A High Efficiency Charging Strategy for a Supercapacitor Using a Wireless Power Transfer System Based on Inductor/Capacitor/Capacitor (LCC) Compensation Topology
Abstract
:1. Introduction
2. Model and Analysis of the WPT System
2.1. Mode of SS Compensation Cascade Buck Circuit
2.2. LCC Compensation Topology Analysis
3. Supercapacitor Charging Strategy Using WPT System
3.1. Characteristics Analysis of Super Capacitor Load
3.2. Segmented Charging Strategy
4. Experiment Verification
4.1. Setup of Experiment
4.2. Setup of Experiment
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Covic, G.A.; Boys, J.T. Modern trends in inductive power transfer for transportation applications. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 28–41. [Google Scholar] [CrossRef]
- Covic, G.A.; Boys, J.T. Inductive power transfer. Proc. IEEE 2013, 101, 1276–1289. [Google Scholar] [CrossRef]
- Shin, J.; Shin, S.; Kim, Y.; Ahn, S.; Lee, S.; Jung, G.; Jeon, S.J.; Cho, D.H. Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans. Ind. Electron. 2014, 61, 1179–1192. [Google Scholar] [CrossRef]
- Yusop, Y.; Saat, S.; Nguang, S.K.; Husin, H.; Ghani, Z. Design of Capacitive Power Transfer Using a Class-E Resonant Inverter. J. Power Electron. 2016, 16, 1678–1688. [Google Scholar] [CrossRef]
- Ko, Y.D.; Jang, Y.J. The Optimal System Design of the Online Electric Vehicle Utilizing Wireless Power Transmission Technology. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1255–1265. [Google Scholar] [CrossRef]
- Cheng, S.; Chen, X.; Wang, J.; Wen, J.; Li, J. Key Technologies and Applications of Wireless Power Transmission. Trans. China Electrotech. Soc. 2015, 30, 68–84. [Google Scholar] [CrossRef]
- Villa, J.L.; Sallan, J.; Sanz Osorio, J.F.; Llombart, A. High-Misalignment Tolerant Compensation Topology for ICPT Systems. IEEE Trans. Ind. Electron. 2012, 59, 945–951. [Google Scholar] [CrossRef]
- Matsumoto, H.; Neba, Y.; Asahara, H. Switched Compensator for Contactless Power Transfer Systems. IEEE Trans. Power Electron. 2015, 30, 6120–6129. [Google Scholar] [CrossRef]
- Zhou, H.; Yao, G.; Zhao, Z.; Zhou, L.; Jiang, D.; Guo, F. LCL Resonant Inductively Coupled Power Transfer System. Proc. CSEE 2013, 33, 9–16. [Google Scholar]
- Yang, M.; Wang, Y.; Ouyang, H. Modeling and Optimizing of a New Contactless ICPT System with Constant Primary Winding Current. Proc. CSEE 2009, 29, 34–40. [Google Scholar]
- Zhang, W.; Mi, C. Compensation Topologies of High Power Wireless Power Transfer Systems. IEEE Trans. Veh. Technol. 2016, 65, 4768–4778. [Google Scholar] [CrossRef]
- Lu, R.; Wang, T.; Mao, Y.; Zhu, C. Analysis and design of a wireless closed-loop ICPT system working at ZVS mode. In Proceedings of the 2010 IEEE Vehicle Power and Propulsion Conference (VPPC), Lille, France, 1–3 September 2010; pp. 1–5.
- Tang, C.S.; Sun, Y.; Su, Y.G.; Nguang, S.K.; Hu, A.P. Determining Multiple Steady-State ZCS Operating Points of a Switch-Mode Contactless Power Transfer System. IEEE Trans. Power Electron. 2009, 24, 416–425. [Google Scholar] [CrossRef]
- Nguyen, B.X.; Vilathgamuwa, D.M.; Foo, G.H.B.; Wang, P.; Ong, A.; Madawala, U.K.; Nguyen, T.D. An Efficiency Optimization Scheme for Bidirectional Inductive Power Transfer Systems. IEEE Trans. Power Electron. 2015, 30, 6310–6319. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; He, F.; Zhao, Z.; Lu, T.; Yuan, L. Closed-Form Oriented Modeling and Analysis of Wireless Power Transfer System with Constant-Voltage Source and Load. IEEE Trans. Power Electron. 2015, 31, 1. [Google Scholar] [CrossRef]
- Tan, L.; Yan, C.; Huang, X.; Wang, W.; Chen, C. Stable Voltage Online Control Strategy of Wireless Power Transmission System. Trans. China Electrotech. Soc. 2015, 30, 12–17. [Google Scholar]
- Mai, R.; Lu, L.; Li, Y.; He, Z. Dynamic Resonant Compensation Approach Based on Minimum Voltage and Maximum Current Tracking for IPT System. Trans. China Electrotech. Soc. 2015, 30, 32–38. [Google Scholar]
- Auvigne, C.; Germano, P.; Perriard, Y.; Ladas, D. About tuning capacitors in inductive coupled power transfer systems. In Proceedings of the European Conference on Power Electronics and Applications, Lille, France, 2–6 September 2013; pp. 1–10.
