Recent Progress and Novel Applications in Enzymatic Conversion of Carbon Dioxide
Abstract
:1. Introduction
2. Natural Conversion of CO2 in Cells
3. Enzymatic Conversion of CO2 In Vitro
3.1. Reduction Reactions
3.1.1. Conversion of CO2 to Carbon Monoxide
3.1.2. Conversion of CO2 to Formic Acid/Formate
3.1.3. Conversion of CO2 to Methanol
3.1.4. Conversion of CO2 to Methane
3.1.5. Conversion of CO2 to Glucose
3.2. Conversion of CO2 to Bicarbonate
3.3. Carboxylation Reactions
3.3.1. Carboxylation of Epoxides
3.3.2. Carboxylation of Aromatics
3.3.3. Carboxylation of Hetero-Aromatics
3.3.4. Carboxylation of Aliphatic Substrates
4. Industrial Applications
5. Barriers and Future Perspectives
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ADH | Alcohol dehydrogenase |
CO | Carbon monoxide |
CO2 | Carbon dioxide |
CCS | CO2 capture and storage |
CODH | Carbon monoxide dehydrogenases |
CA | Carbonic anhydrase |
FDH | Formate dehydrogenase |
CCCCs | Calcium carbonate crystalline composites |
FaldDH | Formaldehyde dehydrogenase |
CH4 | Methane |
HCO3− | Bicarbonate |
HOOC-FMS | Carboxylic acid group-functionalized mesoporous silica |
RuBisCO | Ribulose-1,5-bisphosphate carboxylase/oxygenase |
References
- Leung, D.Y.C.; Caramanna, G.; Mercedes Maroto-Valer, M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, Y.; Jiang, Z.; Wang, X.; Wang, X.; Zhang, S.; Han, P.; Yan, C. Enzymatic conversion of carbon dioxide. Chem. Soc. Rev. 2015, 44, 5981–6000. [Google Scholar] [CrossRef] [PubMed]
- Milani, D.; Khalilpour, R.; Zahedi, G.; Abbas, A. A model-based analysis of CO2 utilization in methanol synthesis plant. J. CO2 Util. 2015, 10, 12–22. [Google Scholar] [CrossRef]
- Anthofer, M.H.; Wilhelm, M.E.; Cokoja, M.; Kühn, F.E. Valorization of carbon dioxide to organic products with organocatalysts. In Transformation and Utilization of Carbon Dioxide; Bhanage, B.M., Arai, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Aresta, M.; Dibenedetto, A.; Quaranta, E. Reaction Mechanisms in Carbon Dioxide Conversion; Springer: Berlin/Heidelberg, Germany, 2015; pp. 347–371. [Google Scholar]
- Aresta, M.; Quaranta, E.; Liberio, R.; Dileo, C.; Tommasi, I. Enzymatic synthesis of 4-OH-benzoic acid from phenol and CO2: The first example of a biotechnological application of a carboxylase enzyme. Tetrahedron 1998, 54, 8841–8846. [Google Scholar] [CrossRef]
- Obert, R.; Dave, B.C. Enzymatic conversion of carbon dioxide to methanol: Enhanced methanol production in silica sol-gel matrices. J. Am. Chem. Soc. 1999, 121, 12192–12193. [Google Scholar] [CrossRef]
- Yong, J.K.J.; Stevens, G.W.; Caruso, F.; Kentish, S.E. The use of carbonic anhydrase to accelerate carbon dioxide capture processes. J. Chem. Technol. Biotechnol. 2015, 90, 3–10. [Google Scholar] [CrossRef]
- Kim, D.H.; Vinoba, M.; Shin, W.S.; Lim, K.S.; Jeong, S.K.; Kim, S.K. Biomimetic sequestration of carbon dioxide using an enzyme extracted from oyster shell. Korean J. Chem. Eng. 2011, 28, 2081–2085. [Google Scholar] [CrossRef]
- Fuchs, G. Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life? Annu. Rev. Microbiol. 2011, 65, 631–658. [Google Scholar] [CrossRef] [PubMed]
- Berg, I.A.; Kockelkorn, D.; Ramos-Vera, W.H.; Say, R.; Zarzycki, J.; Fuchs, G. Autotrophic carbon fixation in biology: Pathways, rules, and speculations. In Carbon Dioxide as Chemical Feedstock; Aresta, M., Ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; pp. 33–53. [Google Scholar]
