COVID-19 Pandemic and Indices Volatility: Evidence from GARCH Models
Abstract
:1. Introduction
2. Review of Literature
3. Data and Methodology
3.1. Data
3.2. Tools Used for Analysis
- Descriptive Statistics (to ascertain the normal distribution of sample indices’ returns)
- Unit Root Test (to examine the stationarity of indices)
- GARCH Model: The financial time series indicate a period of low volatility, followed by a period of high volatility, and this phenomenon is known as volatility clustering. The most frequent models used to model the volatility of economic and financial time series are ARCH and GARCH (Bollerslev 1986).
3.2.1. GARCH Model
3.2.2. GJR-GARCH Model
3.2.3. EGARCH Model
4. Data Analysis and Interpretation
- Descriptive statistics for the sample indices under pre-, during-, and post-COVID-19 periods.
- ADF test for the sample indices under pre-, during-, and post-COVID-19 periods.
- Volatility test for the sample indices under pre-, during-, and post-COVID-19 periods.
4.1. Descriptive Statistics for the Sample Indices before, during, and after COVID-19
4.2. ADF Test for the Sample Indices before, during, and after COVID-19
4.3. Volatility Test for the Sample Indices before COVID-19, during COVID-19, and after COVID-19
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, Mohsin, Mudeer Ahmed Khattak, Shabeer Khan, and Noureen Khan. 2023. COVID-19 and the ASEAN stock market: A wavelet analysis of conventional and Islamic equity indices. Studies in Economics and Finance 40: 687–707. [Google Scholar] [CrossRef]
- Arumugam, Dharmaraj Anbu, and Karthik Soundararajan. 2013. Stock Market Seasonality—Time-Varying Volatility in The Emerging Indian Stock Market. IOSR Journal of Business and Management (IOSR-JBM) 9: 87–103. [Google Scholar] [CrossRef]
- Bello, Umar, Umaru Zubairu, and Umar Abbas Ibrahim. 2022. Impact of Capital Market Performance on Economic Growth in Developing Nations: A Qualitative Approach. Journal of Service Science and Management 15: 340–49. [Google Scholar] [CrossRef]
- Binder, John. 1998. The event study methodology since 1969. Review of quantitative Finance and Accounting 11: 111–37. [Google Scholar] [CrossRef]
- Bollerslev, Tim. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31: 307–27. [Google Scholar] [CrossRef]
- Chaudhary, Rashmi, Priti Bakhshi, and Hemendra Gupta. 2020. Volatility in international stock markets: An empirical study during COVID-19. Journal of Risk and Financial Management 13: 208. [Google Scholar] [CrossRef]
- Chronopoulos, Dimitris K., Fotios I. Papadimitriou, and Nikolaos Vlastakis. 2018. Information demand and stock return predictability. Journal of International Money and Finance 80: 59–74. [Google Scholar] [CrossRef]
- Dutta, Suchandana, Kaushal Sharma, Justin Pinto, and Shamik Shetty. 2021. Comparative Study of Stock Prices between Pre-COVID-19 and during COVID-19 Period. Journal of Scientific Research 65: 93–101. [Google Scholar] [CrossRef]
