Multiple Neighborhood Cellular Automata as a Mechanism for Creating an AGI on a Blockchain
Abstract
:1. Introduction
- In Section 2.1 we approach the definitions of identity and consciousness in humans and how these properties emerge. We also present a summary of the research in current literature on nerves, signal propagation in the brain, and neuromorphic computing (Section 2.2);
- In Section 2.3 we explore a single-cell organism as computational unit, and we present its analogy with a Random Forest Decision graph. We then investigate the assessment of the brain and the role of the Mandala Network as the most prominent topology for fast signal propagation between nodes (Section 2.4);
- In Section 3 we present a novel definition of agents and AI as Analysis of Information (Section 3.1). We also present the probabilistic and deterministic nature of computation in the brain and how it perceives reality (Section 3.2);
- In Section 3.3 we explore the usage of Turing Complete Cellular Automata as agents and how they function in collaboration towards constructing an AGI within a blockchain network topology;
- In Section 4 we discuss the idea of blockchain as a medium of storage for an AGI and real-world Big Data. We also explore the merits it provides versus isolated (i.e., non-shared) systems. We present as a proof of concept the creation of a perceptron in sCrypt language (Section 4.1). We also address the problem of scalability and current technological advancements (Section 4.2);
- In Section 5 we discuss the limitations, concerns, and ethics involved in the role of such a computational entity towards the advancement of humanity and the incentives for creating one.
- In Section 6 we present the conclusions of our research.
2. Materials and Methods for AI, a Review of Current Approaches
2.1. Approaching Intelligence and Consciousness
2.2. The Neuron as the “Computational Element” of the Brain
2.3. The Intelligence of a Single-Cell Organism
2.4. The Network of the Mind
3. Novel Approaches for Constructing an Artificial Brain
3.1. A New Definition of Artificial Intelligence and Agents
3.2. Deterministic and Probabilistic Computation
3.3. The Game of Life—Turing Complete Cellular Automata
4. Results
4.1. AGI on the Blockchain
4.2. Scaling Possibilities on the Blockchain
5. Discussion
5.1. Concerns and Limitations of Machine Learning
5.2. Consequences, Ethics, Accountability, and Equal Rights to Use
5.3. Incentives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
// Perceptron’s internal state includes 2 inputs: height & weight struct State { int heightWeight; // 1st weight means weight in KGs int weightWeight; int bias; } struct Input { // in inches int height; // in KGs int weight; } // correct classification of gender: 0 means female, 1 male type Output = int; /* * A simple perceptron classifying gender based on height & weight */ contract Perceptron { // sample size static const int N = 10; // learning rate static const int LR = 1; // training data set // inputs Input[N] inputs; // outputs Output[N] outputs; // train the perceptron function train(State s): State { loop (N): i { int prediction = this.predict(s, i); int delta = this.outputs[i] - prediction; s = this.adjust(s, delta); } return s; } // prediction for the i-th input function predict(State s, int i): int { int sum = s.bias; sum += this.inputs[i].height * s.heightWeight + this.inputs[i].weight * s.weightWeight; return stepActivate(sum); } // learn internal state function adjust(State s, int delta): State { int scaledDelta = delta * LR; loop (N): i { s.heightWeight += this.inputs[i].height * scaledDelta; s.weightWeight += this.inputs[i].weight * scaledDelta; } s.bias += scaledDelta; return s; } // binary step function static function stepActivate(int sum): int { return (sum >= 0 ? 1: 0); } |
