A Chance-Constrained Economic Dispatch Model in Wind-Thermal-Energy Storage System
Abstract
:1. Introduction
1.1. Overview of the Economic Dispatch Model
1.2. Overview of the Energy Storage System
1.3. Overview of the Gaussian Mixture Model
1.4. Research Motivation and Objectives
2. Probabilistic Distribution Model of Final Wind Power Generation
3. Economic Dispatch Model in the Wind-Thermal-Storage System
3.1. Optimization Model of the Wind-Energy-Storage System
3.2. Chance-Constrained Economic Dispatch Model in the Wind-Thermal-Energy-Storage System
3.3. Approach for Solving the Chance-Constrained Economic Dispatch Problem
4. Case Studies and Results
4.1. Statistical Comparisons of the PDF and CDF of the FWPG
4.2. Results of the Chance-Constrained ED Model
4.3. Comparisons with and without ESS
5. Conclusions
- (i)
- The GMM distribution could fit the actual probabilistic and cumulative distributions of the FWPG of the W-ESS most accurately for all four W-ESS plants, comparing to other distributions.
- (ii)
- The operation costs decreased with the increasing penetration level of wind power. When the wind power penetration levels increased from 8.66%–30.31%, the average operation costs decreased approximately 31.21%∼38.53%.
- (iii)
- The case using the GMM distribution obtained the least operation costs, comparing to the normal and versatile distributions. The saving cost using the GMM distribution was the most, $4449, with the saving percentage 14.51% when the wind power penetration level was 21.65%.
- (iv)
- The usage of the ESS could help effectively decrease the operation costs to different degrees. The effectiveness of the usage of the ESS in the WTESS model was verified.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CDF | Cumulative distribution function |
GOF | Goodness-of-fit |
DFIG | Doubly-fed induction generator |
ED | Economic dispatch |
ESS | Energy storage system |
FWPG | Final wind power generation |
GMM | Gaussian mixture model |
LP | Linear programming |
MAE | Mean absolute error |
NLS | Nonlinear least square |
OWPG | Original wind power generation |
Probabilistic distribution function | |
PSO | Power system operator |
RMSE | Root mean square error |
SOC | State of charge |
W-ESS | Wind-energy storage system |
WTESS | Wind-thermal-energy storage system |
References
- Jiang, H.; Zhang, Y.; Zhang, J.J.; Gao, D.W.; Muljadi, E. Synchrophasor-based auxiliary controller to enhance the voltage stability of a distribution system with high renewable energy penetration. IEEE Trans. Smart Grid 2015, 6, 2107–2115. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, J.J.; Gao, D.W.; Zhang, Y.; Muljadi, E. Synchrophasor based auxiliary controller to enhance power system transient voltage stability in a high penetration renewable energy scenario. In Proceedings of the 2014 IEEE Symposium Power Electronics and Machines for Wind and Water Applications (PEMWA), Milwaukee, WI, USA, 24–26 July 2014; pp. 1–7.
