Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oil Extraction
2.1.1. Seed Collection and Kernel Extraction
2.1.2. Moisture Control and Kernel Drying
2.1.3. Oil Extraction (n-Hexane Method)
2.2. Biodiesel Conversion
2.2.1. Reaction Design
2.2.2. Conversion Procedure
2.3. Fuel Properties
2.4. Calculation of Mass and Energy Balances
3. Results and Discussion
3.1. Effect of Reaction Variables on Conversion Yield
3.1.1. Effect of Catalyst Concentration
3.1.2. Effect of Methanol-Oil Ratio
3.1.3. Effect of Reaction Temperature
3.1.4. Effect of Reaction Time
3.2. Fatty Acid Methyl Esters (FAMEs)
3.3. Physio-Chemical Fuel Properties of the Biodiesel
3.4. Physical Behaviour of Mandarin Biodiesel at Various Temperatures
3.5. Mass and Energy Balance for Mandarin Biodiesel Production
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Moghaddam, E.A.; Ahlgren, S.; Hulteberg, C.; Nordberg, Å. Energy balance and global warming potential of biogas-based fuels from a life cycle perspective. Fuel Process. Technol. 2015, 132, 74–82. [Google Scholar] [CrossRef]
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Sharma, S.C.; Hazrat, M.A. Prospect of biofuels as an alternative transport fuel in Australia. Renew. Sustain. Energy Rev. 2015, 43, 331–351. [Google Scholar] [CrossRef]
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Sharma, S.C.; Islam, R. Prospect of Moringa seed oil as a sustainable biodiesel fuel in Australia: A review. Procedia Eng. 2015, 105, 601–606. [Google Scholar] [CrossRef]
- Conconi, C.C.; Crnkovic, P.M. Thermal behavior of renewable diesel from sugar cane, biodiesel, fossil diesel and their blends. Fuel Process. Technol. 2013, 114, 6–11. [Google Scholar] [CrossRef]
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Omri, A.; Bhuiya, M.M.K.; Hazrat, M.A. Modelling of renewable energy economy in Australia. Energy Procedia 2014, 61, 1902–1906. [Google Scholar] [CrossRef]
- Senthil, M.; Visagavel, K.; Saravanan, C.G.; Rajendran, K. Investigations of red mud as a catalyst in Mahua oil biodiesel production and its engine performance. Fuel Process. Technol. 2016, 149, 7–14. [Google Scholar] [CrossRef]
- Bartle, J.R.; Abadi, A. Toward Sustainable Production of Second Generation Bioenergy Feedstocks. Energy Fuels 2009, 24, 2–9. [Google Scholar] [CrossRef]
- Rashid, U.; Ibrahim, M.; Yasin, S.; Yunus, R.; Taufiq-Yap, Y.; Knothe, G. Biodiesel from Citrus reticulata (mandarin orange) seed oil, a potential non-food feedstock. Ind. Crops Prod. 2013, 45, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Kamal, G.; Anwar, F.; Hussain, A.; Sarri, N.; Ashraf, M. Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peels. Int. Food Res. J. 2011, 18, 1275–1282. [Google Scholar]
- Aussie Mandarins. Available online: http://www.aussiemandarins.com.au/industry (accessed on 16 April 2016).
- ATLAS of Living Australia. Mandarin, Citrus Reticulata. Available online: http://bie.ala.org.au/species/Citrus+reticulata# (accessed on 22 July 2014).