contract Perceptron { // sample size static const int N = 100,000; // training dataset // inputs Input[N] inputs; // outputs Output[N] outputs; // prediction for the i-th input function predict(int heightWeight, int weightWeight, int bias, int i): int { int sum = bias; sum += this.inputs[i].height * heightWeight + this.inputs[i].weight * weightWeight; return stepActivate(sum); } // whoever can find the correct weights and bias for the training dataset can take the bounty public function main(int heightWeight, int weightWeight, int bias) { // every dataset must match loop (N): i { int prediction = this.predict(heightWeight, weightWeight, bias, i); // prediction must match actual require(this.outputs[i] == prediction); } require(true); } // binary step function static function stepActivate(int sum): int { return (sum >= 0 ? 1: 0); } } |
import “util.scrypt”; // Conway Game Of Life on a board of N * N contract GameOfLife { static const int N = 5; // effctively we play on a grid of (N + 2) * (N + 2) without handling boundary cells static int BOARD_SIZE = GameOfLife.N + 2; static bytes LIVE = b’01’; static bytes DEAD = b’00’; static const int LOOP_NEIGHBORS = 3; public function play(int amount, SigHashPreimage txPreimage) { require(Tx.checkPreimage(txPreimage)); bytes scriptCode = Util.scriptCode(txPreimage); int scriptLen = len(scriptCode); int BOARDLEN = GameOfLife.BOARD_SIZE * GameOfLife.BOARD_SIZE; int boardStart = scriptLen - BOARDLEN; bytes oldBoard = scriptCode[boardStart: ]; // make the move bytes newBoard = this.evolve(oldBoard); // update state: next turn & next board bytes scriptCode_ = scriptCode[: scriptLen - BOARDLEN] + newBoard; bytes output = Util.buildOutput(scriptCode_, amount); bytes outputs = output; require(hash256(outputs) == Util.hashOutputs(txPreimage)); } function evolve(bytes oldBoard): bytes { bytes newBoard = oldBoard; int i = 1; loop (GameOfLife.N) { int j = 1; loop (GameOfLife.N) { bytes nextState = this.next(oldBoard, i, j); newBoard = Util.setElemAt(newBoard, this.index(i, j), nextState); j++; } i++; } return newBoard; } function next(bytes oldBoard, int row, int col): bytes { // number of neighbors alive int alive = 0; int i = - 1; loop (LOOP_NEIGHBORS) { int j = - 1; loop (LOOP_NEIGHBORS) { if (!(i == 0 && j == 0)) { if (Util.getElemAt(oldBoard, this.index(row + i, col + j))) { alive++; } } j++; } i++; } bytes oldState = Util.getElemAt(oldBoard, this.index(row, col)); /* rule 1. Any live cell with two or three live neighbours survives. 2. Any dead cell with three live neighbours becomes a live cell. 3. All other live cells die in the next generation. Similarly, all other dead cells stay dead. */ return(alive == 3 || alive == 2 && oldState == LIVE) ? LIVE: DEAD; } function index(int i, int j): int { return i * GameOfLife.BOARD_SIZE + j; } } |
References
- Benayoun, Mark, Jack D. Cowan, Wim van Drongelen, and Edward Wallace. 2010. Avalanches in a stochastic model of spiking neurons. PLoS Computational Biology 6: e1000846. [Google Scholar] [CrossRef]
- Birhane, Abeba. 2021. Algorithmic injustice: A relational ethics approach. Patterns 2: 100205. [Google Scholar] [CrossRef]
- Blade Runner. 1982. Available online: https://www.imdb.com/title/tt00083658/ (accessed on 29 March 2021).
- Bradbury, Philip. 2021. Life in Life. Available online: https://www.youtube.com/watch?v=xP5-iIeKXE8 (accessed on 25 May 2021).
- Bruchhage, Muriel M. K., Giang-Chau Ngo, Nora Schneider, Viren D’Sa, and Sean C. L. Deoni. 2020. Functional connectivity correlates of infant and early childhood cognitive development. Brain Structure and Function 225: 669–81. [Google Scholar] [CrossRef]
- Carvalho, Tina. 2015. Nerve Ending. Available online: https://www.flickr.com/photos/nihgov/23595679440 (accessed on 25 June 2021).
- Cassin, Brian. 2021. Optimize Data Analytics in Capital Markets with Time-Series Databases|Amazon Web Services. Available online: https://aws.amazon.com/blogs/awsmarketplace/optimize-data-analytics-in-capital-markets-with-time-series-databases/ (accessed on 25 May 2021).
