Financial Inclusion in West African Economic and Monetary Union’s Economies: Performance Analysis Using Data Envelopment Analysis
Abstract
:1. Introduction
2. Measurement of Financial Inclusion Levels: A Literature Review
3. Data Envelopment Analysis (DEA)
3.1. Basic DEA Models
3.2. Benefit of the Doubt
3.3. Post Hoc DEA Models
- (a)
- The cross-efficiency of DMUi using the weighting scheme of DMUi remains equal to the optimal solution from the model (1)–(4);
- (b)
- No cross-efficiency of DMUj using the weighting scheme of DMUi is greater than one.
4. Case Study
5. Analysis and Discussions
5.1. DEA-Based Composite Measures of Financial Inclusion and Performance Ranking in WAEMU
5.2. Financial Inclusion Performance Level and Ranking in WAEMU
5.3. Benchmarking Analysis
5.4. Weight Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahamed, M. Mostak, and Sushanta K. Mallick. 2019. Is Financial Inclusion Good for Bank Stability? International Evidence. Journal of Economic Behavior & Organization 157: 403–27. [Google Scholar]
- Alliance for Financial Inclusion. 2010. Mesurer l’inclusion Financière Pour Les Organismes Régulateurs: Conception et Réalisation d’enquêtes. Bangkok: Alliance for Financial Inclusion (AFI). [Google Scholar]
- Alvarez, Inmaculada C., Javier Barbero, and José L. Zofío. 2020. A Data Envelopment Analysis Toolbox for MATLAB. Journal of Statistical Software 95: 1–49. [Google Scholar] [CrossRef]
- Anarfo, Ebenezer Bugri, Joshua Yindenaba Abor, and Kofi Achampong Osei. 2020. Financial Regulation and Financial Inclusion in Sub-Saharan Africa: Does Financial Stability Play a Moderating Role? Research in International Business and Finance 51: 101070. [Google Scholar] [CrossRef]
- Angulo-Meza, Lidia, and Marcos Pereira Estellita Lins. 2002. Review of Methods for Increasing Discrimination in Data Envelopment Analysis. Annals of Operations Research 116: 225–42. [Google Scholar] [CrossRef]
- Aparicio, Juan, and Magdalena Kapelko. 2019. Enhancing the Measurement of Composite Indicators of Corporate Social Performance. Social Indicators Research 144: 807–26. [Google Scholar] [CrossRef] [Green Version]
- Arun, Thankom, and Rajalaxmi Kamath. 2015. Financial Inclusion: Policies and Practices. IIMB Management Review 27: 267–87. [Google Scholar] [CrossRef] [Green Version]
- Assaf, A. George, Carlos Barros, and Ricardo Sellers-Rubio. 2011. Efficiency Determinants in Retail Stores: A Bayesian Framework. Omega 39: 283–92. [Google Scholar] [CrossRef]
- Banker, Rajiv D., Abraham Charnes, and William Wager Cooper. 1984. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science 30: 1078–92. [Google Scholar] [CrossRef] [Green Version]
- Banker, Rajiv D., Robert F. Conrad, and Robert P. Strauss. 1986. A Comparative Application of Data Envelopment Analysis and Translog Methods: An Illustrative Study of Hospital Production. Management Science 32: 30–44. [Google Scholar] [CrossRef]
- Banque Centrale des États de l’Afrique de l’Ouest. 2018a. Evolution Des Indicateurs de Suivi de l’inclusion Financière Dans l’UEMOA Au Titre de l’année 2017. Dakar: Banque Centrale des États de l’Afrique de l’Ouest (BCEAO). [Google Scholar]
- Banque Centrale des États de l’Afrique de l’Ouest. 2018b. Rapport Annuel sur la Situation de l’Inclusion Financière Dans l’UEMOA Au Cours de l’année 2017. Dakar: Banque Centrale des États de l’Afrique de l’Ouest (BCEAO). [Google Scholar]
- Becker, William, Michaela Saisana, Paolo Paruolo, and Ine Vandecasteele. 2017. Weights and Importance in Composite Indicators: Closing the Gap. Ecological Indicators 80: 12–22. [Google Scholar] [CrossRef]
- Behzadian, Majid, S. Khanmohammadi Otaghsara, Morteza Yazdani, and Joshua Ignatius. 2012. A State-of the-Art Survey of TOPSIS Applications. Expert Systems with Applications 39: 13051–69. [Google Scholar] [CrossRef]
- Cámara, Noelia, and David Tuesta. 2014. Measuring Financial Inclusion: A Muldimensional Index. BBVA Research Paper, No. 14/26. Madrid: BBVA Research. [Google Scholar]
- Chakraborty, Subrata. 2022. TOPSIS and Modified TOPSIS: A Comparative Analysis. Decision Analytics Journal 2: 100021. [Google Scholar] [CrossRef]
- Charnes, Abraham, William W. Cooper, and Edwardo Rhodes. 1978. Measuring the Efficiency of Decision Making Units. European Journal of Operational Research 2: 429–44. [Google Scholar] [CrossRef]
- Chen, Yao, Wade D. Cook, and Sungmook Lim. 2019. Preface: DEA and Its Applications in Operations and Data Analytics. Annals of Operations Research 278: 1–4. [Google Scholar] [CrossRef]
- Cherchye, Laurens, and Timo Kuosmanen. 2004. Benchmarking Sustainable Development: A Synthetic Meta-Index Approach. WIDER Research Paper No. 2004/28. Helsinki: The United Nations University World Institute for Development Economics Research (UNU-WIDER). ISBN 9291906158. [Google Scholar]
- Cherchye, Laurens, Wim Moesen, and Tom Van Puyenbroeck. 2004. Legitimately Diverse, yet Comparable: On Synthesizing Social Inclusion Performance in the EU. JCMS: Journal of Common Market Studies 42: 919–55. [Google Scholar] [CrossRef]
- Cherchye, Laurens. 2001. Using Data Envelopment Analysis to Assess Macroeconomic Policy Performance. Applied Economics 33: 407–16. [Google Scholar] [CrossRef]