- Alissandratos, A.; Easton, C.J. Biocatalysis for the application of CO2 as a chemical feedstock. Beilstein J. Org. Chem. 2015, 11, 2370–2387. [Google Scholar] [CrossRef] [PubMed]
- Erb, T.J. Carboxylases in natural and synthetic microbial pathways. Appl. Environ. Microbiol. 2011, 77, 8466–8477. [Google Scholar] [CrossRef] [PubMed]
- Bar-Even, A.; Noor, E.; Lewis, N.E.; Milo, R. Design and analysis of synthetic carbon fixation pathways. Proc. Natl. Acad. Sci. USA 2010, 107, 8889–8894. [Google Scholar] [CrossRef] [PubMed]
- Ducat, D.C.; Silver, P.A. Improving carbon fixation pathways. Curr. Opin. Chem. Biol. 2012, 16, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Bar-Even, A.; Noor, E.; Milo, R. A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 2012, 63, 2325–2342. [Google Scholar] [CrossRef] [PubMed]
- Woolerton, T.W.; Sheard, S.; Reisner, E.; Pierce, E.; Ragsdale, S.W.; Armstrong, F.A. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J. Am. Chem. Soc. 2010, 132, 2132–2133. [Google Scholar] [CrossRef] [PubMed]
- Ragsdale, S. Life with carbon monoxide. Crit. Rev. Biochem. Mol. Biol. 2004, 39, 165–195. [Google Scholar] [CrossRef] [PubMed]
- Parkin, A.; Seravalli, J.; Vincent, K.A.; Ragsdale, S.W.; Armstrong, F.A. Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. J. Am. Chem. Soc. 2007, 129, 10328–10329. [Google Scholar] [CrossRef] [PubMed]
- Appel, A.M.; Bercaw, J.E.; Bocarsly, A.B.; Dobbek, H.; DuBois, D.L.; Dupuis, M.; Ferry, J.G.; Fujita, E.; Hille, R.; Kenis, P.J.A.; et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2. Chem. Rev. 2013, 113, 6621–6658. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.; Lee, S.H.; Shin, J.W.; Lee, S.P.; Kim, Y. Highly selective electrocatalytic conversion of CO2 to CO at −0.57 V (NHE) by carbon monoxide dehydrogenase from Moorella thermoacetica. J. Am. Chem. Soc. 2003, 125, 14688–14689. [Google Scholar] [CrossRef] [PubMed]
- Woolerton, W.; Sheard, S.; Pierce, E.; Ragsdale, S.W.; Armstrong, F.A. CO2 photoreduction at enzyme-modified metal oxide nanoparticles. Energy Environ. Sci. 2011, 4, 2393–2399. [Google Scholar] [CrossRef]
- Bachmeier, A.; Wang, V.C.C.; Woolerton, T.W.; Bell, S.; Fontecilla-Camps, J.C.; Can, M.; Ragsdale, S.W.; Chaudhary, Y.S.; Armstrong, F.A. How light-harvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction. J. Am. Chem. Soc. 2013, 135, 15026–15032. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Guerra, M.; Quintanilla, S.; Irabien, A. Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode. Chem. Eng. J. 2012, 207–208, 278–284. [Google Scholar] [CrossRef]
- Rees, N.V.; Compton, R.G. Sustainable energy: A review of formic acid electrochemical fuel cells. J. Solid State Electrochem. 2011, 15, 2095–2100. [Google Scholar] [CrossRef]
- Innocent, B.; Liaigre, D.; Pasquier, D.; Ropital, F.; Léger, J.-M.; Kokoh, K.B. Electroreduction of carbon dioxide to formate on lead electrode in aqueous medium. J. Appl. Electrochem. 2009, 39, 227–232. [Google Scholar] [CrossRef]
- Neuhauser, W.; Steininger, M.; Haltrich, D.; Kulbe, K.D.; Nidetzky, B. A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration. Biotechnol. Bioeng. 1998, 60, 277–282. [Google Scholar] [CrossRef]