- Chalmers, David J. 1995. Facing up to the Problem of Consciousness. Journal of Consciousness Studies 2: 200–19. [Google Scholar]
- Clote, Peter. 1999. Preface. Studies in Logic and the Foundations of Mathematics 153: 5–7. [Google Scholar] [CrossRef]
- Clune, Jeff. 2020. AI-GAs: AI-generating algorithms, an alternate paradigm for producing general artificial intelligence. arXiv arXiv:1905.10985. [Google Scholar]
- Collins, Christine E., David C. Airey, Nicole A. Young, Duncan B. Leitch, and Jon H. Kaas. 2010. Neuron densities vary across and within cortical areas in primates. Proceedings of the National Academy of Sciences USA 107: 15927–32. [Google Scholar] [CrossRef] [PubMed]
- Collins, Nathan. 2018. How the Human Mind Shapes Reality. Stanford News. June 11. Available online: https://news.stanford.edu/2018/06/11/four-ways-human-mind-shapes-reality/ (accessed on 17 June 2021).
- Corlett, Philip R. 2017. I Predict, Therefore I Am: Perturbed Predictive Coding Under Ketamine and in Schizophrenia. Biological Psychiatry 81: 465–66. [Google Scholar] [CrossRef] [PubMed]
- Crowder, James A., and Shelli Fries. 2011. Metacognition and Metamemory Concepts for AI Systems. Paper presented at the International Conference on Artificial Intelligence, Cambridge, UK, December 13–15; Available online: https://www.researchgate.net/publication/235219069_Metacognition_and_Metamemory_Concepts_for_AI_Systems (accessed on 16 June 2021).
- Davis, Martin. 2004. The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems, and Computable Functions. Mineola: Dover Publication. [Google Scholar]
- DeWeese, Michael R., Michael Wehr, and Anthony M. Zador. 2003. Binary Spiking in Auditory Cortex. Journal of Neuroscience 23: 7940–49. [Google Scholar] [CrossRef]
- Dietterich, Thomas, and Eun Bae Kong. 1995. Machine Learning Bias, Statistical Bias, and Statistical Variance of Decision Tree Algorithms. Technical Report. Corvallis: Oregon State University. [Google Scholar]
- Eriksson, Peter S., Ekaterina Perfilieva, Thomas Björk-Eriksson, Ann-Marie Alborn, Claes Nordborg, Daniel A. Peterson, and Fred H. Gage. 1998. Neurogenesis in the adult human hippocampus. Nature Medicine 4: 1313–17. [Google Scholar] [CrossRef]
- Fraile, Alberto, Emmanouil Panagiotakis, Nicholas Christakis, and Luis Acedo. 2018. Cellular Automata and Artificial Brain Dynamics. Mathematical and Computational Applications 23: 75. [Google Scholar] [CrossRef]
- Froschouer, Christoph. 1560. Marcus Tullius Cicero, De Officiis. Wikipedia—De Officiis. Available online: https://en.wikipedia.org/wiki/De_Officiis (accessed on 25 May 2021).
- Giddon, Albert, Timothy Adam Zolnik, Pawel Fidzinski, Felix Bolduan, Athanasia Papoutsi, Panayiota Poirazi, Martin Holtkamp, Imre Vida, and Matthew Evan Larkum. 2020. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 367: 83–87. [Google Scholar] [CrossRef] [PubMed]
- Gödel, Kurt. 1931. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik 38: 173–98. [Google Scholar] [CrossRef]
- Gödel, Kurt. 1972. Some remarks on the undecidability results. The Journal of Symbolic Logic 56: 1085–89. [Google Scholar]
- Gomez-Marin, Alex. 2019. A clash of Umwelts: Anthropomorphism in behavioral neuroscience. Behavioral and Brain Sciences 42: E229. [Google Scholar] [CrossRef]
- Grigg, Ian. 2021. Identity Cycle, Part III. The Valley: Peer For Peer Foundation, p. 81. ISBN 978–918-0-0121-7. [Google Scholar]
- Gyekye, Kwame. 2011. African Ethics. The Stanford Encyclopedia of Philosophy. Stanford: Metaphysics Research Lab, Stanford University. [Google Scholar]
- Hagmann, Patric, Leila Cammoun, Xavier Gigandet, Reto Meuli, Christopher J. Honey, Van J. Wedeen, and Olaf Sporns. 2008. Mapping the structural core of the human cerebral cortex. PLoS Biology 6: e159. [Google Scholar] [CrossRef]
- Harutyunyan, Anna. 2020. What Is an Agent? Available online: http://anna.harutyunyan.net/wp-content/uploads/2020/09/What_is_an_agent.pdf (accessed on 17 March 2021).