- Daraio, Cinzia, and Leopold Simar. 2007. The Measurement of Efficiency. In Advanced Robust and Nonparametric Methods in Efficiency Analysis: Methodology and Applications. Boston: Springer, vol. 4, pp. 13–42. [Google Scholar]
- Demirgüç-Kunt, Asli, and Leora Klapper. 2012. Measuring Financial Inclusion: The Global Findex Database. Policy Research Working Paper 6025: 1–61. [Google Scholar]
- Demirgüç-Kunt, Asli, Leora F. Klapper, Dorothe Singer, and Peter Van Oudheusden. 2015. The Global Findex Database 2014: Measuring Financial Inclusion around the World. World Bank Policy Research Working Paper, No. 7255. Washington, DC: World Bank Publications. [Google Scholar]
- Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, and Saniya Ansar. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank Publications. [Google Scholar]
- Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, and Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank Publications. [Google Scholar]
- Dia, Mohamed, Amirmohsen Golmohammadi, and Pawoumodom M. Takouda. 2020a. Relative Efficiency of Canadian Banks: A Three-Stage Network Bootstrap DEA. Journal of Risk and Financial Management 13: 68. [Google Scholar] [CrossRef] [Green Version]
- Dia, Mohamed, Kobana Abukari, Pawoumodom M. Takouda, and Abdelouahid Assaidi. 2019. Relative Efficiency Measurement of Canadian Mining Companies. International Journal of Applied Management Science 11: 224–42. [Google Scholar] [CrossRef]
- Dia, Mohamed, Pawoumodom M. Takouda, and Amirmohsen Golmohammadi. 2020b. Assessing the Performance of Canadian Credit Unions Using a Three-Stage Network Bootstrap DEA. Annals of Operations Research 311: 641–673. [Google Scholar] [CrossRef]
- Dia, Mohamed, Pawoumodom M. Takouda, and Amirmohsen Golmohammadi. 2021. Efficiency Measurement of Canadian Oil and Gas Companies. International Journal of Operational Research 40: 460–88. [Google Scholar] [CrossRef]
- Doumpos, Michael, and Constantin Zopounidis. 2014. Multicriteria Analysis in Finance. Berlin/Heidelberg: Springer. [Google Scholar]
- Doyle, John, and Rodney Green. 1994. Efficiency and Cross-Efficiency in DEA: Derivations, Meanings and Uses. Journal of the Operational Research Society 45: 567–78. [Google Scholar] [CrossRef]
- Emrouznejad, Ali, and Guo-liang Yang. 2018. A Survey and Analysis of the First 40 Years of Scholarly Literature in DEA: 1978–2016. Socio-Economic Planning Sciences 61: 4–8. [Google Scholar] [CrossRef]
- Fosso Wamba, Samuel, Angappa Gunasekaran, Rameshwar Dubey, and Eric WT Ngai. 2018. Big Data Analytics in Operations and Supply Chain Management. Annals of Operations Research 270: 1–4. [Google Scholar] [CrossRef]
- Foster, James E., Mark McGillivray, and Suman Seth. 2013. Composite Indices: Rank Robustness, Statistical Association, and Redundancy. Econometric Reviews 32: 35–56. [Google Scholar] [CrossRef]
- Greco, Salvatore, Alessio Ishizaka, Menelaos Tasiou, and Gianpiero Torrisi. 2019. On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Social Indicators Research 141: 61–94. [Google Scholar] [CrossRef] [Green Version]
- Greyling, Talita, and Fiona Tregenna. 2017. Construction and Analysis of a Composite Quality of Life Index for a Region of South Africa. Social Indicators Research 131: 887–930. [Google Scholar] [CrossRef]
- Guérineau, Samuel, and Luc Jacolin. 2014. L’inclusion Financière En Afrique Subsaharienne: Faits Stylisés et Déterminants. Revue d’économie Financière 116: 57–80. [Google Scholar] [CrossRef]
- Le, Thai-Ha, Anh Tu Chuc, and Farhad Taghizadeh-Hesary. 2019. Financial Inclusion and Its Impact on Financial Efficiency and Sustainability: Empirical Evidence from Asia. Borsa Istanbul Review 19: 310–22. [Google Scholar] [CrossRef]
- Lovell, C. A. Knox, Jesus T. Pastor, and Judi A. Turner. 1995. Measuring Macroeconomic Performance in the OECD: A Comparison of European and Non-European Countries. European Journal of Operational Research 87: 507–18. [Google Scholar] [CrossRef]
- Mahlberg, Bernhard, and Michael Obersteiner. 2001. Remeasuring the HDI by Data Envelopement Analysis. Available online: https://ssrn.com/abstract=1999372 (accessed on 4 August 2020).
- Melyn, Wim, and Willem Moesen. 1991. Towards a Synthetic Indicator of Macroeconomic Performance: Unequal Weighting When Limited Information Is Available. Public Economics Research Papers. Leuven: K.U.Leuven, Centrum voor Economische Studiën. [Google Scholar]
- Nardo, Michela, Michaela Saisana, Andrea Saltelli, and Stefano Tarantola. 2005. Tools for Composite Indicators Building. European Comission Ispra 15: 19–20. [Google Scholar]
- Nicoletti, Giuseppe, Stefano Scarpetta, and Olivier Boylaud. 2000. Summary Indicators of Product Market Regulation with an Extension to Employment Protection Legislation. Paris: OECD Publishing. [Google Scholar]
- Ouattara, Alassane, Pawoumodom M. Takouda, and Mohamed Dia. 2021. Un indice agrégé d’inclusion financière basé sur l’analyse par enveloppement de données (DEA) en contexte UEMOA. CESAG Working Papers. pp. 88–95. Available online: https://www.cesag.sn/images/CESAG_WORKING_PAPERS-A_Ouattara_et_al.pdf (accessed on 25 August 2019).