- Engle, Robert F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society 50: 987–1007. [Google Scholar] [CrossRef]
- Fama, Eugene F. 1991. Efficient capital markets: II. The Journal of Finance 46: 1575–617. [Google Scholar] [CrossRef]
- Fama, Eugene F., Lawrence Fisher, Michael C. Jensen, and Richard Roll. 1969. The adjustment of stock prices to new information. International Economic Review 10: 1–21. [Google Scholar] [CrossRef]
- Guha, Banhi, Avijan Dutta, and Gautam Bandyopadhyay. 2016. Measurement of risk vs return of Indian sectoral indices. Journal of Advanced Management Science 4. [Google Scholar] [CrossRef]
- Iqbal, Najam, Muhammad Saqib Manzoor, and Muhammad Ishaq Bhatti. 2021. Asymmetry and leverage with news impact curve perspective in Australian stock returns’ volatility during COVID-19. Journal of Risk and Financial Management 14: 314. [Google Scholar] [CrossRef]
- Islam, Mohd Aminul, and B. I. Mahkota. 2013. Estimating volatility of stock index returns by using symmetric GARCH models. Middle-East Journal of Scientific Research 18: 991–99. [Google Scholar]
- Jebabli, Ikram, Noureddine Kouaissah, and Mohamed Arouri. 2022. Volatility spillovers between stock and energy markets during crises: A comparative assessment between the 2008 global financial crisis and the COVID-19 pandemic crisis. Finance Research Letters 46: 102363. [Google Scholar] [CrossRef]
- Kannan, Kumar, and Siva Balamurugan. 2022. Modelling and forecasting of stock price volatility of selected nifty 50 companies in India. Open Access Repository 8: 27–34. [Google Scholar]
- Karmakar, Madhusudan. 2005. Modeling conditional volatility of the Indian stock markets. Vikalpa 30: 21–38. [Google Scholar] [CrossRef]
- Kim, Moosup, and Sangyeol Lee. 2019. Test for tail index constancy of GARCH innovations based on conditional volatility. Annals of the Institute of Statistical Mathematics 71: 947–81. [Google Scholar] [CrossRef]
- Krishnaprabha, Dr S., and M. Vijayakumar. 2015. A study on risk and return analysis of selected stocks in India. International Journal of Scientific Research and Management 3: 2550–54. [Google Scholar]
- Lakshmi, Prabha Sai. 2013. Volatility patterns in various sectoral indices in the Indian stock market. Global Journal of Management and Business Studies 3: 879–86. [Google Scholar]
- Leung, Mark T., Hazem Daouk, and An-Sing Chen. 2000. Forecasting stock indices: A comparison of classification and level estimation models. International Journal of forecasting 16: 173–90. [Google Scholar] [CrossRef]
- Lobo, Sonia, and Ganesh Bhat. 2021. Risk return analysis of selected stocks of Indian financial sector. International Journal of Case Studies in Business, IT, and Education (IJCSBE) 5: 111–24. [Google Scholar] [CrossRef]
- Lv, Qiuna, Liyan Han, Yipeng Wan, and Libo Yin. 2018. Stock net entropy: Evidence from the Chinese growth enterprise market. Entropy 20: 805. [Google Scholar] [CrossRef]