- Agarwal, D.; Agarwal, A.K. Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Appl. Therm. Eng. 2007, 27, 2314–2323. [Google Scholar] [CrossRef]
- Gresshoff, P.M.; Hayashi, S.; Biswas, B.; Mirzaei, S.; Indrasumunar, A.; Reid, D.; Samuel, S.; Tollenaere, A.; van Hameren, B.; Hastwell, A. The value of biodiversity in legume symbiotic nitrogen fixation and nodulation for biofuel and food production. J. Plant Physiol. 2015, 172, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Bhuiya, M.M.K.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Azad, A.K.; Mofijur, M. Optimisation of Oil Extraction Process from Australian Native Beauty Leaf Seed (Calophyllum Inophyllum). Energy Procedia 2015, 75, 56–61. [Google Scholar] [CrossRef]
- Azad, A.K.; Rasul, M.G.; Giannangelo, B.; Islam, R. Comparative study of diesel engine performance and emission with soybean and waste oil biodiesel fuels. Int. J. Automot. Mech. Eng. 2015, 12, 2866–2881. [Google Scholar] [CrossRef]
- Lee, R.A.; Lavoie, J.-M. From first-to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim. Front. 2013, 3, 6–11. [Google Scholar] [CrossRef]
- Azad, A.K.; Ameer Uddin, S.M.; Alam, M.M. A Comprehensive Study of DI Diesel Engine Performance with Vegetable Oil: An Alternative Bio-fuel Source of Energy. Int. J. Automot. Mech. Eng. 2012, 5, 576–586. [Google Scholar] [CrossRef]
- Du, W.; Xu, Y.; Liu, D.; Zeng, J. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J. Mol. Catal. B Enzym. 2004, 30, 125–129. [Google Scholar] [CrossRef]
- Wang, L.; Du, W.; Liu, D.; Li, L.; Dai, N. Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. J. Mol. Catal. B Enzym. 2006, 43, 29–32. [Google Scholar] [CrossRef]
- Pimentel, D.; Patzek, T.W. Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat. Resour. Res. 2005, 14, 65–76. [Google Scholar] [CrossRef]
- Bhuiya, M.M.K.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Azad, A.K. Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 Selection of feedstocks, oil extraction techniques and conversion technologies. Renew. Sustain. Energy Rev. 2016, 55, 1109–1128. [Google Scholar] [CrossRef]
- Kouzu, M.; Kasuno, T.; Tajika, M.; Sugimoto, Y.; Yamanaka, S.; Hidaka, J. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 2008, 87, 2798–2806. [Google Scholar] [CrossRef]
- Noureddini, H.; Gao, X.; Philkana, R.S. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol. 2005, 96, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Li, H. Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. J. Mol. Catal. A Chem. 2006, 255, 1–9. [Google Scholar] [CrossRef]
- Ha, S.H.; Lan, M.N.; Lee, S.H.; Hwang, S.M.; Koo, Y.-M. Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzym. Microb. Technol. 2007, 41, 480–483. [Google Scholar] [CrossRef]
- Liu, X.; He, H.; Wang, Y.; Zhu, S.; Piao, X. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 2008, 87, 216–221. [Google Scholar] [CrossRef]
- Bhuiya, M.M.K.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Azad, A.K.; Hazrat, M.A. Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 2 Selection of feedstocks, oil extraction techniques and conversion technologies. Renew. Sustain. Energy Rev. 2016, 55, 1129–1146. [Google Scholar] [CrossRef]
- Barnwal, B.K.; Sharma, M.P. Prospects of biodiesel production from vegetable oils in India. Renew. Sustain. Energy Rev. 2005, 9, 363–378. [Google Scholar] [CrossRef]
- Canakci, M.; Van Gerpen, J. Biodiesel production from oils and fats with high free fatty acids. Trans. Am. Soc. Agric. Eng. 2001, 44, 1429–1436. [Google Scholar] [CrossRef]