- Paradi, Joseph C., H. David Sherman, and Fai Keung Tam. 2018. Data Envelopment Analysis in the Financial Services Industry. Berlin/Heidelberg: Springer. [Google Scholar]
- Pearce, Douglas, and Claudia Ruiz Ortega. 2012. Financial Inclusion Strategies: Reference Framework. Washington, DC: World Bank Publications. [Google Scholar]
- Permanyer, Iñaki. 2011. Assessing the Robustness of Composite Indices Rankings. Review of Income and Wealth 57: 306–26. [Google Scholar] [CrossRef]
- Sarma, Mandira. 2008. Index of Financial Inclusion. Working Paper No 215. New Delhi: Indian Council for Research on International Economic Relations (ICRIER). [Google Scholar]
- Sarma, Mandira. 2012. Index of Financial Inclusion—A Measure of Financial Sector Inclusiveness. Working Paper. Delhi: Centre for International Trade and Development, School of International Studies, Jawaharlal Nehru University. [Google Scholar]
- Simar, Leopold, and Paul W. Wilson. 1998. Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models. Management Science 44: 49–61. [Google Scholar] [CrossRef]
- Simar, Leopold, and Paul W. Wilson. 2000. Statistical Inference in Nonparametric Frontier Models: The State of the Art. Journal of Productivity Analysis 13: 49–78. [Google Scholar] [CrossRef]
- Simar, Léopold, and Valentin Zelenyuk. 2006. On Testing Equality of Distributions of Technical Efficiency Scores. Econometric Reviews 25: 497–522. [Google Scholar] [CrossRef] [Green Version]
- Storrie, Donald, and Hans Bjurek. 2000. Benchmarking European Labour Market Performance with Efficiency Frontier Techniques. Discussion Paper FS I 00–211. Berlin: Wissenschaftszentrum Berlin für Sozialforschung. [Google Scholar]
- Takouda, Pawoumodom M., and Mohamed Dia. 2019. An Empirical Study of the Performance of Canadian-Owned Chains of Retail Stores. International Journal of Services and Operations Management 33: 512–28. [Google Scholar] [CrossRef]
- Takouda, Pawoumodom M., Mohamed Dia, and Alassane Ouattara. 2020. Levels of Financial Inclusion in the WAEMU Countries: A Case Study Using DEA. Paper presented at the 2020 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, November 8–9; pp. 1274–78. [Google Scholar]
- Takouda, Pawoumodom Matthias, and Mohamed Dia. 2016. Relative Efficiency of Hardware Retail Stores Chains in Canada. International Journal of Operational Research 27: 275–90. [Google Scholar] [CrossRef]
- Takouda, Pawoumodom Matthias, Mohamed Dia, Alassane Ouattara, and Konan Vincent De Paul Kouadio. 2022. Evaluating How the Regulatory Ecosystem Promotes Entrepreneurial Activities in Africa. In Africa Case Studies in Operations Research: A Closer Look into Applications and Algorithms. Edited by Hatem Masri. Cham: Springer International Publishing, pp. 91–128. [Google Scholar] [CrossRef]
- Toma, Pierluigi, Pier Paolo Miglietta, Giovanni Zurlini, Donatella Valente, and Irene Petrosillo. 2017. A Non-Parametric Bootstrap-Data Envelopment Analysis Approach for Environmental Policy Planning and Management of Agricultural Efficiency in EU Countries. Ecological Indicators 83: 132–43. [Google Scholar] [CrossRef]
- Zins, Alexandra, and Laurent Weill. 2016. The Determinants of Financial Inclusion in Africa. Review of Development Finance 6: 46–57. [Google Scholar] [CrossRef]
Economies | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Mean | Median | St. Dev. |
---|---|---|---|---|---|---|---|---|---|---|---|
BE | 0.1700 | 0.2260 | 0.2310 | 0.2450 | 0.2760 | 0.3290 | 0.4040 | 0.5560 | 0.3046 | 0.2605 | 0.1241 |
BF | 0.1950 | 0.1980 | 0.1980 | 0.2200 | 0.2610 | 0.2830 | 0.2900 | 0.3510 | 0.2495 | 0.2405 | 0.0565 |
CI | 0.2250 | 0.2350 | 0.2480 | 0.2760 | 0.3250 | 0.3460 | 0.3630 | 0.4140 | 0.3040 | 0.3005 | 0.0684 |
GB | 0.1370 | 0.1370 | 0.1640 | 0.1760 | 0.1800 | 0.1830 | 0.1850 | 0.1790 | 0.1676 | 0.1775 | 0.0199 |
MA | 0.1880 | 0.1940 | 0.1970 | 0.2100 | 0.2540 | 0.3030 | 0.3300 | 0.3500 | 0.2533 | 0.2320 | 0.0660 |
NG | 0.1390 | 0.1410 | 0.1600 | 0.2140 | 0.2260 | 0.2540 | 0.2320 | 0.2290 | 0.1994 | 0.2200 | 0.0454 |