- MacKinlay, A. Craig. 1997. Event studies in economics and finance. Journal of Economic Literature 35: 13–39. [Google Scholar]
- Maital, Shlomo, and Ella Barzani. 2020. The global economic impact of COVID-19: A summary of research. Samuel Neaman Institute for National Policy Research 2020: 1–12. [Google Scholar]
- Malkiel, Burton G. 2003. The efficient market hypothesis and its critics. Journal of Economic Perspectives 17: 59–82. [Google Scholar] [CrossRef]
- Mehtab, Sidra, and Jaydip Sen. 2020. Stock price prediction using convolutional neural network on a multivariate time series. Paper presented at the 3rd National Conference on Machine Learning and Artificial Intelligence (NCMLAI’20), New Delhi, India, February 1–2. [Google Scholar]
- Mehtab, Sidra, Jaydip Sen, and Abhishek Dutta. 2021. Stock price prediction using machine learning and LSTM-based deep learning models. In Machine Learning and Metaheuristics Algorithms, and Applications: Second Symposium, SoMMA 2020, Chennai, India, October 14–17, 2020, Revised Selected Papers 2. Singapore: Springer, pp. 88–106. [Google Scholar]
- Mishra, Monika, Neha Seth, and Laxmidhar Panda. 2023. Demystifying the Impact of COVID-19 on Structural Volatility of Indian Sectoral Market: A Quantile Regression Analysis. Vision, 09722629231159521. [Google Scholar] [CrossRef]
- Muguto, Lorraine, and Paul-Francois Muzindutsi. 2022. A comparative analysis of the nature of stock return volatility in BRICS and G7 markets. Journal of Risk and Financial Management 15: 85. [Google Scholar] [CrossRef]
- Nelson, Daniel B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society 59: 347–70. [Google Scholar] [CrossRef]
- Pele, Daniel Traian, Emese Lazar, and Alfonso Dufour. 2017. Information entropy and measures of market risk. Entropy 19: 226. [Google Scholar] [CrossRef]
- Priya, Pragati, and Chandan Sharma. 2023. COVID-19 related stringencies and financial market volatility: Sectoral evidence from India. Journal of Financial Economic Policy 15: 16–34. [Google Scholar] [CrossRef]
- Rajamohan, Suriya, Arumugam Sathish, and Ashik Rahman. 2020. Impact of COVID-19 on stock price of NSE in automobile sector. International Journal of Advanced Multidisciplinary Research 7: 24–29. [Google Scholar]
- Rehman, Mobeen Ur, Ahmet Sensoy, Veysel Eraslan, Syed Jawad Hussain Shahzad, and Xuan Vinh Vo. 2021. Sensitivity of US equity returns to economic policy uncertainty and investor sentiments. The North American Journal of Economics and Finance 57: 101392. [Google Scholar] [CrossRef]
- Sadiq, Muhammad, Ching-Chi Hsu, Yunqian Zhang, and Fengsheng Chien. 2021. COVID-19 fear and volatility index movements: Empirical insights from ASEAN stock markets. Environmental Science and Pollution Research 28: 67167–84. [Google Scholar] [CrossRef]
- Sen, Jaydip, Sidra Mehtab, and Abhishe Dutta. 2021. Volatility modeling of stocks from selected sectors of the Indian economy using GARCH. Paper presented at the 2021 Asian Conference on Innovation in Technology (ASIANCON), Pune, India, August 27–29; pp. 1–9. [Google Scholar]