- Bhuiya, M.M.K.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Azad, A.K.; Hazrat, M.A. Second generation biodiesel: Potential alternative to-edible oil-derived biodiesel. Energy Procedia 2014, 61, 1969–1972. [Google Scholar] [CrossRef]
- Demirbas, A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energy Combust. Sci. 2005, 31, 466–487. [Google Scholar] [CrossRef]
- Meneghetti, S.M.P.; Meneghetti, M.R.; Serra, T.M.; Barbosa, D.C.; Wolf, C.R. Biodiesel production from vegetable oil mixtures: Cottonseed, soybean, and castor oils. Energy Fuels 2007, 21, 3746–3747. [Google Scholar] [CrossRef]
- Balat, M. Potential alternatives to edible oils for biodiesel production—A review of current work. Energy Convers. Manag. 2011, 52, 1479–1492. [Google Scholar] [CrossRef]
- Sarin, R.; Kumar, R.; Srivastav, B.; Puri, S.K.; Tuli, D.K.; Malhotra, R.K.; Kumar, A. Biodiesel surrogates: Achieving performance demands. Bioresour. Technol. 2009, 100, 3022–3028. [Google Scholar] [CrossRef] [PubMed]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Ceniceros, E.; Natarajan, M. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 2012, 16, 143–169. [Google Scholar] [CrossRef]
- Dorado, M.P.; Ballesteros, E.; Arnal, J.M.; Gómez, J.; López, F.J. Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil. Fuel 2003, 82, 1311–1315. [Google Scholar] [CrossRef]
- Demirbas, A. Importance of biodiesel as transportation fuel. Energy Policy 2007, 35, 4661–4670. [Google Scholar] [CrossRef]
- Saka, S.; Kusdiana, D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 2001, 80, 225–231. [Google Scholar] [CrossRef]
- Amir Uddin, M.A.; Azad, A.K.; Alam, M.M.; Ahamed, J.U. Performance of a diesel engine run with mustard-Kerosene blends. Procedia Eng. 2015, 105, 698–704. [Google Scholar] [CrossRef]
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Sharma, S.C. Macadamia biodiesel as a sustainable and alternative transport fuel in Australia. Energy Procedia 2017, 110, 543–548. [Google Scholar] [CrossRef]
- Demirbas, M.F. Biorefineries for biofuel upgrading: A critical review. Appl. Energy 2009, 86, S151–S161. [Google Scholar] [CrossRef]
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Sharma, S.C.; Bhuiya, M.M.K. Study on Australian energy policy, socio-economic, and environment issues. J. Renew. Sustain. Energy 2015, 7, 063131. [Google Scholar] [CrossRef]
- Zhang, Y.; Dubé, M.A.; McLean, D.D.; Kates, M. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Technol. 2003, 89, 1–16. [Google Scholar] [CrossRef]
- Vasudevan, P.T.; Briggs, M. Biodiesel production—Current state of the art and challenges. J. Ind. Microbiol. Biotechnol. 2008, 35, 421–430. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, J.S.; Leite, P.M.; de Souza, L.B.; Mello, V.M.; Silva, E.C.; Rubim, J.C.; Meneghetti, S.M.P.; Suarez, P.A.Z. Characteristics and composition of Jatropha gossypiifoliaand Jatropha curcas L. oils and application for biodiesel production. Biomass Bioenergy 2009, 33, 449–453. [Google Scholar] [CrossRef]
- Sarin, A.; Arora, R.; Singh, N.P.; Sarin, R.; Malhotra, R.K.; Sharma, M.; Khan, A.A. Synergistic effect of metal deactivator and antioxidant on oxidation stability of metal contaminated Jatropha biodiesel. Energy 2010, 35, 2333–2337. [Google Scholar] [CrossRef]
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Sharma, S.C.; Mofijur, M.; Bhuiya, M.M.K. Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia. Renew. Sustain. Energy Rev. 2016, 61, 302–318. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A.S.; Kumari, S.; Reddy, M.P. Biotechnological approaches for the genetic improvement of Jatropha curcas L.: A biodiesel plant. Ind. Crops Prod. 2015, 76, 817–828. [Google Scholar] [CrossRef]