SEN | 0.2530 | 0.2640 | 0.2810 | 0.3340 | 0.3880 | 0.4300 | 0.3750 | 0.4590 | 0.3480 | 0.3545 | 0.0776 |
TG | 0.1960 | 0.2040 | 0.2110 | 0.2330 | 0.2480 | 0.2820 | 0.3020 | 0.4330 | 0.2636 | 0.2405 | 0.0780 |
Mean | 0.1879 | 0.1999 | 0.2113 | 0.2385 | 0.2698 | 0.3013 | 0.3101 | 0.3714 | 0.2613 | 0.2400 | 0.0880 |
Median | 0.1915 | 0.2010 | 0.2045 | 0.2265 | 0.2575 | 0.2930 | 0.3160 | 0.3825 | |||
St. Dev. | 0.0397 | 0.0439 | 0.0411 | 0.0482 | 0.0631 | 0.0720 | 0.0741 | 0.1228 |
Dimension | Abbreviation | Definition (Based on the Adult Population, 15 Years and Older) |
---|---|---|
Access | PDB | Rate of demographic penetration of banking services: Ratio of number of banking service points to adult population × 10,000 |
PDM | Rate of demographic penetration of microfinance services: Ratio of number of microfinance service points to adult population × 10,000 | |
PDME | Rate of demographic penetration of electronic money services: Ratio of number of electronic money service points to adult population × 10,000 | |
PGB | Rate of geographic penetration of banking services: Ratio of number of banking service points to total area × 1,000 km2 | |
PGM | Rate of geographic penetration of microfinance services: Ratio of number of microfinance service points to total area × 1,000 km2 | |
PGME | Rate of geographic penetration of electronic money services: Ratio of number of electronic money service points to total area × 1,000 km2 | |
Usage | UBA | Rate of utilization of banking services: Ratio of number of physical persons owning a deposit or loan account in banks to adult population |
UMA | Rate of utilization of microfinance services: Ratio of number of physical persons owning an account in microfinance institutions to adult population | |
UMEA-O | Rate of utilization of electronic money services—opened account: Ratio of number of physical persons owning an opened electrical money account in electrical money service providers to adult population | |
UMEA-A | Rate of utilization of electronic money services—active account: Ration of number of physical persons owning an active electrical money account in electrical money service providers to adult population |
PDB | PDM | PDME | PGB | PGM | PGME | UBA | UMA | UMEAO | UMEAA | |
---|---|---|---|---|---|---|---|---|---|---|
Sample | ||||||||||
N | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 |
Mean | 0.758 | 0.662 | 12.379 | 2.900 | 2.736 | 41.109 | 11.662 | 18.340 | 16.631 | 9.270 |
Median | 0.808 | 0.667 | 4.114 | 2.547 | 1.384 | 12.234 | 11.589 | 13.932 | 6.467 | 3.126 |
St. Dev. | 0.273 | 0.411 | 15.293 | 2.251 | 2.631 | 67.131 | 4.914 | 13.336 | 20.460 | 11.558 |
2010 | ||||||||||
# | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Mean | 0.159 | 0.635 | 0.281 | 1.904 | 2.384 | 1.033 | 8.451 | 15.243 | 0.299 | 0.152 |
Median | 0.549 | 0.571 | 0.000 | 1.799 | 1.158 | 0.000 | 8.772 | 14.023 | 0.000 | 0.000 |
St. Dev. | 0.628 | 0.450 | 0.796 | 1.540 | 2.450 | 2.922 | 4.349 | 9.952 | 0.553 | 0.279 |
2011 | ||||||||||
# | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Mean | 0.198 | 0.629 | 0.622 | 2.183 | 2.418 | 1.423 | 9.927 | 15.214 | 3.341 | 1.978 |
Median | 0.615 | 0.590 | 0.450 | 2.165 | 1.152 | 0.414 | 9.545 | 13.803 | 1.275 | 0.826 |
St. Dev. | 0.692 | 0.424 | 0.703 | 1.702 | 2.496 | 2.185 | 5.689 | 10.544 | 5.877 | 3.606 |
2012 | ||||||||||
# | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Mean | 0.225 | 0.655 | 2.088 | 2.442 | 2.585 | 5.390 | 10.193 | 16.439 | 5.334 | 3.128 |
Median | 0.671 | 0.619 | 2.402 | 2.406 | 1.287 | 2.290 | 10.717 | 14.622 | 1.677 | 1.178 |
St. Dev. | 0.761 | 0.429 | 1.837 | 1.921 | 2.701 | 6.096 | 4.737 | 11.121 | 8.289 | 5.036 |
2013 | ||||||||||
# | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Mean | 0.279 | 0.680 | 6.314 | 2.825 | 2.698 | 16.766 | 11.305 | 18.785 | 9.221 | 5.701 |
Median | 0.764 | 0.725 | 3.465 | 2.803 | 1.519 | 7.909 | 12.372 | 14.957 | 5.915 | 3.288 |