- Shankar, Chand Hari, and Kumar Ramulu. 2014. Volatility and Correlation of Stock Indices on Indian Stock Market. International Journal of Research in Business Management 2: 17–26. [Google Scholar]
- Shehzad, Khurram, Umer Zaman, Xiaoxing Liu, Jarosław Górecki, and Carlo Pugnetti. 2021. Examining the asymmetric impact of COVID-19 pandemic and global financial crisis on Dow Jones and oil price shock. Sustainability 13: 4688. [Google Scholar] [CrossRef]
- Uddin, Moshfique, Chowdhury Anup, Anderson Keith, and Chaudhuri Kausik. 2021. The effect of the COVID-19 pandemic on global stock market volatility: Can economic strength help to manage the uncertainty? Journal of Business Research 128: 31–44. [Google Scholar] [CrossRef]
- Verma, Ruchita, and Janaki Singh Rathore. 2023. The Analysis of Dynamic Relationship among Indian Sectoral Indices: Evidence from the First 100 Days of the COVID-19 Pandemic. Artha Vijnana 65: 65–77. [Google Scholar]
Statistic/ Index | NSE 100 ESG | NSE 50 | NSE Bank | NSE Commodities | NSE IT | NSE Metal | NSE Realty | NSE FMCG | NSE Auto |
---|---|---|---|---|---|---|---|---|---|
Mean | 0.0417 | 0.0370 | 0.0345 | 0.0195 | 0.0482 | 0.0005 | −0.0034 | 0.0408 | 0.030424 |
Median | 0.0854 | 0.0651 | 0.0645 | 0.0829 | 0.0719 | 0.0551 | 0.1159 | 0.0844 | 0.079489 |
Maximum | 8.3320 | 8.0571 | 9.5119 | 7.0652 | 8.5349 | 8.9603 | 7.9672 | 7.6797 | 9.425424 |
Minimum | −14.3932 | −14.9167 | −20.0971 | −13.9581 | −13.3031 | −13.1244 | −13.1279 | −11.8510 | −16.0737 |
Std Dev | 1.0843 | 1.0901 | 1.5442 | 1.3057 | 1.3336 | 1.8100 | 2.0819 | 1.1074 | 1.40304 |
Skewness | −1.3949 | −1.5101 | −1.0758 | −1.0138 | −0.9770 | −0.4903 | −0.6190 | −0.6058 | −0.74332 |
Kurtosis | 21.5504 | 23.6725 | 18.8630 | 12.2645 | 14.0327 | 6.3555 | 6.3769 | 13.1651 | 14.21112 |
Jarque-Ber | 37,213.55 | 46,157.29 | 27,099.90 | 9511.33 | 13,275.59 | 1292.34 | 1368.044 | 11,082.30 | 13,525.34 |
Statistic/ Index | NSE 100 ESG | NSE 50 | NSE Bank | NSE Commodities | NSE IT | NSE Metal | NSE Realty | NSE FMCG | NSE Auto |
---|---|---|---|---|---|---|---|---|---|
Mean | 0.0349 | 0.0303 | 0.0395 | −0.0002 | 0.0348 | −0.0341 | −0.0165 | 0.0403 | 0.0157 |
Median | 0.0657 | 0.0482 | 0.0550 | 0.0455 | 0.0487 | −0.0137 | 0.1053 | 0.0806 | 0.0676 |
Maximum | 5.1145 | 5.0505 | 8.6415 | 5.4279 | 8.5349 | 8.9603 | 7.7741 | 5.1092 | 9.0095 |
Minimum | −6.5342 | −6.2863 | −7.4118 | −8.1375 | −13.3031 | −8.1112 | −13.1279 | −7.2181 | −7.8254 |
Std Dev | 0.9234 | 0.9057 | 1.3043 | 1.1633 | 1.1811 | 1.6285 | 2.0033 | 1.0400 | 1.2147 |
Skewness | −0.3693 | −0.3452 | 0.0612 | −0.4158 | −1.0850 | −0.1526 | −0.5723 | −0.3179 | −0.0685 |
Kurtosis | 6.0332 | 6.3493 | 6.7074 | 5.7294 | 16.4444 | 4.6348 | 6.2129 | 6.3803 | 6.3997 |
Jarque-Ber | 797.5625 | 957.0051 | 1125.9900 | 666.2061 | 15,176.7900 | 226.3398 | 951.9392 | 968.1190 | 947.3818 |