- Ruschig, U.; Müller, U.; Willnow, P.; Höpner, T. CO2 reduction to formate by NADH catalysed by formate dehydrogenase from Pseudomonas oxalaticus. Eur. J. Biochem. 1976, 70, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Tishkov, V.I.; Popov, V.O. Catalytic mechanism and application of formate dehydrogenase biochemistry. Biochemistry 2004, 69, 1252–1267. [Google Scholar] [PubMed]
- Lu, Y.; Jiang, Z.; Xu, S.; Wu, H. Efficient conversion of CO2 to formic acid by formate dehydrogenase immobilized in a novel alginate–silica hybrid gel. Catal. Today 2006, 115, 263–268. [Google Scholar] [CrossRef]
- Reda, T.; Plugge, C.M.; Abram, N.J.; Hirst, J. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc. Natl. Acad. Sci. USA 2008, 105, 10654–10658. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.K.; Baeg, J.O.; Oh, G.H.; Park, N.J.; Kong, K.J.; Kim, J.H.; Hwang, D.W.; Biswas, S.K. A photocatalyst–enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. J. Am. Chem. Soc. 2012, 134, 11455–11461. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.K.; Baeg, J.O.; Kumar, A.; Kong, K.J.; Oh, G.H.; Park, N.J. Graphene–BODIPY as a photocatalyst in the photocatalytic–biocatalytic coupled system for solar fuel production from CO2. J. Mater. Chem. A 2014, 2, 5068–5076. [Google Scholar] [CrossRef]
- Kim, S.; Kim, M.K.; Lee, S.H.; Yoon, S.H.; Jung, K.D. Conversion of CO2 to formate in an electroenzymatic cell using Candida boidinii formate dehydrogenase. J. Mol. Catal. B Enzym. 2014, 102, 9–15. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Baran, T.; Angelini, A.; Łabuz, P.; Macyk, W. An integrated photocatalytic-enzymatic system for the reduction of CO2 to methanol in bio-glycerol-water. Beilstein J. Org. Chem. 2014, 10, 2556–2565. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Lu, Y.; Li, J.; Jiang, Z.; Wu, H. Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases Co-encapsulated in an alginate-silica (ALG-SiO2) hybrid gel. Ind. Eng. Chem. Res. 2006, 45, 4567–4573. [Google Scholar] [CrossRef]
- Shchipunov, Y.A.; Karpenkoa, T.Y.; Bakuninab, I.Y.; Burtsevab, Y.V.; Zvyagintseva, T.N. A new precursor for the immobilization of enzymes inside sol-gel-derived hybrid silica nanocomposites containing polysaccharides. J. Biochem. Biophys. Methods 2004, 58, 25–38. [Google Scholar] [CrossRef]
- Meyer, M.; Fischer, A.; Hoffmann, H. Novel ringing silica gels that do not shrink. J. Phys. Chem. B 2002, 106, 1528–1533. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, R.; Liu, Z.; Huang, Y.; Wang, Y.; He, J.; Han, B.; Yang, G. Polypropylene/silica nanocomposites prepared by in-situ sol-gel reaction with the aid of CO2. Macromolecules 2005, 38, 5617–5624. [Google Scholar] [CrossRef]
- Sultana, S.; Sahoo, P.C.; Martha, S.; Parida, K. A review of harvesting clean fuels from enzymatic CO2 reduction. RSC Adv. 2016, 6, 44170–44194. [Google Scholar] [CrossRef]
- Luo, J.; Meyer, A.S.; Mateiu, R.V.; Pinelo, M. Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol. New Biotechnol. 2015, 32, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.K.; Oh, G.H.; Park, N.J.; Kumar, A.; Kong, K.J.; Baeg, J.O. Highly selective solar-driven methanol from CO2 by a photocatalyst/biocatalyst integrated system. J. Am. Chem. Soc. 2014, 136, 16728–16731. [Google Scholar] [CrossRef] [PubMed]