St. Dev. | 0.837 | 0.426 | 7.139 | 2.136 | 2.780 | 23.127 | 4.922 | 14.830 | 12.346 | 7.673 |
2014 | ||||||||||
# | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Mean | 0.296 | 0.686 | 13.680 | 3.093 | 2.797 | 37.379 | 12.238 | 19.497 | 16.892 | 10.181 |
Median | 0.807 | 0.741 | 13.467 | 3.005 | 1.598 | 23.024 | 13.440 | 14.681 | 8.790 | 2.938 |
St. Dev. | 0.861 | 0.444 | 10.688 | 2.401 | 2.780 | 38.305 | 4.956 | 15.678 | 16.175 | 13.010 |
2015 | ||||||||||
# | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Mean | 0.329 | 0.693 | 21.790 | 3.309 | 2.951 | 63.064 | 12.876 | 20.309 | 23.351 | 12.005 |
Median | 0.856 | 0.758 | 20.026 | 3.199 | 1.674 | 50.233 | 14.857 | 15.341 | 18.243 | 9.790 |
St. Dev. | 0.919 | 0.455 | 14.348 | 2.512 | 2.965 | 50.909 | 4.242 | 15.932 | 16.845 | 8.405 |
2016 | ||||||||||
# | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Mean | 0.324 | 0.644 | 20.894 | 3.538 | 2.964 | 67.480 | 13.906 | 20.577 | 27.339 | 16.562 |
Median | 0.866 | 0.730 | 21.680 | 3.421 | 1.776 | 54.233 | 16.048 | 15.391 | 26.692 | 15.925 |
St. Dev. | 0.889 | 0.398 | 13.869 | 2.767 | 3.083 | 57.991 | 4.341 | 16.193 | 16.208 | 10.520 |
2017 | ||||||||||
# | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Mean | 0.364 | 0.676 | 33.365 | 3.909 | 3.092 | 136.336 | 14.404 | 20.658 | 47.271 | 24.453 |
Median | 0.935 | 0.729 | 32.981 | 3.535 | 1.811 | 120.933 | 16.262 | 15.366 | 55.773 | 25.943 |
St. Dev. | 0.943 | 0.483 | 19.813 | 3.040 | 3.076 | 125.299 | 5.217 | 16.316 | 28.149 | 15.040 |
Economies | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Average | Median | St. Dev. |
---|---|---|---|---|---|---|---|---|---|---|---|
BE | 0.6349 | 0.6127 | 0.6425 | 0.7667 | 0.7950 | 0.7909 | 0.8380 | 1.0000 | 0.7601 | 0.7788 | 0.1293 |
BF | 0.3938 | 0.4151 | 0.4827 | 0.5241 | 0.5791 | 0.6935 | 0.7854 | 0.9984 | 0.6090 | 0.5516 | 0.2063 |
CI | 0.5696 | 0.9284 | 0.7828 | 0.8162 | 0.9084 | 0.8615 | 0.9423 | 1.0000 | 0.8511 | 0.8850 | 0.1336 |
MA | 0.6391 | 0.6224 | 0.6338 | 0.6811 | 0.7155 | 0.8124 | 0.8255 | 0.9118 | 0.7302 | 0.6983 | 0.1073 |
NG | 0.1466 | 0.1595 | 0.1827 | 0.2893 | 0.3904 | 0.5483 | 0.3658 | 0.3741 | 0.3071 | 0.3276 | 0.1396 |
SEN | 0.8538 | 0.7949 | 0.7995 | 0.8042 | 0.9274 | 0.9095 | 0.8926 | 1.0000 | 0.8727 | 0.8732 | 0.0731 |
GB | 0.2877 | 0.3245 | 0.3990 | 0.6034 | 0.6178 | 0.6947 | 0.7107 | 0.7252 | 0.5454 | 0.6106 | 0.1802 |
TG | 0.8326 | 0.8380 | 0.9132 | 0.9425 | 0.9271 | 0.9629 | 1.0000 | 1.0000 | 0.9270 | 0.9348 | 0.0646 |
Mean | 0.5448 | 0.5869 | 0.6045 | 0.6784 | 0.7326 | 0.7842 | 0.7950 | 0.8762 | 0.7003 | 0.7747 | 0.2328 |
Median | 0.6023 | 0.6176 | 0.6381 | 0.7239 | 0.7553 | 0.8016 | 0.8318 | 0.9992 | |||
St. dev. | 0.2517 | 0.2688 | 0.2397 | 0.2046 | 0.1945 | 0.1343 | 0.1955 | 0.2244 |
Economies | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Average | Median | St. Dev. |
---|---|---|---|---|---|---|---|---|---|---|---|
BE | 0.6349 | 0.6127 | 0.6425 | 0.7667 | 0.7950 | 0.7909 | 0.8380 | 1.7327 | 0.8517 | 0.7788 | 0.3661 |
BF | 0.3938 | 0.4151 | 0.4827 | 0.5241 | 0.5791 | 0.6935 | 0.7854 | 0.9984 | 0.6090 | 0.5516 | 0.2063 |
CI | 0.5696 | 0.9284 | 0.7828 | 0.8162 | 0.9084 | 0.8615 | 0.9423 | 1.2995 | 0.8886 | 0.8850 | 0.2045 |
MA | 0.6391 | 0.6224 | 0.6338 | 0.6811 | 0.7155 | 0.8124 | 0.8255 | 0.9118 | 0.7302 | 0.6983 | 0.1073 |
NG | 0.1466 | 0.1595 | 0.1827 | 0.2893 | 0.3904 | 0.5483 | 0.3658 | 0.3741 | 0.3071 | 0.3276 | 0.1396 |
SEN | 0.8538 | 0.7949 | 0.7995 | 0.8042 | 0.9274 | 0.9095 | 0.8926 | 1.2930 | 0.9094 | 0.8732 | 0.1635 |
GB | 0.2877 | 0.3245 | 0.3990 | 0.6034 | 0.6178 | 0.6947 | 0.7107 | 0.7252 | 0.5454 | 0.6106 | 0.1802 |
TG | 0.8326 | 0.8380 | 0.9132 | 0.9425 | 0.9271 | 0.9629 | 1.1106 | 1.4387 | 0.9957 | 0.9348 | 0.1987 |
Mean | 0.5448 | 0.5869 | 0.6045 | 0.6784 | 0.7326 | 0.7842 | 0.8089 | 1.0967 | 0.7296 | 0.7747 | 0.2927 |
Median | 0.6023 | 0.6176 | 0.6381 | 0.7239 | 0.7553 | 0.8016 | 0.8318 | 1.1457 | |||
St. dev. | 0.2517 | 0.2688 | 0.2397 | 0.2046 | 0.1945 | 0.1343 | 0.2150 | 0.4318 |