Statistic/ Index | NSE 100 ESG | NSE 50 | NSE Bank | NSE Commodities | NSE IT | NSE Metal | NSE Realty | NSE FMCG | NSE Auto |
---|---|---|---|---|---|---|---|---|---|
Mean | 0.0651 | 0.0596 | 0.0174 | 0.0883 | 0.0961 | 0.1218 | 0.0448 | 0.0426 | 0.0825 |
Median | 0.1512 | 0.1504 | 0.1016 | 0.2526 | 0.1464 | 0.3298 | 0.2329 | 0.0902 | 0.1499 |
Maximum | 8.3320 | 8.0571 | 9.5119 | 7.0652 | 8.2777 | 7.3176 | 7.9672 | 7.6797 | 9.4254 |
Minimum | −14.3932 | −14.9167 | −20.0971 | −13.9581 | −10.5889 | −13.1244 | −12.8087 | −11.8510 | −16.0737 |
Std Dev | 1.5112 | 1.5654 | 2.1747 | 1.7042 | 1.7577 | 2.3228 | 2.3310 | 1.3129 | 1.9121 |
Skewness | −2.0234 | −2.0589 | −1.7365 | −1.6326 | −0.8079 | −0.9284 | −0.7272 | −1.0701 | −1.2906 |
Kurtosis | 22.5600 | 22.3525 | 18.2284 | 14.7001 | 9.1636 | 6.7115 | 6.3943 | 20.9255 | 14.8243 |
Jarque-Ber | 9542.0250 | 9362.7500 | 5834.8460 | 3528.9980 | 971.0386 | 411.9300 | 326.1435 | 7794.5000 | 3503.2330 |
Indexes | Pre-COVID-19 (2018–2019) | During COVID-19 (2020–2021) | Post-COVID-19 (2022) | |||
---|---|---|---|---|---|---|
t-Statistics | Prob | t-Statistics | Prob | t-Statistics | Prob | |
NSE 100 ESG | −49.8272 | 0.0001 *** | −40.3596 | 0.0000 *** | −27.1343 | 0.0000 *** |
NSE 50 | −17.6576 | 0.0000 *** | −40.5739 | 0.0000 *** | −27.2358 | 0.0000 *** |
NSE Bank | −47.7710 | 0.0001 *** | −40.7010 | 0.0000 *** | −24.0624 | 0.0000 *** |
NSE Commodities | −50.0823 | 0.0001 *** | −40.9087 | 0.0000 *** | −28.0294 | 0.0000 *** |
NSE FMCG | −50.8216 | 0.0001 *** | −40.9087 | 0.0000 *** | −27.8529 | 0.0000 *** |
NSE IT | −50.6876 | 0.0001 *** | −42.9772 | 0.0000 *** | −17.9500 | 0.0000 *** |
NSE Metal | −50.5380 | 0.0001 *** | −42.7703 | 0.0000 *** | −26.4323 | 0.0000 *** |
NSE Realty | −47.0132 | 0.0001 *** | −41.2715 | 0.0000 *** | −23.0745 | 0.0000 *** |
NSE Auto | −48.5447 | 0.0001 *** | −40.6786 | 0.0000 *** | −25.2969 | 0.0000 *** |
Lags | NSE 100 ESG | NSE 50 | NSE Bank | NSE Commodities | NSE IT | NSE Metal | NSE Realty | NSE FMCG | NSE Auto |
---|---|---|---|---|---|---|---|---|---|
Pre-COVID-19 (2018–2019) | |||||||||
1 | 222.26 (0.000) | 189.52 (0.000) | 571.66 (0.000) | 549.76 (0.000) | 330.97 (0.000) | 222.26 (0.000) | 136.23 (0.000) | 549.76 (0.000) | 361.35 (0.000) |
5 | 1079.97 (0.000) | 317.96 (0.000) | 547.31 (0.000) | 662.92 (0.000) | 563.23 (0.000) | 385.87 (0.000) | 739.24 (0.000) | 739.24 (0.000) | 563.23 (0.000) |
10 | 827.59 (0.000) | 413.28 (0.000) | 1167.28 (0.000) | 463.03 (0.000) | 413.28 (0.000) | 1167.28 (0.000) | 804.67 (0.000) | 732.62 (0.000) | 621.29 (0.000) |
20 | 449.68 (0.000) | 658.83 (0.000) | 1235.45 (0.000) | 639.78 (0.000) | 639.78 (0.000) | 235.45 (0.000) | 498.62 (0.000) | 871.65 (0.000) | 910.10 (0.000) |
During COVID-19 (2020–2021) | |||||||||
1 | 136.23 (0.000) | 330.97 (0.000) | 222.26 (0.000) | 361.33 (0.000) | 136.23 (0.000) | 289.60 (0.000) | 183.34 (0.000) | 189.52 (0.000) | 183.34 (0.000) |
