Shannon Entropy Estimation for Linear Processes
Abstract
:1. Introduction
- B.1
- ;
- K.1
- for some is bounded with bounded support;
- K.2
- ;
- D.1
- ;
- D.2
- ;
- D.3
- .
2. Main Results
3. Proofs
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ahmad, Ibrahim, and Pi-Erh Lin. 1976. A nonparametric estimation of the entropy for absolutely continuous distributions. IEEE Transactions on Information Theory 22: 372–75. [Google Scholar] [CrossRef]
- Beirlant, Jan, Edward J. Dudewicz, László Györfi, and Edward C. van der Meulen. 1997. Nonparametric entropy estimation: An overview. International Journal of Mathematical and Statistical Sciences 6: 17–39. [Google Scholar]
- Bouzebda, Salim, and Issam Elhattab. 2011. Uniform-in-bandwidth consistency for kernel-type estimators of Shannon’s entropy. Electronic Journal of Statistics 5: 440–59. [Google Scholar] [CrossRef]
- Devroye, Luc, and László Györfi. 1985. Nonparametric Density Estimation: The L1 View. New York: Wiley. [Google Scholar]
- Dmitriev, Yu G., and Felix P. Tarasenko. 1973. On the estimation functions of the probability density and its derivatives. Theory of Probability and Its Applications 18: 628–633. [Google Scholar] [CrossRef]
- Duin, Robert P. W. 1976. On the choice of smoothing parameters of Parzen estimators of probability density function. IEEE Transactions on Computers 11: 1175–79. [Google Scholar] [CrossRef]
- Halmos, Paul R. 1974. Measure Theory. New York: Springer. [Google Scholar]
- Honda, Toshio. 2000. Nonparametric density estimation for a long-range dependent linear process. Annals of the Institute of Statistical Mathematics 52: 599–611. [Google Scholar] [CrossRef]
- Nadaraya, Elizbar Akakevič. 1989. Nonparametric Estimation of Probability Densities and Regression Curves. Dordrecht: Kluwer Academic Pub. [Google Scholar]
- Parzen, Emanuel. 1962. On estimation of a probability density and mode. Annals of Mathematical Statistics 31: 1065–79. [Google Scholar] [CrossRef]
- Rosenblatt, Murray. 1956. Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics 27: 832–37. [Google Scholar] [CrossRef]
- Rudemo, Mats. 1982. Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics 9: 65–78. [Google Scholar]
- Sang, Hailin, Yongli Sang, and Fangjun Xu. 2018. Kernel entropy estimation for linear processes. Journal of Time Series Analysis 39: 563–91. [Google Scholar] [CrossRef] [Green Version]
- Schimek, Michael G. 2000. Smoothing and Regression: Approaches, Computation, and Application. Hoboken: John Wiley & Sons. [Google Scholar]
- Scott, David W. 2015. Multivariate Density Estimation: Theory, Practice, and Visualization, 2nd ed. Hoboken: John Wiley & Sons. [Google Scholar]
- Shannon, Claude E. 1948. A mathematical theory of communication. Bell System Technical Journal 27: 379–423. [Google Scholar] [CrossRef] [Green Version]
- Shumway, Robert H., and David S. Stoffer. 2011. Time Series Analysis and Its Applications, 3rd ed. New York: Springer. [Google Scholar]
- Silverman, Bernard W. 1986. Density Estimation for Statistics and Data Analysis. London: Chapman and Hall. [Google Scholar]
- Slaoui, Yousri. 2014. Bandwidth selection for recursive kernel density estimators defined by stochastic approximation method. Journal of Probability and Statistics 2014: 739640. [Google Scholar] [CrossRef]
- Slaoui, Yousri. 2018. Bias reduction in kernel density estimation. Journal of Nonparametric Statistics 30: 505–22. [Google Scholar] [CrossRef]
- Stute, Winfried. 1982. A law of the logarithm for kernel density estimator. Annals of Probability 10: 414–22. [Google Scholar] [CrossRef]
- Tran, Lanh Tat. 1992. Kernel density estimation for linear processes. Stochastic Processes and their Applications 41: 281–96. [Google Scholar] [CrossRef] [Green Version]
- Wand, Matt P., and M. Chris Jones. 1995. Kernel Smoothing. London: Chapman and Hall. [Google Scholar]
- Wu, Wei Biao, Yinxiao Huang, and Yibi Huang. 2010. Kernel estimation for time series: An asymptotic theory. Stochastic Processes and their Applications 120: 2412–31. [Google Scholar] [CrossRef] [Green Version]
- Wu, Wei Biao, and Jan Mielniczuk. 2002. Kernel density estimation for linear processes. Annals of Statistics 30: 1441–59. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortune, T.; Sang, H. Shannon Entropy Estimation for Linear Processes. J. Risk Financial Manag. 2020, 13, 205. https://doi.org/10.3390/jrfm13090205
Fortune T, Sang H. Shannon Entropy Estimation for Linear Processes. Journal of Risk and Financial Management. 2020; 13(9):205. https://doi.org/10.3390/jrfm13090205
Chicago/Turabian StyleFortune, Timothy, and Hailin Sang. 2020. "Shannon Entropy Estimation for Linear Processes" Journal of Risk and Financial Management 13, no. 9: 205. https://doi.org/10.3390/jrfm13090205
APA StyleFortune, T., & Sang, H. (2020). Shannon Entropy Estimation for Linear Processes. Journal of Risk and Financial Management, 13(9), 205. https://doi.org/10.3390/jrfm13090205