- Maurya, R.; Gupta, A.; Singh, S.K.; Rai, K.M.; Chandrawati; Sawant, S.V.; Yadav, H.K. Microsatellite polymorphism in Jatropha curcas L.—A biodiesel plant. Ind. Crops Prod. 2013, 49, 136–142. [Google Scholar] [CrossRef]
- Reyes-Trejo, B.; Guerra-Ramírez, D.; Zuleta-Prada, H.; Cuevas-Sánchez, J.A.; Reyes, L.; Reyes-Chumacero, A.; Rodríguez-Salazar, J.A. Annona diversifolia seed oil as a promising non-edible feedstock for biodiesel production. Ind. Crops Prod. 2014, 52, 400–404. [Google Scholar] [CrossRef]
- Demirbaş, A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: A survey. Energy Convers. Manag. 2003, 44, 2093–2109. [Google Scholar] [CrossRef]
- Sarin, A.; Arora, R.; Singh, N.; Sarin, R.; Sharma, M.; Malhotra, R. Effect of metal contaminants and antioxidants on the oxidation stability of the methyl ester of Pongamia. J. Am. Oil Chem. Soc. 2010, 87, 567–572. [Google Scholar] [CrossRef]
- Habibullah, M.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Masum, B.M.; Arslan, A.; Gulzar, M. Friction and wear characteristics of Calophyllum inophyllum biodiesel. Ind. Crops Prod. 2015, 76, 188–197. [Google Scholar] [CrossRef]
- Mosarof, M.H.; Kalam, M.A.; Masjuki, H.H.; Alabdulkarem, A.; Habibullah, M.; Arslan, A.; Monirul, I.M. Assessment of friction and wear characteristics of Calophyllum inophyllum and palm biodiesel. Ind. Crops Prod. 2016, 83, 470–483. [Google Scholar] [CrossRef]
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Sharma, S.C.; Bhuiya, M.M.K. Recent development of biodiesel combustion strategies and modelling for compression ignition engines. Renew. Sustain. Energy Rev. 2016, 56, 1068–1086. [Google Scholar] [CrossRef]
- Da Silva, N.D.L.; Maciel, M.R.W.; Batistella, C.B.; Maciel Filho, R. Optimization of biodiesel production from castor oil. Appl. Biochem. Biotechnol. 2006, 130, 405–414. [Google Scholar] [CrossRef]
- Conceição, M.M.; Candeia, R.A.; Silva, F.C.; Bezerra, A.F.; Fernandes, V.J., Jr.; Souza, A.G. Thermoanalytical characterization of castor oil biodiesel. Renew. Sustain. Energy Rev. 2007, 11, 964–975. [Google Scholar] [CrossRef]
- Scholz, V.; da Silva, J.N. Prospects and risks of the use of castor oil as a fuel. Biomass Bioenergy 2008, 32, 95–100. [Google Scholar] [CrossRef]
- Hazrat, M.A.; Rasul, M.G.; Khan, M.M.K.; Azad, A.K.; Bhuiya, M.M.K. Utilization of polymer wastes as transport fuel resources a recent development. Energy Procedia 2014, 61, 1681–1685. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Masjuki, H.H.; Ong, H.C.; Yusaf, T.; Kusumo, F.; Mahlia, T.M.I. Synthesis and optimization of Hevea brasiliensis and Ricinus communis as feedstock for biodiesel production: A comparative study. Ind. Crops Prod. 2016, 85, 274–286. [Google Scholar] [CrossRef]
- Armendáriz, J.; Lapuerta, M.; Zavala, F.; García-Zambrano, E.; del Carmen Ojeda, M. Evaluation of eleven genotypes of castor oil plant (Ricinus communis L.) for the production of biodiesel. Ind. Crops Prod. 2015, 77, 484–490. [Google Scholar] [CrossRef]
- Koutsouki, A.A.; Tegou, E.; Badeka, A.; Kontakos, S.; Pomonis, P.J.; Kontominas, M.G. In situ and conventional transesterification of rapeseeds for biodiesel production: The effect of direct sonication. Ind. Crops Prod. 2016, 84, 399–407. [Google Scholar] [CrossRef]
- Modiba, E.; Osifo, P.; Rutto, H. Biodiesel production from baobab (Adansonia digitata L.) seed kernel oil and its fuel properties. Ind. Crops Prod. 2014, 59, 50–54. [Google Scholar] [CrossRef]