5 | 317.96 (0.000) | 736.58 (0.000) | 641.59 (0.000) | 739.24 (0.000) | 317.96 (0.000) | 662.92 (0.000) | 638.81 (0.000) | 1079.97 (0.000) | 638.81 (0.000) |
10 | 413.28 (0.000) | 753.76 (0.000) | 589.44 (0.000) | 589.44 (0.000) | 804.67 (0.000) | 802.37 (0.000) | 463.03 (0.000) | 827.59 (0.000) | 732.62 (0.000) |
20 | 639.78 (0.000) | 658.83 (0.000) | 449.68 (0.000) | 893.91 (0.000) | 871.65 (0.000) | 871.65 (0.000) | 449.68 (0.000) | 912.78 (0.000) | 498.62 (0.000) |
Post-COVID-19 (2022) | |||||||||
1 | 549.76 (0.000) | 289.60 (0.000) | 361.33 (0.000) | 222.26 (0.000) | 571.66 (0.000) | 330.97 (0.000) | 361.35 (0.000) | 571.66 (0.000) | 289.60 (0.000) |
5 | 736.58 (0.000) | 1079.97 (0.000) | 563.23 (0.000) | 385.87 (0.000) | 547.31 (0.000) | 638.81 (0.000) | 547.31 (0.000) | 641.59 (0.000) | 641.59 (0.000) |
10 | 802.37 (0.000) | 1167.28 (0.000) | 413.28 (0.000) | 753.76 (0.000) | 827.59 (0.000) | 802.37 (0.000) | 713.76 (0.000) | 732.62 (0.000) | 1167.28 (0.000) |
20 | 912.78 (0.000) | 1235.45 (0.000) | 498.62 (0.000) | 658.83 (0.000) | 893.91 (0.000) | 893.91 (0.000) | 910.10 (0.000) | 978.58 (0.000) | 988.58 (0.000) |
Indices | Model | Log | AIC | α (ARCH) | β (GARCH) | α + β |
---|---|---|---|---|---|---|
NSE 100 ESG | GARCH (1, 1) | 620.1043 | −3.7778 | 0.124018 * | 0.874682 *** | 0.8747 |
GJR-GARCH (1, 1) | 1398.0760 | −6.8506 | 0.143439 * | 0.887596 *** | 0.8876 | |
EGARCH (1, 1) | 906.4832 | −5.5653 | 0.036888 | 0.974107 *** | 1.0110 | |
NSE 50 | GARCH (1, 1) | 1104.3230 | −8.5692 | 0.076241 | 0.79702 *** | 0.8733 |
GJR-GARCH (1, 1) | 911.2845 | −8.566 | 0.118079 ** | 0.676175 *** | 0.6762 | |
EGARCH (1, 1) | 619.8894 | −5.5648 | 0.098288 ** | 0.89229 *** | 0.8990 | |
NSE Bank | GARCH (1, 1) | 795.7955 | −5.5414 | 0.247109 *** | 0.974897 *** | 0.9749 |
GJR-GARCH (1, 1) | 619.8894 | −6.9935 | 0 | 0.919419 *** | 0.9194 | |
EGARCH (1, 1) | 1115.6770 | −7.0108 | −0.310019 *** | 0.826323 *** | 0.8263 | |
NSE Commodities | GARCH (1, 1) | 1399.5020 | −6.8506 | 0.002481 | 0.594084 *** | 0.5966 |
GJR-GARCH (1, 1) | 797.5716 | −6.8226 | 0.009621 | 0.997803 *** | 1.0074 | |
EGARCH (1, 1) | 790.1403 | −3.7778 | −0.057158 | 0.995427 *** | 0.9955 | |
NSE FMCG | GARCH (1, 1) | 1398.9700 | −8.566 | 0.122254 * | 0.940652 *** | 0.9407 |
GJR-GARCH (1, 1) | 624.1617 | −3.7778 | 0 | 0.76539 *** | 0.7654 | |
EGARCH (1, 1) | 911.3619 | −7.0108 | −0.14327 *** | 0.92683 *** | 0.7268 | |
NSE IT | GARCH (1, 1) | 1143.4380 | −5.5653 | 0 | 0.908961 *** | 0.9090 |
GJR-GARCH (1, 1) | 1143.2980 | −3.7729 | 0 | 0.893921 *** | 0.8939 | |
EGARCH (1, 1) | 911.2845 | −5.5414 | −0.12458 * | 0.845516 *** | 0.8455 | |
NSE Metal | GARCH (1, 1) | 1120.2240 | −3.7778 | 0.000062 | 0.972107 *** | 0.9722 |
GJR-GARCH (1, 1) | 624.1617 | −5.5653 | 0.000054 | 0.887696 *** | 0.8878 | |
EGARCH (1, 1) | 1143.4380 | −5.5414 | −0.174239 * | 0.894982 *** | 0.8750 | |
NSE Realty | GARCH (1, 1) | 1399.5020 | −6.8506 | 0.000001 | 0.999803 *** | 0.9998 |