- Heikkila, Melissa. 2021. Europe Eyes Strict Rules for Artificial Intelligence. Available online: https://www.politico.eu/article/europe-strict-rules-artificial-intelligence/ (accessed on 25 May 2021).
- Hofstadter, Douglas R. 1979. Gödel, Escher, Bach: An Eternal Golden Braid. New York: Basic Books. ISBN 0465026567. [Google Scholar]
- Izhikevich, Eugene M., John H. Conway, and Anil Seth. 2015. Game of Life. Scholarpedia 10: 1816. [Google Scholar] [CrossRef]
- Kraakman, Ben. 2021. Understanding Multiple Neighborhood Cellular Automata. Available online: https://slackermanz.com/understanding-multiple-neighborhood-cellular-automata/ (accessed on 22 May 2021).
- Lewis, Charlton T., and Charles Short. 1999. A Latin Dictionary, Conscĭentĭa. Lemma. Available online: http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0059:entry=conscientia (accessed on 12 March 2021).
- Liu, Xiaohui. 2021a. AI on Bitcoin. Perceptron as an Example|by sCrypt|May, 2021|Medium. Available online: https://xiaohuiliu.medium.com/ai-on-bitcoin-96bbc97a62b9 (accessed on 23 May 2021).
- Liu, Xiaohui. 2021b. How to Train AI Using Bitcoin. Available online: https://xiaohuiliu.medium.com/how-to-train-ai-using-bitcoin-3a20ef620143 (accessed on 23 May 2021).
- Liu, Xiaohui. 2021c. Inter-Contract Call on Bitcoin. Available online: https://xiaohuiliu.medium.com/inter-contract-call-on-bitcoin-f51869c08be (accessed on 12 July 2021).
- Liu, Xiaohui. 2021d. Matrix Calculations on sCrypt. Available online: https://github.com/sCrypt-Inc/boilerplate/commit/88068a40262c615fe5543596b66a6b13358a7d1e (accessed on 25 May 2021).
- Liu, Xiaohui. 2021e. Play Conway’s Game of Life on Bitcoin Forever. Available online: https://xiaohuiliu.medium.com/play-conways-game-of-life-on-bitcoin-forever-47c6fb7ed682 (accessed on 25 May 2021).
- Madani, Ali, Ben Krause, Eric R. Greene, Subu Subramanian, Benjamin P. Mohr, James M. Holton, Jose Luis Olmos Jr., Caiming Xiong, Zachary Z. Sun, Richard Socher, and et al. 2021. Deep neural language modeling enables functional protein generation across families. bioRxiv. [Google Scholar] [CrossRef]
- Mbiti, John S. 1990. African Religions and Philosophy. New Hampshire: Heinemann Educational Books Inc., p. 66. ISBN 0435895915. First published 1975. [Google Scholar]
- Modha, Dharmendra S., and Raghavendra Singh. 2010. Network architecture of the long-distance pathways in the macaque brain. Proceedings of the National Academy of Sciences USA 107: 13485–90. [Google Scholar] [CrossRef]
- Moyer, Phil. 2008. Photo Courtesy CDC/Janice Haney Carr. Available online: https://phil.cdc.gov/PHIL_Images/10071/10071_lores.jpg (accessed on 22 May 2021).