- Theam, K.L.; Islam, A.; Choo, Y.M.; Taufiq-Yap, Y.H. Biodiesel from low cost palm stearin using metal doped methoxide solid catalyst. Ind. Crops Prod. 2015, 76, 281–289. [Google Scholar] [CrossRef]
- Wang, R.; Sun, L.; Xie, X.; Ma, L.; Liu, Z.; Liu, X.; Ji, N.; Xie, G. Biodiesel production from Stauntonia chinensis seed oil (waste from food processing): Heterogeneous catalysis by modified calcite, biodiesel purification, and fuel properties. Ind. Crops Prod. 2014, 62, 8–13. [Google Scholar] [CrossRef]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Anwar, F.; Naseer, R.; Bhanger, M.; Ashraf, S.; Talpur, F.N.; Aladedunye, F.A. Physico-chemical characteristics of citrus seeds and seed oils from Pakistan. J. Am. Oil Chem. Soc. 2008, 85, 321–330. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Brown, J.R.; Senadeera, W.; Ashwath, N.; Laing, C.; Leski-Taylor, J.; Rasul, M.G. Optimisation of Bio-Oil Extraction Process from Beauty Leaf (Calophyllum Inophyllum) Oil Seed as a Second Generation Biodiesel Source. Procedia Eng. 2013, 56, 619–624. [Google Scholar] [CrossRef] [Green Version]
- Mofijur, M.; Rasul, M.G.; Hyde, J.; Azad, A.K.; Mamat, R.; Bhuiya, M.M.K. Role of biofuel and their binary (diesel-biodiesel) and ternary (ethanol-biodiesel-diesel) blends on internal combustion engines emission reduction. Renew. Sustain. Energy Rev. 2016, 53, 265–278. [Google Scholar] [CrossRef]
- Ullah, Z.; Bustam, M.A.; Man, Z. Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst. Renew. Energy 2015, 77, 521–526. [Google Scholar] [CrossRef]
- Taufiqurrahmi, N.; Bhatia, S. Catalytic cracking of edible and non-edible oils for the production of biofuels. Energy Environ. Sci. 2011, 4, 1087–1112. [Google Scholar] [CrossRef]
- Ghaly, A.E.; Dave, D.; Brooks, M.; Budge, S. Production of biodiesel by enzymatic transesterification: Review. Am. J. Biochem. Biotechnol. 2010, 6, 54–76. [Google Scholar] [CrossRef]
- Azad, A.K.; Rasul, M.G.; Bhuiya, M.M.K.; Islam, R. Effect of first and second generation biodiesel blends on engine performance and emission. AIP Conf. Proc. 2016, 1754, 050031. [Google Scholar]
- Atabani, A.E.; Silitonga, A.S.; Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Badruddin, I.A.; Fayaz, H. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sustain. Energy Rev. 2013, 18, 211–245. [Google Scholar] [CrossRef]
- Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H. Progress in biodiesel processing. Appl. Energy 2010, 87, 1815–1835. [Google Scholar] [CrossRef]
- Salvi, B.L.; Panwar, N.L. Biodiesel resources and production technologies—A review. Renew. Sustain. Energy Rev. 2012, 16, 3680–3689. [Google Scholar] [CrossRef]
- Meher, L.C.; Vidya Sagar, D.; Naik, S.N. Technical aspects of biodiesel production by transesterification—A review. Renew. Sustain. Energy Rev. 2006, 10, 248–268. [Google Scholar] [CrossRef]
- Mofijur, M.M.; Rasul, M.G.; Hassain, N.M.S.; Azad, A.K.; Uddin, M.N. Effect of small proportion of butanol additive on the performance, emission, and combustion of Australian native first-and second-generation biodiesel in a diesel engine. Environ. Sci. Pollut. Res. 2017, 24, 22402–22413. [Google Scholar]
- Balat, M.; Balat, H. A critical review of bio-diesel as a vehicular fuel. Energy Convers. Manag. 2008, 49, 2727–2741. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, M.P. Prospects of biodiesel from Jatropha in India: A review. Renew. Sustain. Energy Rev. 2010, 14, 763–771. [Google Scholar] [CrossRef]