GJR-GARCH (1, 1) | 1398.9700 | −4.8651 | 0.000001 | 0.792084 *** | 0.5921 | |
EGARCH (1, 1) | 1120.2240 | −7.0108 | −1.058863 *** | 0.927323 *** | 0.8273 | |
NSE Auto | GARCH (1, 1) | 1146.2500 | −5.5414 | 0.000004 | 0.519419 *** | 0.9194 |
GJR-GARCH (1, 1) | 1146.2500 | −7.0108 | 0.000004 *** | 0.678175 *** | 0.6782 | |
EGARCH (1, 1) | 1115.6770 | −6.9935 | −0.575678 *** | 0.89802 *** | 0.7980 |
Indices | Model | Log | AIC | α (ARCH) | β (GARCH) | α + β |
---|---|---|---|---|---|---|
NSE 100 ESG | GARCH (1, 1) | 893.60050 | −6.9988 | 0.086228 *** | 0.6171 *** | 0.617100 |
GJR-GARCH (1, 1) | 895.30240 | −6.9935 | 0.21278 *** | 0.21723 *** | 0.217230 | |
EGARCH (1, 1) | 893.26190 | −7.0108 | −0.104427 ** | 0.87867 *** | 0.578670 | |
NSE 50 | GARCH (1, 1) | 798.68120 | −4.3271 | 0.000142 | 0.19222 *** | 0.192360 |
GJR-GARCH (1, 1) | 798.87520 | −4.3349 | 0.009999 | 0.70243 *** | 0.712430 | |
EGARCH (1, 1) | 798.99160 | −4.3023 | 0.021306 | 0.92665 *** | 0.247960 | |
NSE Bank | GARCH (1, 1) | 993.60050 | −3.5098 | 0.086228 *** | 0.20326 *** | 0.203260 |
GJR-GARCH (1, 1) | 995.30240 | −3.4996 | 0.117035 | 0.70026 *** | 0.817300 | |
EGARCH (1, 1) | 993.26190 | −3.5044 | 0.086228 *** | 0.90852 *** | 0.408520 | |
NSE Commodities | GARCH (1, 1) | 1309.74400 | −5.9925 | 0.040641 | 0.39244 *** | 0.433080 |
GJR-GARCH (1, 1) | 1310.42000 | −6.9784 | 0.117035 | 0.47424 *** | 0.591280 | |
EGARCH (1, 1) | 1311.02900 | −5.0017 | 0.21278 *** | 0.960941 *** | 0.160940 | |
NSE FMCG | GARCH (1, 1) | 525.45890 | −9.3271 | 0.009999 | 0.165211 *** | 0.175210 |
GJR-GARCH (1, 1) | 525.67740 | −9.3349 | 0.21892 *** | 0.331058 *** | 0.331060 | |
EGARCH (1, 1) | 597.34270 | −9.3023 | 0.002145 | 0.910388 *** | 0.112530 | |
NSE IT | GARCH (1, 1) | 1209.74400 | −6.1046 | 0.000002 | 0.395535 *** | 0.395540 |
GJR-GARCH (1, 1) | 1210.42000 | −6.1038 | 0.012131 | 0.814144 *** | 0.126280 | |
EGARCH (1, 1) | 1211.02900 | −6.1088 | 0.035923 | 0.913997 *** | 0.149920 | |
NSE Metal | GARCH (1, 1) | 619.88940 | −3.0693 | 0.000002 | 0.110325 *** | 0.110330 |
GJR-GARCH (1, 1) | 624.16170 | −3.0819 | −0.017036 | 0.046055 *** | 0.046060 | |
EGARCH (1, 1) | 619.88940 | −3.0775 | 0.021306 | 0.903944 *** | 0.125250 | |
NSE Realty | GARCH (1, 1) | 705.12720 | −7.0248 | −0.023663 | 0.50354 *** | 0.503540 |
GJR-GARCH (1, 1) | 711.42220 | −7.021 | 0.102173 * | 0.65774 *** | 0.657740 | |
EGARCH (1, 1) | 710.15450 | −7.023 | 0.021306 | 0.98373 *** | 0.905040 | |
NSE Auto | GARCH (1, 1) | 567.34270 | −2.5098 | 0.012131 | 0.121474 *** | 0.133610 |
GJR-GARCH (1, 1) | 545.67740 | −2.4996 | −0.104427 ** | 0.142996 *** | 0.143000 | |
EGARCH (1, 1) | 535.45890 | −2.5044 | 0.096668 ** | 0.94594 *** | 0.545940 |
Indices | Model | Log | AIC | α (ARCH) | β (GARCH) | α + β |
---|---|---|---|---|---|---|
NSE 100 ESG | GARCH (1, 1) | 519.88940 | −5.1117 | 0.056481 | 0.110325 | 0.16681 |
GJR-GARCH (1, 1) | 520.10430 | −4.1284 | 0.163904 *** | 0.46055 | 0.46055 | |
