia, I. J. F., Reis, C. H. B., Bueno, L. M. M., Pagani, B. T., Buchaim, R. L., & da Cunha, M. R. (2025). Evaluation of Creatine Monohydrate Supplementation on the Gastrocnemius Muscle of Mice with Muscular Dystrophy: A Preliminary Study. Pathophysiology, 32(1), 2. https://doi.org/10.3390/pathophysiology32010002