- Schlager, S.; Dumitru, L.M.; Haberbauer, M.; Fuchsbauer, A.; Neugebauer, H.; Hiemetsberger, D.; Wagner, A.; Portenkirchner, E.; Sariciftci, N.S. Electrochemical reduction of carbon dioxide to methanol by direct injection of electrons into immobilized enzymes on a modified electrode. ChemSusChem 2016, 9, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Baskaya, F.S.; Zhao, X.; Flickinger, M.C.; Wang, P. Thermodynamic feasibility of enzymatic reduction of carbon dioxide to methanol. Appl. Biochem. Biotechnol. 2010, 162, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Y.; Moure, V.R.; Dean, D.R.; Seefeldt, L.C. Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proc. Natl. Acad. Sci. USA 2012, 109, 19644–19648. [Google Scholar] [CrossRef] [PubMed]
- Rebelein, J.G.; Hu, Y.; Ribbe, M.W. Differential Reduction of CO2 by molybdenum and vanadium nitrogenases. Angew. Chem. Int. Ed. Engl. 2014, 53, 11543–11546. [Google Scholar] [CrossRef] [PubMed]
- Bassham, J.A.; Calvin, M. The path of carbon in photosynthesis. In Die CO2-Assimilation/The Assimilation of Carbon Dioxide; Springer: Berlin/Heidelberg, Germany, 1960; Volume 5, pp. 884–922. [Google Scholar]
- Wendell, D.; Todd, J.; Montemagno, C. Artificial photosynthesis in ranaspumin-2 based foam. Nano Lett. 2010, 10, 3231–3236. [Google Scholar] [CrossRef] [PubMed]
- Gil, H.S.; Jeon, H.C.; Kim, H.S.; Jun, S.H.; Jin, E.S.; Kim, J.B. One-pot enzymatic conversion of carbon dioxide and utilization for improved microbial growth. Environ. Sci. Technol. 2015, 49, 4466–4472. [Google Scholar]
- Lindskog, S.; Coleman, J.E. The catalytic mechanism of carbonic anhydrase. Proc. Natl. Acad. Sci. USA 1973, 70, 2505–2508. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, B.; Qi, W.; Li, X.; Shin, Y.; Lei, C.; Liu, J. Enzymatic conversion of CO2 to bicarbonate in functionalized mesoporous silica. Microporous Mesoporous Mater. 2012, 153, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Blais, R.; Rogers, P. Process and Apparatus for the Treatment of Carbon Dioxide with Carbonic Anhydrase. U.S. Patent 6524843, 25 February 2003. [Google Scholar]
- Savile, C.K.; Lalonde, J.J. Biotechnology for the acceleration of carbon dioxide capture and sequestration. Curr. Opin. Biotechnol. 2011, 22, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Newman, L.M.; Clark, L.; Ching, C.; Zimmerma, S. Carbonic Anhydrase Polypeptides and Uses Thereof. U.S. Patent WO10081007, 15 July 2010. [Google Scholar]
- Daigle, R.; Desrochers, M. Carbonic Anhydrase Having Increased Stability under High Temperature Conditions. U.S. Patent 7521217, 21 April 2009. [Google Scholar]
- Zhang, S.H.; Lu, H.; Lu, Y.Q. Enhanced stability and chemical resistance of a new nanoscale biocatalyst for accelerating CO2 absorption into a carbonate solution. Environ. Sci. Technol. 2013, 47, 13882–13888. [Google Scholar] [CrossRef] [PubMed]
- Trachtenberg, M.C. Novel Enzyme Compositions for Removing Carbon Dioxide from a Mixed Gas. U.S. Patent 20080003662, 3 January 2008. [Google Scholar]
- Zhang, Y.T.; Zhang, L.; Chen, H.L.; Zhang, H.M. Selective separation of low concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors. Chem. Eng. Sci. 2010, 65, 3199–3207. [Google Scholar] [CrossRef]
- Romanov, V.; Soong, Y.; Carney, C.; Rush, G.E.; Nielsen, B.; O’Connor, W. Mineralization of carbon dioxide: A literature review. ChemBioEng Rev. 2015, 2, 231–256. [Google Scholar] [CrossRef]