E-GARCH (1, 1) | 524.16170 | −4.3225 | 0.121029 *** | 0.103944 | 0.10394 | |
NSE 50 | GARCH (1, 1) | 1706.76100 | −3.3044 | 0.000002 | 0.50354 | 0.50354 |
GJR-GARCH (1, 1) | 1707.98700 | −3.8996 | 0.117035 | 0.65774 | 0.77478 | |
E-GARCH (1, 1) | 1708.07900 | −3.7298 | 0.000142 | 0.88373 | 0.88387 | |
NSE Bank | GARCH (1, 1) | 1193.30500 | −6.9888 | 0.021306 | 0.121474 | 0.14278 |
GJR-GARCH (1, 1) | 1193.57600 | −6.1238 | −0.023663 | 0.142996 | 0.143 | |
E-GARCH (1, 1) | 1198.77200 | −6.1446 | 0.009999 | 0.54594 | 0.55594 | |
NSE Commodities | GARCH (1, 1) | 993.60050 | −4.2341 | 0.040641 | 0.57307 | 0.61371 |
GJR-GARCH (1, 1) | 993.26190 | −4.2302 | 0.000002 | 0.149947 | 0.14995 | |
E-GARCH (1, 1) | 995.30240 | −4.1257 | 0.117035 | 0.153381 | 0.27042 | |
NSE FMCG | GARCH (1, 1) | 819.78320 | −8.61 | −0.177449 *** | 0.165211 | 0.16521 |
GJR-GARCH (1, 1) | 821.98880 | −8.2390 | 0.000142 | 0.331058 | 0.3312 | |
E-GARCH (1, 1) | 865.27760 | −8.611 | 0.21892 *** | 0.110388 | 0.11039 | |
NSE IT | GARCH (1, 1) | 721.14030 | −6.3545 | −0.017036 | 0.395535 | 0.39554 |
GJR-GARCH (1, 1) | 792.57160 | −6.1214 | 0.012131 | 0.114144 | 0.12628 | |
E-GARCH (1, 1) | 738.79550 | −6.5605 | 0.021306 | 0.113997 | 0.1353 | |
NSE Metal | GARCH (1, 1) | 1311.02900 | −4.2523 | −0.104427 ** | 0.110325 | 0.11033 |
GJR-GARCH (1, 1) | 1310.42000 | −4.2149 | 0.102173 * | 0.46055 | 0.46055 | |
E-GARCH (1, 1) | 1309.74400 | −4.1271 | 0.21278 *** | 0.65774 | 0.65774 | |
NSE Realty | GARCH (1, 1) | 1398.07600 | −5.3653 | −0.023663 | 0.88373 | 0.88373 |
GJR-GARCH (1, 1) | 1399.50200 | −5.8748 | 0.002145 | 0.54594 | 0.54809 | |
E-GARCH (1, 1) | 1398.97000 | −5.5414 | 0.009999 | 0.57307 | 0.58307 | |
NSE Auto | GARCH (1, 1) | 576.45890 | −3.3378 | 0.035923 | 0.149947 | 0.18587 |
GJR-GARCH (1, 1) | 574.67740 | −3.2179 | 0.096668 ** | 0.153381 | 0.15338 | |
E-GARCH (1, 1) | 572.34270 | −3.7778 | 0.086228 *** | 0.88373 | 0.88373 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamilla, R.; Kathiravan, C.; Salamzadeh, A.; Dana, L.-P.; Elheddad, M. COVID-19 Pandemic and Indices Volatility: Evidence from GARCH Models. J. Risk Financial Manag. 2023, 16, 447. https://doi.org/10.3390/jrfm16100447
Mamilla R, Kathiravan C, Salamzadeh A, Dana L-P, Elheddad M. COVID-19 Pandemic and Indices Volatility: Evidence from GARCH Models. Journal of Risk and Financial Management. 2023; 16(10):447. https://doi.org/10.3390/jrfm16100447
Chicago/Turabian StyleMamilla, Rajesh, Chinnadurai Kathiravan, Aidin Salamzadeh, Léo-Paul Dana, and Mohamed Elheddad. 2023. "COVID-19 Pandemic and Indices Volatility: Evidence from GARCH Models" Journal of Risk and Financial Management 16, no. 10: 447. https://doi.org/10.3390/jrfm16100447
APA StyleMamilla, R., Kathiravan, C., Salamzadeh, A., Dana, L. -P., & Elheddad, M. (2023). COVID-19 Pandemic and Indices Volatility: Evidence from GARCH Models. Journal of Risk and Financial Management, 16(10), 447. https://doi.org/10.3390/jrfm16100447