- Cui, M.; Ke, D.; Sun, Y.; Gan, D.; Zhang, J.; Hodge, B.M. Wind power ramp event forecasting using a stochastic scenario generation method. IEEE Trans. Sustain. Energy 2015, 6, 422–433. [Google Scholar]
- Cui, M.; Zhang, J.; Florita, A.R.; Hodge, B.M.; Ke, D.; Sun, Y. An Optimized Swinging Door Algorithm for Identifying Wind Ramping Events. IEEE Trans. Sustain. Energy 2016, 7, 150–162. [Google Scholar] [CrossRef]
- Sedghi, M.; Ahmadian, A.; Aliakbar-Golkar, M. Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation. IEEE Trans. Power Syst. 2016, 31, 304–316. [Google Scholar] [CrossRef]
- Wilches-Bernal, F.; Chow, J.H.; Sanchez-Gasca, J.J. A Fundamental Study of Applying Wind Turbines for Power System Frequency Control. IEEE Trans. Power Syst. 2016, 31, 1496–1505. [Google Scholar] [CrossRef]
- Díaz-González, F.; Hau, M.; Sumper, A.; Gomis-Bellmunt, O. Participation of wind power plants in system frequency control: Review of grid code requirements and control methods. Renew. Sustain. Energy Rev. 2014, 34, 551–564. [Google Scholar] [CrossRef]
- Orfanos, G.A.; Georgilakis, P.S.; Hatziargyriou, N.D. Transmission expansion planning of systems with increasing wind power integration. IEEE Trans. Power Syst. 2013, 28, 1355–1362. [Google Scholar] [CrossRef]
- Ketabi, A.; Fini, M.H. An underfrequency load shedding scheme for hybrid and multiarea power systems. IEEE Trans. Smart Grid 2015, 6, 82–91. [Google Scholar] [CrossRef]
- Akhavan-Hejazi, H.; Mohsenian-Rad, H. Optimal operation of independent storage systems in energy and reserve markets with high wind penetration. IEEE Trans. Smart Grid 2014, 5, 1088–1097. [Google Scholar] [CrossRef]
- Cardenas, R.; Pena, R.; Alepuz, S.; Asher, G. Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Trans. Ind. Electron. 2013, 60, 2776–2798. [Google Scholar] [CrossRef]
- Wang, L.; Singh, C. Balancing risk and cost in fuzzy economic dispatch including wind power penetration based on particle swarm optimization. Electr. Power Syst. Res. 2008, 78, 1361–1368. [Google Scholar] [CrossRef]
- Liu, Y.; Ferris, M.C.; Zhao, F. Computational study of security constrained economic dispatch with multi-stage rescheduling. IEEE Trans. Power Syst. 2015, 30, 920–929. [Google Scholar] [CrossRef]
- Niknam, T.; Azizipanah-Abarghooee, R.; Aghaei, J. A new modified teaching-learning algorithm for reserve constrained dynamic economic dispatch. IEEE Trans. Power Syst. 2013, 28, 749–763. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, J.; Wu, H.; Hodge, B.M. Wind-friendly flexible ramping product design in multi-timescale power system operations. IEEE Trans. Sustain. Energy 2017. [Google Scholar] [CrossRef]
- Zhou, B.; Littler, T. Local storage meets local demand: A technical solution to future power distribution system. IET Gener. Transm. Distrib. 2016, 10, 704–711. [Google Scholar] [CrossRef]
- Tewari, S.; Mohan, N. Value of NAS energy storage toward integrating wind: Results from the wind to battery project. IEEE Transactions on Power Systems 2013, 28, 532–541. [Google Scholar] [CrossRef]
- Gong, Y.; Jiang, Q.; Baldick, R. Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System. IEEE Trans. Power Syst. 2016, 31, 1831–1844. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, H. Two-time-scale coordination control for a battery energy storage system to mitigate wind power fluctuations. IEEE Trans. Energy Convers. 2013, 28, 52–61. [Google Scholar] [CrossRef]
- Wen, S.; Lan, H.; Fu, Q.; David, C.Y.; Zhang, L. Economic allocation for energy storage system considering wind power distribution. IEEE Trans. Power Syst. 2015, 30, 644–652. [Google Scholar] [CrossRef]
- Ke, D.; Chung, C.; Sun, Y. A novel probabilistic optimal power flow model with uncertain wind power generation described by customized Gaussian mixture model. IEEE Trans. Sustain. Energy 2016, 7, 200–212. [Google Scholar] [CrossRef]
- Singh, R.; Pal, B.C.; Jabr, R.A. Statistical representation of distribution system loads using Gaussian mixture model. IEEE Trans. Power Syst. 2010, 25, 29–37. [Google Scholar] [CrossRef]
- Valverde, G.; Saric, A.; Terzija, V. Probabilistic load flow with non-Gaussian correlated random variables using Gaussian mixture models. IET Gener. Transm. Distrib. 2012, 6, 701–709. [Google Scholar] [CrossRef]
- Gu, Y.; Jiang, H.; Zhang, Y.; Gao, D.W. Statistical scheduling of economic dispatch and energy reserves of hybrid power systems with high renewable energy penetration. In Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5 November 2014; pp. 530–534.