Economies | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Average | Median | St. Dev. |
---|---|---|---|---|---|---|---|---|---|---|---|
BE | 0.4590 | 0.5023 | 0.5398 | 0.6269 | 0.6531 | 0.6769 | 0.7256 | 0.7836 | 0.6209 | 0.6400 | 0.1124 |
BF | 0.3035 | 0.3409 | 0.3726 | 0.4203 | 0.4682 | 0.5339 | 0.5599 | 0.5990 | 0.4498 | 0.4442 | 0.1082 |
CI | 0.3843 | 0.5087 | 0.4978 | 0.5461 | 0.5889 | 0.5985 | 0.6426 | 0.6995 | 0.5583 | 0.5675 | 0.0972 |
MA | 0.4585 | 0.4823 | 0.5094 | 0.5349 | 0.5701 | 0.6327 | 0.6141 | 0.6738 | 0.5595 | 0.5525 | 0.0763 |
NG | 0.1054 | 0.1213 | 0.1470 | 0.1905 | 0.2234 | 0.2624 | 0.2449 | 0.2261 | 0.1901 | 0.2070 | 0.0590 |
SEN | 0.5958 | 0.6274 | 0.6650 | 0.7264 | 0.8134 | 0.8260 | 0.7702 | 0.9707 | 0.7494 | 0.7483 | 0.1228 |
GB | 0.1764 | 0.1934 | 0.2322 | 0.3157 | 0.3391 | 0.3878 | 0.4151 | 0.4168 | 0.3096 | 0.3274 | 0.0978 |
TG | 0.6240 | 0.6408 | 0.6890 | 0.7497 | 0.7889 | 0.8361 | 0.8817 | 0.9401 | 0.7688 | 0.7693 | 0.1141 |
Mean | 0.3884 | 0.4271 | 0.4566 | 0.5138 | 0.5556 | 0.5943 | 0.6068 | 0.6637 | 0.5258 | 0.5429 | 0.2127 |
Median | 0.4214 | 0.4923 | 0.5036 | 0.5405 | 0.5795 | 0.6156 | 0.6283 | 0.6867 | |||
St. dev. | 0.1854 | 0.1915 | 0.1935 | 0.1955 | 0.2059 | 0.1989 | 0.2027 | 0.2516 |
Economies | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Average | Median | St. Dev. |
---|---|---|---|---|---|---|---|---|---|---|---|
BE | 0.4321 | 0.4708 | 0.5046 | 0.5862 | 0.6159 | 0.6494 | 0.7104 | 0.7945 | 0.5955 | 0.6010 | 0.1235 |
BF | 0.2849 | 0.3171 | 0.3488 | 0.3983 | 0.4448 | 0.5123 | 0.5403 | 0.6029 | 0.4312 | 0.4216 | 0.1137 |
CI | 0.3477 | 0.4756 | 0.4674 | 0.5169 | 0.5664 | 0.5732 | 0.6203 | 0.6856 | 0.5316 | 0.5416 | 0.1041 |
MA | 0.4251 | 0.4461 | 0.4706 | 0.4952 | 0.5381 | 0.6025 | 0.5889 | 0.6444 | 0.5264 | 0.5167 | 0.0798 |
NG | 0.0972 | 0.1118 | 0.1360 | 0.1788 | 0.2132 | 0.2529 | 0.2319 | 0.2127 | 0.1793 | 0.1958 | 0.0581 |
SEN | 0.5630 | 0.5881 | 0.6252 | 0.6898 | 0.7884 | 0.8057 | 0.7438 | 0.9518 | 0.7195 | 0.7168 | 0.1300 |
GB | 0.1594 | 0.1748 | 0.2092 | 0.2820 | 0.3050 | 0.3492 | 0.3752 | 0.3770 | 0.2790 | 0.2935 | 0.0883 |
TG | 0.5917 | 0.6069 | 0.6524 | 0.7093 | 0.7425 | 0.7964 | 0.8446 | 0.9268 | 0.7338 | 0.7259 | 0.1177 |
Mean | 0.3626 | 0.3989 | 0.4268 | 0.4821 | 0.5268 | 0.5677 | 0.5819 | 0.6495 | 0.4995 | 0.5146 | 0.2097 |
Median | 0.3864 | 0.4585 | 0.4690 | 0.5060 | 0.5523 | 0.5878 | 0.6046 | 0.6650 | |||
St. dev. | 0.1770 | 0.1819 | 0.1844 | 0.1875 | 0.1996 | 0.1952 | 0.2001 | 0.2557 |
Shapiro–Wilk | p-Value |
---|---|
0.458 | 0.000 *** |
Pairs | Shapiro–Wilk | p-Value |
---|---|---|
ISIF—AS | 0.921 | 0.000 *** |
ISIF—AS–SE | 0.955 | 0.02 ** |
ISIF—AS–CEB | 0.924 | 0.000 *** |
ISIF—AS–CEA | 0.927 | 0.000 *** |
AS—AS–SE | 0.371 | 0.000 *** |
AS—AS–CEB | 0.948 | 0.009 *** |
AS—AS–CEA | 0.974 | 0.186 |
AS–SE—AS–CEB | 0.754 | 0.000 *** |
AS–SE—AS–CEA | 0.790 | 0.000 *** |
AS–CEB—AS–CEA | 0.905 | 0.000 *** |
Measure | Correlation | ISIF | AS | AS–SE | AS–CEB | AS–CEA |
---|---|---|---|---|---|---|
AS | Pearson’s r | 0.713 *** (0.000) | ||||
Spearman’s rho | 0.757 *** (0.000) | |||||
Kendall’s Tau B | 0.569 *** (0.000) | |||||
AS-SE | Pearson’s r | 0.813 *** (0.000) | 0.926 *** (0.000) | |||
Spearman’s rho | 0.758 *** (0.000) | 1.000 *** (0.000) | ||||
Kendall’s Tau B | 0.571 *** (0.000) | 0.998 *** (0.000) | ||||
AS-CEB | Pearson’s r | 0.761 *** (0.000) | 0.925 *** (0.000) | 0.887 *** (0.000) | ||
Spearman’s rho | 0.793 *** (0.000) | 0.915 *** (0.000) | 0.914 *** (0.000) | |||
Kendall’s Tau B | 0.614 *** (0.000) | 0.766 *** (0.000) | 0.7666 *** (0.000) | |||
AS-CEA | Pearson’s r | 0.788 *** (0.000) | 0.922 *** (0.000) | 0.896 *** (0.000) | 0.999 *** (0.000) | |
Spearman’s rho | 0.809 *** (0.000) | 0.923 *** (0.000) | 0.923 *** (0.000) | 0.998 *** (0.000) | ||
Kendall’s Tau B | 0.634 *** (0.000) | 0.778 *** (0.000) | 0.775 *** (0.000) | 0.972 *** (0.000) |
Year | Sample Size | Average (Standard Deviation) | ||||
---|---|---|---|---|---|---|