- Koh, M.Y.; Ghazi, T.I.M. A review of biodiesel production from Jatropha curcas L. oil. Renew. Sustain. Energy Rev. 2011, 15, 2240–2251. [Google Scholar] [CrossRef]
- Mahanta, P.; Shrivastava, A. Technology Development of Bio-Diesel as an Energy Alternative; Department of Mechanical Engineering Indian Institute of Technology: Guwahati, India, 2004; pp. 1–19. [Google Scholar]
- Murugesan, A.; Umarani, C.; Subramanian, R.; Nedunchezhian, N. Bio-diesel as an alternative fuel for diesel engines—A review. Renew. Sustain. Energy Rev. 2009, 13, 653–662. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renew. Sustain. Energy Rev. 2010, 14, 200–216. [Google Scholar] [CrossRef]
- Yusuf, N.N.A.N.; Kamarudin, S.K.; Yaakub, Z. Overview on the current trends in biodiesel production. Energy Convers. Manag. 2011, 52, 2741–2751. [Google Scholar] [CrossRef]
- Dias, J.M.; Alvim-Ferraz, M.C.M.; Almeida, M.F.; Méndez Díaz, J.D.; Polo, M.S.; Utrilla, J.R. Selection of heterogeneous catalysts for biodiesel production from animal fat. Fuel 2012, 94, 418–425. [Google Scholar] [CrossRef]
- Berrios, M.; Skelton, R.L. Comparison of purification methods for biodiesel. Chem. Eng. J. 2008, 144, 459–465. [Google Scholar] [CrossRef]
- Royon, D.; Daz, M.; Ellenrieder, G.; Locatelli, S. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour. Technol. 2007, 98, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Sharma, S.C.; Bhuiya, M.M.K.; Mofijur, M. A review on socio-economic aspects of sustainable biofuels. Int. J. Glob. Warm. 2016, 10, 32–54. [Google Scholar] [CrossRef]
- Semwal, S.; Arora, A.K.; Badoni, R.P.; Tuli, D.K. Biodiesel production using heterogeneous catalysts. Bioresour. Technol. 2011, 102, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Parawira, W. Biotechnological production of biodiesel fuel using biocatalysed transesterification: A review. Crit. Rev. Biotechnol. 2009, 29, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, K.; Suganya, T.; Nagendra Gandhi, N.; Renganathan, S. Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review. Renew. Sustain. Energy Rev. 2013, 22, 410–418. [Google Scholar] [CrossRef]
- Narasimharao, K.; Lee, A.; Wilson, K. Catalysts in production of biodiesel: A review. J. Biobased Mater. Bioenergy 2007, 1, 19–30. [Google Scholar]
- Kim, H.-J.; Kang, B.-S.; Kim, M.-J.; Park, Y.M.; Kim, D.-K.; Lee, J.-S.; Lee, K.-Y. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal. Today 2004, 93, 315–320. [Google Scholar] [CrossRef]
- Rashid, U.; Anwar, F. Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 2008, 87, 265–273. [Google Scholar] [CrossRef]
- Dorado, M.P.; Ballesteros, E.; López, F.J.; Mittelbach, M. Optimization of alkali-catalyzed transesterification of Brassica C arinata oil for biodiesel production. Energy Fuels 2004, 18, 77–83. [Google Scholar] [CrossRef]
- Demirbas, A. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Convers. Manag. 2009, 50, 923–927. [Google Scholar] [CrossRef]
- Suehara, K.-I.; Kawamoto, Y.; Fujii, E.; Kohda, J.; Nakano, Y.; Yano, T. Biological treatment of wastewater discharged from biodiesel fuel production plant with alkali-catalyzed transesterification. J. Biosci. Bioeng. 2005, 100, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.-Y.; Zhao, Y.-H. Transesterification of castor oil to biodiesel using KOH/NaY as solid base catalyst. Int. J. Green Energy 2013, 10, 219–229. [Google Scholar] [CrossRef]
- Canakci, M.; Van Gerpen, J. Biodiesel production via acid catalysis. Trans. ASAE Am. Soc. Agric. Eng. 1999, 42, 1203–1210. [Google Scholar] [CrossRef]