- Moré, J.J.; Sorensen, D.C. Computing a trust region step. SIAM J. Sci. Stat. Comput. 1983, 4, 553–572. [Google Scholar] [CrossRef]
- Cui, M.; Ke, D.; Sun, Y.; Gan, D. Statistical scenarios forecasting of wind power ramp events using modified neural networks. J. Mod. Power Syst. Clean Energy 2015, 3, 371–380. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Zhang, J.J.; Muljadi, E. PMU-aided voltage security assessment for a wind power plant. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5.
- Hetzer, J.; David, C.Y.; Bhattarai, K. An economic dispatch model incorporating wind power. IEEE Trans. Energy Convers. 2008, 23, 603–611. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Y.; Gao, D.W.; Lin, J.; Cheng, L. A versatile probability distribution model for wind power forecast errors and its application in economic dispatch. IEEE Trans. Power Syst. 2013, 28, 3114–3125. [Google Scholar] [CrossRef]
- Ozturk, U.A.; Mazumdar, M.; Norman, B.A. A solution to the stochastic unit commitment problem using chance constrained programming. IEEE Trans. Power Syst. 2004, 19, 1589–1598. [Google Scholar] [CrossRef]
- Albadi, M.; El-Saadany, E. Comparative study on impacts of wind profiles on thermal units scheduling costs. IET Renew. Power Gener. 2011, 5, 26–35. [Google Scholar] [CrossRef]
- Yan, X.; Quintana, V.H. An efficient predictor-corrector interior point algorithm for security-constrained economic dispatch. IEEE Trans. Power Syst. 1997, 12, 803–810. [Google Scholar] [CrossRef]
- Huang, C.M.; Yang, H.T.; Huang, C.L. Bi-objective power dispatch using fuzzy satisfaction-maximizing decision approach. IEEE Trans. Power Syst. 1997, 12, 1715–1721. [Google Scholar] [CrossRef]
Line No. | Cap. (MW) | Line No. | Cap. (MW) | Line No. | Cap. (MW) | Line No. | Cap. (MW) | Line No. | Cap. (MW) | Line No. | Cap. (MW) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 20.0 | 8 | 15.0 | 15 | 70.0 | 22 | 50.0 | 29 | 20.0 | 36 | 50.0 |
2 | 20.0 | 9 | 15.0 | 16 | 50.0 | 23 | 50.0 | 30 | 20.0 | 37 | 50.0 |
3 | 20.0 | 10 | 55.0 | 17 | 70.0 | 24 | 50.0 | 31 | 20.0 | 38 | 50.0 |
4 | 20.0 | 11 | 50.0 | 18 | 50.0 | 25 | 20.0 | 32 | 50.5 | 39 | 50.0 |
5 | 20.0 | 12 | 50.0 | 19 | 50.0 | 26 | 20.0 | 33 | 50.0 | 40 | 50.0 |
6 | 20.0 | 13 | 30.0 | 20 | 50.0 | 27 | 20.0 | 34 | 50.0 | 41 | 50.0 |
7 | 10.0 | 14 | 50.0 | 21 | 50.0 | 28 | 20.0 | 35 | 15.0 |
Gen. No. | Fuel Cost Coefficients ($/h) | Output Limits (p.u.) | Reserve Limits (p.u.) | ||||
---|---|---|---|---|---|---|---|
1 | 100 | 200 | 10 | 0.4 | 1 | 0.2 | 0.2 |
2 | 120 | 150 | 10 | 0.4 | 1 | 0.2 | 0.2 |
3 | 40 | 180 | 20 | 0.4 | 1 | 0.2 | 0.2 |
4 | 60 | 100 | 10 | 0.4 | 1 | 0.2 | 0.2 |
5 | 40 | 180 | 20 | 0.4 | 1 | 0.2 | 0.2 |
6 | 40 | 180 | 20 | 0.4 | 1 | 0.2 | 0.2 |