AS 1 | ISIF 2 | AS–SE 3 | AS–CEB | AS–CEA | ||
2010 | 8 | 0.544 (0.252) | 0.188 (0.040) | 0.545 (0.252) | 0.388 (0.185) | 0.363 (0.177) |
2011 | 8 | 0.587 (0.269) | 0.200 (0.044) | 0.587 (0.269) | 0.427 (0.192) | 0.399 (0.182) |
2012 | 8 | 0.605 (0.240) | 0.211 (0.041) | 0.605 (0.240) | 0.457 (0.194) | 0.427 (0.184) |
2013 | 8 | 0.678 (0.204) | 0.239 (0.048) | 0.678 (0.205) | 0.514 (0.196) | 0.482 (0.187) |
2014 | 8 | 0.733 (0.194) | 0.270 (0.063) | 0.733 (0.194) | 0.556 (0.206) | 0.527 (0.200) |
2015 | 8 | 0.784 (0.134) | 0.301 (0.072) | 0.784 (0.134) | 0.594 (0.199) | 0.568 (0.195) |
2016 | 8 | 0.795 (0.195) | 0.310 (0.074) | 0.809 (0.215) | 0.607 (0.203) | 0.582 (0.200) |
2017 | 8 | 0.876 (0.224) | 0.371 (0.122) | 1.097 (0.432) | 0.664 (0.252) | 0.649 (0.256) |
Total | 64 | 0.700 (0.233) | 0.261 (0.088) | 0.730 (0.293) | 0.523 (0.213) | 0.500 (0.210) |
ANOVA—Test | d.o.f. | (7; 56) | (7; 56) | (7; 56) | (7; 56) | (7; 56) |
F-value | 2.282 | 6.961 | 3.786 | 1.776 | 1.994 | |
p-value | 0.041 ** | 0.000 *** | 0.002 *** | 0.110 | 0.072 * | |
Welch—test | d.o.f. | (7; 56) | (7; 56) | (7; 56) | (7; 56) | (7; 56) |
F-value | 1.819 | 5.584 | 2.121 | 1.189 | 1.639 | |
p-value | 0.130 | 0.000 *** | 0.081 * | 0.218 | 0.173 |
Economies | Sample Size | Average (Standard Deviation) | ||||
---|---|---|---|---|---|---|
AS | ISIF | AS–SE | AS–CEB | AS–CEA | ||
BE | 8 | 0.760 (0.129) | 0.305 (0.124) | 0.852 (0.366) | 0.621 (0.112) | 0.595 (0.123) |
BF | 8 | 0.609 (0.206) | 0.250 (0.056) | 0.609 (0.206) | 0.450 (0.108) | 0.431 (0.114) |
CI | 8 | 0.851 (0.134) | 0.304 (0.068) | 0.889 (0.204) | 0.558 (0.097) | 0.532 (0.104) |
MA | 8 | 0.730 (0.107) | 0.253 (0.066) | 0.730 (0.107) | 0.559 (0.076) | 0.526 (0.080) |
NG | 8 | 0.307 (0.140) | 0.199 (0.045) | 0.307 (0.140) | 0.190 (0.059) | 0.179 (0.058) |
SEN | 8 | 0.808 (0.207) | 0.325 (0.101) | 0.909 (0.163) | 0.749 (0.123) | 0.719 (0.130) |
GB | 8 | 0.582 (0.159) | 0.172 (0.017) | 0.545 (0.180) | 0.310 (0.098) | 0.279 (0.088) |
TG | 8 | 0.927 (0.065) | 0.264 (0.078) | 0.996 (0.199) | 0.769 (0.114) | 0.734 (1.30) |
Total | 64 | 0.700 (0.233) | 0.261 (0.088) | 0.730 (0.293) | 0.523 (0.213) | 0.500 (0.210) |
ANOVA—Test | d.o.f. | (7; 56) | (7; 56) | (7; 56) | (7; 56) | (7; 56) |
F-value | 17.988 *** | 5.210 *** | 9.727 *** | 32.325 *** | 28.292 *** | |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Welch—test | d.o.f. | (7; 56) | (7; 56) | (7; 56) | (7; 56) | (7; 56) |
F-value | 20.382 *** | 11.062 *** | 13.472 *** | 39.930 *** | 36.197 *** | |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Country | Measure | ||||
---|---|---|---|---|---|
ISIF | AS | AS-SE | AS-CEB | AS-CEA | |
BE | 3 | 4 | 4 | 3 | 3 |
BF | 4 | 7 | 7 | 6 | 6 |
CI | 2 | 2 | 2 | 4 | 4 |
MA | 6 | 5 | 5 | 5 | 5 |
NG | 7 | 8 | 8 | 8 | 8 |
SEN | 1 | 3 | 3 | 2 | 2 |
GB | 8 | 6 | 6 | 7 | 7 |
TG | 4 | 1 | 1 | 1 | 1 |
Country | Measure | ||||
---|---|---|---|---|---|
ISIF | AS | AS-SE | AS-CEB | AS-CEA | |
BE | 1 | 1 | 1 | 3 | 3 |
BF | 5 | 5 | 5 | 6 | 6 |
CI | 4 | 1 | 3 | 4 | 4 |
MA | 6 | 6 | 6 | 5 | 5 |
NG | 7 | 8 | 8 | 8 | 8 |
SEN | 2 | 1 | 4 | 1 | 1 |
GB | 8 | 7 | 7 | 7 | 7 |
TG | 3 | 1 | 2 | 2 | 2 |
DMU | Score | Benchmark (Coefficient) | PDB | PDM | PDME | PGB | PGM | PGME | UBA | UMA | UMEAO | UMEAA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BF2017 | 99.84% | CI2017 (0.6095) BE2017 (0.0581) SEN2017 (0.2172) TG2017 (0.1137) | 0.679 | 0.649 | 21.463 | 2.573 | 2.46 | 81.358 | 16.219 | 18.925 | 70.651 | 38.516 |
BF2017-target | 1.212 | 0.649 | 37.305 | 6.110 | 3.402 | 187.560 | 17.140 | 18.928 | 70.655 | 38.518 | ||
MA2017 | 91.18% | BE2017 (0.3870) SEN2017 (0.5248) | 0.98 | 0.809 | 47.883 | 0.76 | 0.628 | 37.16 | 13.323 | 11.807 | 47.071 | 19.588 |
MA2017-target | 0.98 | 1.1438 | 47.8846 | 4.6935 | 5.7629 | 237.8540 | 15.7912 | 29.0880 | 47.4854 | 26.4253 | ||
NG2017 | 37.41% | BE2017 (0.2521) SEN2017 (0.1220) | 0.364 | 0.137 | 21.991 | 0.278 | 0.105 | 16.791 | 3.897 | 10.623 | 6.548 | 3.343 |