- Lotero, E.; Liu, Y.; Lopez, D.E.; Suwannakarn, K.; Bruce, D.A.; Goodwin, J.G. Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res. 2005, 44, 5353–5363. [Google Scholar] [CrossRef]
- Jothiramalingam, R.; Wang, M.K. Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Ind. Eng. Chem. Res. 2009, 48, 6162–6172. [Google Scholar] [CrossRef]
- Azad, A.K.; Uddin, S.M.M. Performance study of a diesel engine by first generation bio-fuel blends with fossil fuel: An experimental study. J. Renew. Sustain. Energy 2013, 5, 013118. [Google Scholar] [CrossRef]
- Demirbaş, A. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers. Manag. 2002, 43, 2349–2356. [Google Scholar] [CrossRef]
- Minami, E.; Saka, S. Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel 2006, 85, 2479–2483. [Google Scholar] [CrossRef]
- He, H.; Wang, T.; Zhu, S. Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel 2007, 86, 442–447. [Google Scholar] [CrossRef]
- Pinnarat, T.; Savage, P.E. Assessment of noncatalytic biodiesel synthesis using supercritical reaction conditions. Ind. Eng. Chem. Res. 2008, 47, 6801–6808. [Google Scholar] [CrossRef]
- Rashid, U.; Anwar, F.; Ashraf, M.; Saleem, M.; Yusup, S. Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production. Energy Convers. Manag. 2011, 52, 3034–3042. [Google Scholar] [CrossRef]
- Fan, M.; Huang, J.; Yang, J.; Zhang, P. Biodiesel production by transesterification catalyzed by an efficient choline ionic liquid catalyst. Appl. Energy 2013, 108, 333–339. [Google Scholar] [CrossRef]
- Talebi, A.F.; Tabatabaei, M.; Chisti, Y. BiodieselAnalyzer: A user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res. J. 2014, 1, 55–57. [Google Scholar] [CrossRef]
- Ramos, M.J.; Fernández, C.M.; Casas, A.; Rodríguez, L.; Pérez, Á. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 2009, 100, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Rizwanul Fattah, I.M.; Masjuki, H.H.; Kalam, M.A.; Wakil, M.A.; Rashedul, H.K.; Abedin, M.J. Performance and emission characteristics of a CI engine fueled with Cocos nucifera and Jatropha curcas B20 blends accompanying antioxidants. Ind. Crops Prod. 2014, 57, 132–140. [Google Scholar] [CrossRef]
- Kongkasawan, J.; Capareda, S.C. Jatropha Oil Refining Process and Biodiesel Conversion: Mass and Energy Balance. Int. Energy J. 2012, 13, 1–4. [Google Scholar]
- Knothe, G. Biodiesel derived from a model oil enriched in palmitoleic acid, macadamia nut oil. Energy Fuels 2010, 24, 2098–2103. [Google Scholar] [CrossRef]
Taxonomical Classification | Common English Name | World Distribution | ||
Kingdom | Plantae | Mandarin | Australia | |
Phylum | Charophyta | Clementine | Japan | |
Class | Equisetopsida | Tangarine | China | |
Subclass | Magnoliidae | Tangerine | India | |
Superorder | Rosanae | Satsuma | Philippine | |
Order | Sapindales | Kinnow | South-east Asia | |
Family | Rutaceae | California | ||
Genus | Citrus | USA | ||
Species | Citrus reticulata | Brazil | Distribution map in Australia [11]. |
Sample Number | Gross Weight per Fruit (g) | Liquid Juice per Fruit (g) | Rind Per Fruit (g) | Number of Seeds per Fruit | Average Seed Weight (g) | % of Seed from Total Waste |
---|---|---|---|---|---|---|
1 | 232.11 | 150.40 | 84.07 | 26 | 4.94 | 5.88 |
2 | 269.39 | 169.39 | 104.34 | 34 | 7.27 | 6.97 |
3 | 248.63 | 132.59 | 116.04 | 36 | 5.20 | 4.48 |
4 | 276.87 | 189.70 | 87.16 | 22 | 5.43 | 6.23 |
5 | 239.78 | 167.42 | 72.36 | 34 | 6.84 | 9.45 |
6 | 241.30 | 145.53 | 95.81 | 28 | 6.47 | 6.75 |
7 | 217.94 | 156.61 | 57.20 | 27 | 4.13 | 7.22 |
8 | 220.28 | 147.55 | 69.34 | 23 | 3.39 | 4.89 |