- Zhang, Y.; Lu, T.; Zhao, Z.; He, F.; Chen, K.; Yuan, L. Selective wireless power transfer to multiple loads using receivers of different resonant frequencies. IEEE Trans. Power Electron. 2015, 30, 6001–6005. [Google Scholar] [CrossRef]
- Hiramatsu, T.; Huang, X.; Kato, M.; Imura, T.; Hori, Y. Wireless charging power control for HESS through receiver side voltage control. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition, Charlotte, NC, USA, 15–19 March 2015.
- Li, S.; Mi, C.C. Wireless Power Transfer for Electric Vehicle Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17. [Google Scholar]
Symbols | Note | Value |
---|---|---|
Ubus | DC bus voltage | 100 V |
f | Operating frequency | 58 kHz |
LP | Primary-side coil inductance | 167.6 μH |
RP | Primary-side coil self-resistance | 0.19 Ω |
CP | Primary-side series compensation capacitor | 44.42 nF |
LS | Secondary-side coil inductance | 169.7 μH |
RS | Secondary-side coil self-resistance | 0.27 Ω |
CS | Secondary-side series compensation capacitor | 44.39 nF |
M | Mutual inductance | 29.2 μH |
L | Filter inductance | 2.5 mH |
Symbols | Note | Value |
---|---|---|
Ubus | DC bus voltage | 100 V |
f | Operating frequency | 58 kHz |
LP | Primary-side coil inductance | 167.6 μH |
RP | Primary-side coil self-resistance/ | 0.19 Ω |
CP | Primary-side series compensation capacitor | 54.7 nF |
LR | Primary-side series compensation inductance | 33.4μH |
RLr | Primary-side series compensation self-resistance | 0.1 Ω |
CR | Primary-side parallel compensation capacitor | 0.25 μF |
LS | Secondary-side coil inductance | 169.7 μH |
RS | Secondary-side coil self-resistance | 0.27 Ω |
CS | Secondary-side series compensation capacitor | 44.39 nF |
M | Mutual inductance | 29.2 μH |
L | Filter inductance | 2.5 mH |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Y.; Li, B.; Yang, Z.; Lin, F.; Sun, H. A High Efficiency Charging Strategy for a Supercapacitor Using a Wireless Power Transfer System Based on Inductor/Capacitor/Capacitor (LCC) Compensation Topology. Energies 2017, 10, 135. https://doi.org/10.3390/en10010135
Geng Y, Li B, Yang Z, Lin F, Sun H. A High Efficiency Charging Strategy for a Supercapacitor Using a Wireless Power Transfer System Based on Inductor/Capacitor/Capacitor (LCC) Compensation Topology. Energies. 2017; 10(1):135. https://doi.org/10.3390/en10010135
Chicago/Turabian StyleGeng, Yuyu, Bin Li, Zhongping Yang, Fei Lin, and Hu Sun. 2017. "A High Efficiency Charging Strategy for a Supercapacitor Using a Wireless Power Transfer System Based on Inductor/Capacitor/Capacitor (LCC) Compensation Topology" Energies 10, no. 1: 135. https://doi.org/10.3390/en10010135
APA StyleGeng, Y., Li, B., Yang, Z., Lin, F., & Sun, H. (2017). A High Efficiency Charging Strategy for a Supercapacitor Using a Wireless Power Transfer System Based on Inductor/Capacitor/Capacitor (LCC) Compensation Topology. Energies, 10(1), 135. https://doi.org/10.3390/en10010135