- Nakagaki, Toshiyuki, Hiroyasu Yamada, and Ágota Tóth. 2000. Maze-solving by an amoeboid organism. Nature 407: 470. [Google Scholar] [CrossRef]
- Nunomura, Akihiko, George Perry, Gjumrakch Aliev, Keisuke Hirai, Atsushi Takeda, Elizabeth K. Balraj, Paul Jones, Hossein Ghanbari, Takafumi Wataya, Shun Shimohama, and et al. 2001. Oxidative damage is the earliest event of Alzheimer’s disease. The Journal of Neuropathology & Experimental Neurology 6: 759–67. [Google Scholar]
- Penrose, Roger. 1991. The emperor’s new mind. RSA Journal 139: 506–14. [Google Scholar]
- Penrose, Roger. 1994. Shadows of the Mind. Oxford: Oxford University Press, vol. 4. [Google Scholar]
- Perl, Teri. 1979. The Ladies Diary or Woman’s Almanac, 1704–1841. Historica Mathematica 6: 36–53. [Google Scholar] [CrossRef]
- Porras, Eva R., and Guadalupe M. Sánchez-Escribano. 2022. Decentralized Blockchain for Autobiographical Memory in Cognitive Robotics. AI, Computer Science and Robotics Technology, 1–19. [Google Scholar] [CrossRef]
- Poundstone, William. 1985. The Recursive Universe: Cosmic Complexity and the Limits of Scientific Knowledge. Mineola: Dover Publication, p. 132, ISBN-13 9780486490984. [Google Scholar]
- Reed, Scott, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, and et al. 2022. A generalist Agent. arXiv arXiv:2205.06175. [Google Scholar]
- Resnick, Brian. 2020. Reality Is Constructed By Your Brain. Stanford Neuroscience. June 22. Available online: https://neuroscience.stanford.edu/news/reality-constructed-your-brain-here-s-what-means-and-why-it-matters (accessed on 17 June 2021).
- Sampaio, Filho Cesar, André Moreira, Roberto F. S. Andrade, Hans J. Herrmann, and José S. Andrade Jr. 2015. Mandala Networks: Ultra-small-world and highly sparse graphs. Scientific Reports 5: 9082. [Google Scholar] [CrossRef] [PubMed]
- Scikit 0.24.2. 2021. Plotting Learning Curves—Scikit-Learn 0.24.2 Documentation. Available online: https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html (accessed on 25 July 2021).
- Sgantzos, Konstantinos, and Ian Grigg. 2019. Artificial Intelligence Implementations on the Blockchain. Use Cases and Future Applications. Future Internet 11: 170. [Google Scholar] [CrossRef]
- Shadders, Steve. 2021. How Do You Solve a Problem Like Bitcoin Scaling? Available online: https://www.cityam.com/how-do-you-solve-a-problem-like-bitcoin-scaling/ (accessed on 25 July 2021).
- Shaabana, Ala. 2021. The Future of AI Is Decentralized. Available online: https://towardsdatascience.com/the-future-of-ai-is-decentralized-848d4931a29a (accessed on 26 May 2021).
- Smith Basset, Danielle, and Ed Bullmore. 2006. Small-World Brain Networks. The Neuroscientist 12: 512–23. [Google Scholar] [CrossRef]
- Sporns, O. 2010. Connectome. Scholarpedia. Available online: http://www.scholarpedia.org/article/Connectome (accessed on 31 July 2021).
- Starr, Michelle. 2021. Slime Mold Doesn’t Have a Brain, but It Can ‘Remember’ Where to Find Food. Available online: https://www.sciencealert.com/slime-mold-seems-to-remember-where-it-previously-found-food (accessed on 22 May 2021).
- The Bitcoin SV Small World Network Graph. 2021. Available online: https://viz.cash/ (accessed on 15 May 2021).
- The Bitcoin SV Test Network. 2021. Statistics: Bitcoin Scaling. Available online: https://bitcoinscaling.io/stats (accessed on 25 July 2021).
- The Bitcoin SV Wiki: “Mandala Network”. 2021. Available online: https://wiki.bitcoinsv.io/index.php/Mandala_Network (accessed on 24 July 2021).