9 | 222.74 | 146.74 | 76.00 | 28 | 6.19 | 8.14 |
10 | 214.37 | 134.55 | 73.70 | 31 | 6.12 | 8.30 |
Extraction Number | n-Hexane to Kernel Ratio | Shaking Frequency (rpm) | Shaking Time (h) | Settling Time (h) | Total Extracted Oil (g) | Overall Oil Yield |
---|---|---|---|---|---|---|
Extraction 1 | 2:1 | 300 | 18 | 10 | 301.84 | 49.23% |
Extraction 2 | 1:1 | 270 | 15 | 11 | 114.46 | |
Extraction 3 | 1:1 | 250 | 13 | 6 | 48.46 | |
Extraction 4 | 1:1 | 250 | 12 | 3 | 20.61 | |
Extraction 5 | 1:1 | 250 | 11 | 6 | 6.92 |
Fatty Acid Name | Structure | Chemical Name | Formula | Molecular Mass (g/mol) | Relative Content (%vol.) |
---|---|---|---|---|---|
Palmitic acid | C16:0 | Hexadecanoic acid | C16H32O2 | 256.42 | 26.80 |
Palmitoleic acid | C16:1 | (9Z)-Hexadec-9-enoic acid | C16H30O2 | 254.41 | 0.42 |
Margaric acid | C17:0 | Hexadecanoic acid | C17H34O2 | 270.45 | 0.34 |
Stearic acid | C18:0 | Octadecanoic acid | C18H36O2 | 284.48 | 4.93 |
Oleic acid | C18:1 | (9Z)-Octadecenoic acid | C18H34O2 | 282.47 | 1.53 |
Oleic acid | C18:1 | trans-Octadecenoic acid | C18H34O2 | 282.47 | 19.90 |
Linoleic acid | C18:2 | cis-9,12-Octadecadienoic acid | C18H32O2 | 280.44 | 41.61 |
Linolenic acid | C18:3 | Methyl linolenate | C18H30O2 | 278.43 | 4.07 |
Arachidic acid | C20:0 | Eicosanoic acid | C20H40O2 | 312.53 | 0.40 |
Eicosenoic acid | C20:1 | (9Z)-9-Icosenoic acid | C20H38O2 | 310.52 | 0.01 |
Behenic acid | C22:0 | 1-Docosanoic acid | C22H44O2 | 340.58 | 0.01 |
Total saturated fatty acid | - | - | - | 32.47 | |
Total monosaturated fatty acid | - | - | - | 21.85 | |
Total polyunsaturated fatty acid | - | - | - | 46.68 | |
Total trans fatty acid | - | - | - | 19.90 | |
Degree of unsaturation | - | - | - | 113.22 | |
Ester content | - | - | - | 99.19 |
Properties | Unit | ULSD | Mandarin Biodiesel | ASTM Standard | Test Method |
---|---|---|---|---|---|
Density (at 15 °C temp.) | kg/m3 | 866 | 861 | 860–900 | ASTM D1298 |
Viscosity (at 40 °C temp.) | mm2/s | 4.10 | 3.96 | 3.5–5.0 | ASTM D445 |
Calorific value (CV) | MJ/kg | 45.665 | 41.446 | - | ASTM D240 |
Cetane number | - | 44 | 49.11 | - | - |
Flash point | °C | 60 | 174 | Min 100 | ASTM D93 |
Pour point | °C | −15 | −27 | −15 to −16 | ASTM D97 |
Cloud point | °C | −8.6 | −4 | −3 to −12 | ASTM D5773 |
Smoke point | °C | 293 | 256 | - | ASTM D1322 |
Auto-ignition temperature | °C | 256.9 | 296.15 | ASTM E659 | |
Acid value | mg KOH/g | Max 0.5 | 0.22 | Max 0.5 | ASTM D664 |
Carbon residue | m/m | 0.01 | 0.01 | - | ASTM D4530 |
Cold filter plugging point | °C | −3.0 | −7.5 | 0, <−15 winter | ASTM D6371 |
Iodine value | - | - | 106.21 | - | - |
Saponification number | - | - | 204.39 | - | - |
Long chain saturated factor | - | - | 5.56 | - | - |
Oxidation stability | hours | 5.0 | 5.17 | - | ASTM D2274 |
Name of the Product | Calorific Value (MJ/kg) |
---|---|
Crude bio-oil | 39.24 |
Cake material | 12.32 |
Biodiesel | 41.446 |
Glycerine | 23.92 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azad, A.K. Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel. Energies 2017, 10, 1689. https://doi.org/10.3390/en10111689
Azad AK. Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel. Energies. 2017; 10(11):1689. https://doi.org/10.3390/en10111689
Chicago/Turabian StyleAzad, A. K. 2017. "Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel" Energies 10, no. 11: 1689. https://doi.org/10.3390/en10111689
APA StyleAzad, A. K. (2017). Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel. Energies, 10(11), 1689. https://doi.org/10.3390/en10111689