- Park, H.S.; Han, J.Y.; Lee, J.S.; Kim, K.M.; Jo, H.J.; Min, B.R. Comparison of two processes forming CaCO3 precipitates by electrolysis. Energies 2016, 9, 1052. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y.; Zhang, T.C. Enzymatic sequestration of carbon dioxide. In Carbon Capture and Storage: Physical, Chemical, and Biological Methods; Surampalli, R.Y., Zhang, T.C., Tyagi, R.D., Naidu, R., Gurjar, B.R., Ojha, C.S.P., Yan, S., Brar, S.K., Ramakrishnan, A., Kao, C.M., Eds.; ASCE: Reston, VI, USA, 2015. [Google Scholar]
- Lee, S.W.; Park, S.B.; Jeong, S.K.; Lim, K.S.; Lee, S.H.; Trachtenberg, M.C. On carbon dioxide storage based on biomineralization strategies. Micron 2010, 41, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Mirjafari, P.; Asghari, K.; Mahinpey, N. Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind. Eng. Chem. Res. 2007, 46, 921–926. [Google Scholar] [CrossRef]
- Jang, J.G.; Kim, G.M.; Kim, H.J.; Lee, H.K. Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials. Construct. Build. Mater. 2016, 127, 762–773. [Google Scholar] [CrossRef]
- Capasso, C.; Luca, V.D.; Carginale, V.; Caramuscio, P.; Cavalheiro, C.F.N.; Cannio, R.; Rossi, M. Characterization and properties of a new thermoactive and thermostable carbonic anhydrase. Chem. Eng. Trans. 2012, 27, 271–276. [Google Scholar]
- Hwang, E.T.; Gang, H.; Chung, J.; Gu, M.B. Carbonic anhydrase assisted calcium carbonate crystalline composites as a biocatalyst. Green Chem. 2012, 14, 2216–2220. [Google Scholar] [CrossRef]
- Vinoba, M.; Kim, D.H.; Lim, K.S.; Jeong, S.K.; Lee, S.W.; Alagar, M. Biomimetic sequestration of CO2 and reformation to CaCO3 using bovine carbonic anhydrase immobilized on SBA-15. Energy Fuel 2011, 25, 438–445. [Google Scholar] [CrossRef]
- Yadav, R.; Joshi, M.; Wanjari, S.; Prabhu, C.; Kotwal, S.; Satyanarayanan, T.; Rayalu, S. Immobilization of carbonic anhydrase on chitosan stabilized iron nanoparticles for the carbonation reaction. Water Air Soil Pollut. 2012, 223, 5345–5356. [Google Scholar] [CrossRef]
- Forsyth, C.; Yip, T.W.S.; Patwardhan, S.V. CO2 sequestration by enzyme immobilized onto bioinspired silica. Chem. Commun. 2013, 49, 3191–3193. [Google Scholar] [CrossRef] [PubMed]
- Shekh, A.Y.; Krishnamurthi, K.; Mudliar, S.N.; Yadav, R.R.; Fulke, A.B.; Devi, S.S.; Chakrabarti, T. Recent advancements in carbonic anhydrase–driven processes for CO2 sequestration: Minireview. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1419–1440. [Google Scholar] [CrossRef]
- Yadav, R.R.; Kannan, K.; Sandeep, M.; Devi, S.S.; Naoghare, P.K.; Bafana, A.; Chakrabarti, T. Carbonic anhydrase mediated carbon dioxide sequestration: Promises, challenges and future prospects. J. Basic Microbiol. 2014, 54, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Glueck, S.M.; Gümüs, S.; Fabian, W.M.; Faber, K. Biocatalytic carboxylation. Chem. Soc. Rev. 2010, 39, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.R.; Ensign, S.A. Carboxylation of epoxides to beta-keto acids in cell extracts of Xanthobacter strain Py2. J. Bacteriol. 1996, 178, 1469–1472. [Google Scholar] [CrossRef] [PubMed]
- Wuensch, C.; Glueck, S.M.; Gross, J.; Koszelewski, D.; Schober, M.; Faber, K. Regioselective enzymatic carboxylation of phenols and hydroxystyrene derivatives. Org. Lett. 2012, 14, 1974–1977. [Google Scholar] [CrossRef] [PubMed]
- Aresta, M.; Dibenedetto, A. Development of environmentally friendly syntheses: Use of enzymes and biomimetic systems for the direct carboxylation of organic substrates. Rev. Mol. Biotechnol. 2002, 90, 113–128. [Google Scholar] [CrossRef]