NG2017-target | 0.364 | 0.4021 | 21.9934 | 1.8201 | 2.2071 | 113.4606 | 6.3434 | 12.7406 | 16.7574 | 11.2996 | ||
GB2017 | 72.52% | SEN2017 (0.7252) | 0.905 | 0.185 | 0.785 | 2.298 | 0.471 | 1.993 | 10.4 | 1.135 | 7.98 | 4.571 |
GB2017-target | 0.905 | 1.1313 | 30.3438 | 4.0814 | 5.1025 | 136.8249 | 13.0065 | 20.4760 | 46.7565 | 19.5079 |
DMU | PDB | PDM | PDME | PGB | PGM | PGME | UBA | UMA | UMEAO | UMEAA |
---|---|---|---|---|---|---|---|---|---|---|
Ivory Coast | ||||||||||
CI2010 | 0.8906 | 0.1094 | ||||||||
CI2011 | 1 | |||||||||
CI2012 | 1 | |||||||||
CI2013 | 0.7722 | 0.2278 | ||||||||
CI2014 | 0.6514 | 0.3486 | ||||||||
CI2015 | 0.8607 | 0.1089 | 0.0304 | |||||||
CI2016 | 0.717 | 0.283 | ||||||||
CI2017* | 0.1423 | 0.0882 | 0.0606 | 0.1685 | 0.5404 | |||||
Benin | ||||||||||
BE2010 | 1 | |||||||||
BE2011 | 0.3152 | 0.4351 | 0.2497 | |||||||
BE2012 | 0.3334 | 0.4355 | 0.2311 | |||||||
BE2013 | 0.315 | 0.4369 | 0.2482 | |||||||
BE2014 | 0.3056 | 0.4459 | 0.2485 | |||||||
BE2015 | 0.3087 | 0.4385 | 0.2528 | |||||||
BE2016 | 0.316 | 0.2146 | 0.4694 | |||||||
BE2017* | 0.5193 | 0.4807 | ||||||||
Burkina Faso | ||||||||||
BF2010 | 0.4063 | 0.4052 | 0.1885 | |||||||
BF2011 | 0.2341 | 0.7659 | ||||||||
BF2012 | 0.1955 | 0.8045 | ||||||||
BF2013 | 0.2228 | 0.7772 | ||||||||
BF2014 | 0.2103 | 0.7897 | ||||||||
BF2015 | 0.1837 | 0.8163 | ||||||||
BF2016 | 1 | |||||||||
BF2017 | 0.1157 | 0.1213 | 0.0447 | 0.7183 | ||||||
Mali | ||||||||||
MA2010 | 1 | |||||||||
MA2011 | 1 | |||||||||
MA2012 | 1 | |||||||||
MA2013 | 1 | |||||||||
MA2014 | 1 | |||||||||
MA2015 | 0.6203 | 0.3797 | ||||||||
MA2016 | 0.5602 | 0.4398 | ||||||||
MA2017 | 0.5578 | 0.4422 | ||||||||
Niger | ||||||||||
NG2010 | 0.6371 | 0.3629 | ||||||||
NG2011 | 0.9726 | 0.0274 | ||||||||
NG2012 | 0.9649 | 0.0351 | ||||||||
NG2013 | 0.5005 | 0.4995 | ||||||||
NG2014 | 1 | |||||||||
NG2015 | 1 | |||||||||
NG2016 | 0.4597 | 0.5403 | ||||||||
NG2017 | 0.505 | 0.495 | ||||||||
Senegal | ||||||||||
SEN2010 | 1 | |||||||||
SEN2011 | 1 | |||||||||
SEN2012 | 0.745 | 0.255 | ||||||||
SEN2013 | 0.4428 | 0.3976 | 0.1596 | |||||||
SEN2014 | 0.282 | 0.718 | ||||||||
SEN2015 | 0.4745 | 0.2123 | 0.3132 | |||||||
SEN2016 | 0.0001 | 0.1926 | 0.1338 | 0.1606 | 0.5129 | |||||
SEN2017* | 0.6789 | 0.3211 | ||||||||
Guinea-Bissau | ||||||||||
GB2010 | 1 | |||||||||
GB2011 | 1 | |||||||||
GB2012 | 1 | |||||||||
GB2013 | 1 | |||||||||
GB2014 | 1 | |||||||||
GB2015 | 1 | |||||||||
GB2016 | 1 | |||||||||
GB2017 | 1 | |||||||||
Togo | ||||||||||
TG2010 | 0.2056 | 0.2681 | 0.5263 | |||||||
TG2011 | 0.2043 | 0.2786 | 0.5171 | |||||||
TG2012 | 0.4051 | 0.5949 | ||||||||
TG2013 | 0.3983 | 0.6017 | ||||||||
TG2014 | 0.3335 | 0.4173 | 0.2492 | |||||||
TG2015 | 0.3433 | 0.4045 | 0.2521 | |||||||
TG2016* | 0.9524 | 0.0476 | ||||||||
TG2017* | 0.5472 | 0.1991 | 0.0579 | 0.1958 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takouda, P.M.; Dia, M.; Ouattara, A. Financial Inclusion in West African Economic and Monetary Union’s Economies: Performance Analysis Using Data Envelopment Analysis. J. Risk Financial Manag. 2022, 15, 605. https://doi.org/10.3390/jrfm15120605
Takouda PM, Dia M, Ouattara A. Financial Inclusion in West African Economic and Monetary Union’s Economies: Performance Analysis Using Data Envelopment Analysis. Journal of Risk and Financial Management. 2022; 15(12):605. https://doi.org/10.3390/jrfm15120605
Chicago/Turabian StyleTakouda, Pawoumodom Matthias, Mohamed Dia, and Alassane Ouattara. 2022. "Financial Inclusion in West African Economic and Monetary Union’s Economies: Performance Analysis Using Data Envelopment Analysis" Journal of Risk and Financial Management 15, no. 12: 605. https://doi.org/10.3390/jrfm15120605
APA StyleTakouda, P. M., Dia, M., & Ouattara, A. (2022). Financial Inclusion in West African Economic and Monetary Union’s Economies: Performance Analysis Using Data Envelopment Analysis. Journal of Risk and Financial Management, 15(12), 605. https://doi.org/10.3390/jrfm15120605