Dist. | WF-I | WF-II | WF-III | WF-IV | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | GOF | RMSE | MAE | GOF | RMSE | MAE | GOF | RMSE | MAE | GOF | RMSE | |
Norm. | 0.11 | 8.11 | 0.15 | 0.17 | 6.44 | 0.18 | 0.16 | 7.48 | 0.21 | 0.17 | 5.32 | 0.19 |
Log. | 0.09 | 6.52 | 0.12 | 0.08 | 3.18 | 0.14 | 0.08 | 4.32 | 0.18 | 0.12 | 4.18 | 0.15 |
Vers. | 0.04 | 0.44 | 0.06 | 0.05 | 0.84 | 0.07 | 0.05 | 1.01 | 0.11 | 0.08 | 1.08 | 0.08 |
GMM | 0.02 | 0.11 | 0.03 | 0.02 | 0.23 | 0.03 | 0.01 | 0.19 | 0.05 | 0.01 | 0.23 | 0.04 |
Dist. | WF-I | WF-II | WF-III | WF-IV | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | GOF | RMSE | MAE | GOF | RMSE | MAE | GOF | RMSE | MAE | GOF | RMSE | |
Norm. | 0.15 | 5.47 | 0.21 | 0.21 | 8.77 | 0.25 | 0.21 | 5.33 | 0.17 | 0.22 | 7.99 | 0.16 |
Log. | 0.11 | 4.35 | 0.17 | 0.14 | 5.69 | 0.19 | 0.17 | 3.88 | 0.12 | 0.15 | 5.84 | 0.12 |
Vers. | 0.07 | 1.38 | 0.09 | 0.09 | 1.39 | 0.12 | 0.15 | 1.11 | 0.09 | 0.11 | 3.25 | 0.05 |
GMM | 0.04 | 0.49 | 0.05 | 0.04 | 0.41 | 0.07 | 0.09 | 0.56 | 0.03 | 0.07 | 0.99 | 0.02 |
W-ESS Plant | Saving Metrics | Wind Power Penetration Levels | |||||
---|---|---|---|---|---|---|---|
8.66% | 12.99% | 17.32% | 21.65% | 25.98% | 30.31% | ||
WF-I | Cost ($) | 20,533 | 21,609 | 15,170 | 17,423 | 15,708 | 16,072 |
Percentage (%) | 35.55 | 38.29 | 31.21 | 36.43 | 34.61 | 36.58 | |
WF-II | Cost ($) | 26,854 | 20,166 | 21,533 | 22,075 | 16,733 | 16,817 |
Percentage (%) | 38.75 | 32.32 | 35.45 | 37.32 | 32.76 | 35.64 | |
WF-III | Cost ($) | 25,621 | 26,009 | 15,287 | 15,216 | 17,881 | 17,976 |
Percentage (%) | 38.86 | 39.61 | 28.03 | 29.10 | 34.46 | 36.11 | |
WF-IV | Cost ($) | 21,216 | 17,315 | 18,776 | 23,151 | 19,752 | 18,963 |
Percentage (%) | 33.19 | 29.97 | 33.68 | 41.71 | 38.71 | 38.29 |
Wind Farms | Consuming Time (s) |
---|---|
WF-I | 635 |
WF-II | 689 |
WF-III | 701 |
WF-IV | 653 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Li, Y.; Xu, M.; Zhou, L.; Cui, M. A Chance-Constrained Economic Dispatch Model in Wind-Thermal-Energy Storage System. Energies 2017, 10, 326. https://doi.org/10.3390/en10030326
Hu Y, Li Y, Xu M, Zhou L, Cui M. A Chance-Constrained Economic Dispatch Model in Wind-Thermal-Energy Storage System. Energies. 2017; 10(3):326. https://doi.org/10.3390/en10030326
Chicago/Turabian StyleHu, Yanzhe, Yang Li, Mengjie Xu, Li Zhou, and Mingjian Cui. 2017. "A Chance-Constrained Economic Dispatch Model in Wind-Thermal-Energy Storage System" Energies 10, no. 3: 326. https://doi.org/10.3390/en10030326
APA StyleHu, Y., Li, Y., Xu, M., Zhou, L., & Cui, M. (2017). A Chance-Constrained Economic Dispatch Model in Wind-Thermal-Energy Storage System. Energies, 10(3), 326. https://doi.org/10.3390/en10030326