- Kirimura, K.; Gunji, H.; Wakayama, R.; Hattori, T.; Ishii, Y. Enzymatic Kolbe–Schmitt reaction to form salicylic acid from phenol: Enzymatic characterization and gene identification of a novel enzyme, Trichosporon moniliiforme salicylic acid decarboxylase. Biochem. Biophys. Res. Commun. 2010, 394, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Kirimura, K.; Yanaso, S.; Kosaka, S.; Koyama, K.; Hattori, T.; Ishii, Y. Production of p-aminosalicylic acid through enzymatic Kolbe-Schmitt reaction catalyzed by reversible salicylic acid decarboxylase. Chem. Lett. 2011, 40, 206–208. [Google Scholar] [CrossRef]
- Yoshida, T.; Inami, Y.; Matsui, T.; Nagasawa, T. Regioselective carboxylation of catechol by 3,4-dihydroxybenzoate decarboxylase of Enterobacter cloacae P. Biotechnol. Lett. 2010, 32, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Yoshida, T.; Yoshimura, T.; Nagasawa, T. Regioselective carboxylation of 1,3-dihydroxybenzene by 2,6-dihydroxybenzoate decarboxylase of Pandoraea sp. 12B-2. Appl. Microbiol. Biotechnol. 2006, 73, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, Y.; Kino, K.; Nishide, H.; Kirimura, K. Regioselective and enzymatic production of γ-resorcylic acid from resorcinol using recombinant Escherichia coli cells expressing a novel decarboxylase gene. Biotechnol. Lett. 2007, 29, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Wuensch, C.; Pavkov-Keller, T.; Steinkellner, G.; Gross, J.; Fuchs, M.; Hromic, A.; Lyskowski, A.; Fauland, K.; Gruber, K.; Glueck, S.M.; et al. Regioselective enzymatic β-carboxylation of para-hydroxy-styrene derivatives catalyzed by phenolic acid decarboxylases. Adv. Synth. Catal. 2015, 357, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Pesci, L.; Glueck, S.M.; Gurikov, P.; Smirnova, I.; Faber, K.; Liese, A. Biocatalytic carboxylation of phenol derivatives: Kinetics and thermodynamics of the biological Kolbe–Schmitt synthesis. FEBS J. 2015, 282, 1334–1345. [Google Scholar] [CrossRef] [PubMed]
- Omura, H.; Wieser, M.; Nagasawa, T. Pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910, an organic-acid-requiring enzyme. Eur. J. Biochem. 1998, 253, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Wieser, M.; Fujii, N.; Yoshida, T.; Nagasawa, T. Carbon dioxide fixation by reversible pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910. Eur. J. Biochem. 1998, 257, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Wieser, M.; Yoshida, T.; Nagasawa, T. Carbon dioxide fixation by reversible pyrrole-2-carboxylate decarboxylase and its application. J. Mol. Catal. B Enzym. 2001, 11, 179–184. [Google Scholar] [CrossRef]
- Miyazaki, M.; Shibue, M.; Ogino, K.; Nakamura, H.; Maeda, H. Enzymatic synthesis of pyruvic acid from acetaldehyde and carbon dioxide. Chem. Commun. 2001, 1800–1801. [Google Scholar] [CrossRef]
- Tong, X.; El-Zahab, B.; Zhao, X.; Liu, Y.; Wang, P. Enzymatic synthesis of L-lactic acid from carbon dioxide and ethanol with an inherent cofactor regeneration cycle. Biotechnol. Bioeng. 2011, 108, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Barzagli, F.; Mani, F.; Peruzzini, M. From greenhouse gas to feedstock: Formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions. Green Chem. 2011, 13, 1267–1274. [Google Scholar] [CrossRef]
- Harnessing Nature for Low Cost, Operationally Superior, and Environmentally Friendly Carbon Capture. Available online: http://www.co2solutions.com (accessed on 1 November 2016).