- Turing, Alan M. 1950. Computing Machinery and Intelligence. Mind, New Series; Oxford: University Press, vol. 59, No. 236. pp. 433–60. [Google Scholar]
- Venkata, Jagannath. 2020. Random Forest Template for TIBCO Spotfire. Available online: https://web.archive.org/web/20210725053422/https:/community.tibco.com/wiki/random-forest-template-tibco-spotfire (accessed on 4 August 2022).
- Vishwa, Raj, R. Karthikeyan, R. Rohith, and A. Sabaresh. 2020. Current Research and Future Prospects of Neuromorphic Computing in Artificial Intelligence. IOP Conference Series: Materials Science and Engineering 912: 062029. [Google Scholar] [CrossRef]
- Voss, Patrice, Maryse E. Thomas, J. Miguel Cisneros-Franco, and Étienne de Villers-Sidani. 2017. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Frontiers in Psychology 8: 1657. [Google Scholar] [CrossRef]
- Wiggers, Kyle. 2020. OpenAI’s Massive GPT-3 Model Is Impressive, but Size Isn’t Everything. Available online: https://venturebeat.com/2020/06/01/ai-machine-learning-openai-gpt-3-size-isnt-everything/ (accessed on 26 May 2021).
- Wolfram, Stephen. 2002. A New Kind of Science. Champaign: Wolfram Media, pp. 55, 1555, ISBN-13 978-1579550080. Available online: https://www.wolframscience.com/nks/ (accessed on 4 August 2022).
- Woods, Cathal. 2010. Glaukon’s Challenge (Republic 2). Available online: https://ssrn.com/abstract=1661519 (accessed on 4 August 2022).
- Wright, Craig S. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: https://ssrn.com/abstract=3440802 (accessed on 4 August 2022).
- Wright, Craig S. 2021. Philosophy of Cognitive Science and Classical Computation. Available online: https://ssrn.com/abstract=3995206 (accessed on 4 August 2022).
- Zelazo, Philip D., Hong Helena Gao, and Rebecca Todd. 2007. The development of consciousness. In The Cambridge Handbook of Consciousness. Edited by P. D. Zelazo, M. Moscovitch and E. Thompson. Cambridge: Cambridge University Press, pp. 405–32. [Google Scholar] [CrossRef]
- Zhu, Liping, Song-Ju Kim, Masahiko Hara, and Masashi Aono. 2018. Remarkable problem-solving ability of unicellular amoeboid organism and its mechanism. Royal Society Open Science 5: 180396. [Google Scholar] [CrossRef]
- Zucconi, Alan. 2021. Let’s Build a Computer in Conway’s Game of Life. Available online: https://www.youtube.com/watch?v=Kk2MH9O4pXY (accessed on 22 May 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sgantzos, K.; Grigg, I.; Al Hemairy, M. Multiple Neighborhood Cellular Automata as a Mechanism for Creating an AGI on a Blockchain. J. Risk Financial Manag. 2022, 15, 360. https://doi.org/10.3390/jrfm15080360
Sgantzos K, Grigg I, Al Hemairy M. Multiple Neighborhood Cellular Automata as a Mechanism for Creating an AGI on a Blockchain. Journal of Risk and Financial Management. 2022; 15(8):360. https://doi.org/10.3390/jrfm15080360
Chicago/Turabian StyleSgantzos, Konstantinos, Ian Grigg, and Mohamed Al Hemairy. 2022. "Multiple Neighborhood Cellular Automata as a Mechanism for Creating an AGI on a Blockchain" Journal of Risk and Financial Management 15, no. 8: 360. https://doi.org/10.3390/jrfm15080360
APA StyleSgantzos, K., Grigg, I., & Al Hemairy, M. (2022). Multiple Neighborhood Cellular Automata as a Mechanism for Creating an AGI on a Blockchain. Journal of Risk and Financial Management, 15(8), 360. https://doi.org/10.3390/jrfm15080360