- Quebec City’s CO2 Solutions Posts Results from Valleyfield Demonstration Project. Available online: http://www.cantechletter.com/2016/01/quebec-citys-co2-solutions-posts-results-from-valleyfield-demonstration-project/ (accessed on 1 November 2016).
- Alvizo, O.; Nguyen, L.J.; Savile, C.K.; Bresson, J.A.; Lakhapatri, S.L.; Solis, E.O.P.; Fox, R.J.; Broering, J.M.; Benoit, M.R.; Zimmerman, S.A.; et al. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas. Proc. Natl. Acad. Sci. USA 2014, 11, 16436–16441. [Google Scholar] [CrossRef] [PubMed]
- Lalande, J.M.; Tremblay, A. Process and a Plant for the Production of Portland Cement Clinker. Patent US6908507, 21 June 2005. [Google Scholar]
- The Science of Climostat. Available online: http://www.climostat.co.uk/science/ (accessed on 1 November 2016).
- Companies Turn CO2 into C3 Sugars, Adding to Biomass-Based Model. Available online: http://biomassmagazine.com/articles/9581/companies-turn-co2-into-c3-sugars-adding-to-biomass-based-model (accessed on 1 November 2016).
- Mennicken, L.; Janz, A.; Roth, S. The German R&D program for CO2 utilization—Inovations for a green economy. Environ. Sci. Pollut. Res. Int. 2016, 23, 11386–11392. [Google Scholar] [PubMed]
- Initiative Biotechnology 2020+. Available online: www.biotechnologie2020plus.de (accessed on 1 November 2016).
- Gonzalez, J.M.; Fisher, S.Z. Carbonic anhydrases in industrial applications. In Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications; Frost, S.C., McKenna, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 405–426. [Google Scholar]
- Mahon, B.P.; McKenna, R. Industrial CO2 removal using carbonic anhydrase: Potential, promise and challenges. J. Thermodyn. Catal. 2015, 6, 156–157. [Google Scholar] [CrossRef]
- Hu, B.; Guild, C.; Suib, S.L. Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products. J. CO2 Util. 2013, 1, 18–27. [Google Scholar] [CrossRef]
- Lutze, P. Distillation in bioprocessing. In Distillation—Operation and Applications; Gorak, A., Schoenmakers, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 337–365. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, N.V.D.; Lee, J.; Koo, K.-K.; Luis, P.; Lee, M. Recent Progress and Novel Applications in Enzymatic Conversion of Carbon Dioxide. Energies 2017, 10, 473. https://doi.org/10.3390/en10040473
Long NVD, Lee J, Koo K-K, Luis P, Lee M. Recent Progress and Novel Applications in Enzymatic Conversion of Carbon Dioxide. Energies. 2017; 10(4):473. https://doi.org/10.3390/en10040473
Chicago/Turabian StyleLong, Nguyen Van Duc, Jintae Lee, Kee-Kahb Koo, Patricia Luis, and Moonyong Lee. 2017. "Recent Progress and Novel Applications in Enzymatic Conversion of Carbon Dioxide" Energies 10, no. 4: 473. https://doi.org/10.3390/en10040473
APA StyleLong, N. V. D., Lee, J., Koo, K. -K., Luis, P., & Lee, M. (2017). Recent Progress and Novel Applications in Enzymatic Conversion of Carbon Dioxide. Energies, 10(4), 473. https://doi.org/10.3390/en10040473