Understanding and Modelling the Effect of Dissolved Metals on Solvent Degradation in Post Combustion CO2 Capture Based on Pilot Plant Experience
Abstract
:1. Introduction
2. Overview of Pilot Plants and Campaigns
2.1. Operating Parameters of Campaigns
2.2. Ammonia Emissions and Dissolved Iron Concentration
3. Auto-Catalytic Mechanism and Kinetic Model
3.1. Kinetic Model by Leonard et al.
3.2. Auto-Catalytic Kinetic Model
4. Kinetic Parameters
5. Model Validation
6. Conclusions
7. Recommendations
Author Contributions
Conflicts of Interest
References
- Broutin Paul, L.E.; Lecomte, F. Technologies to Reduce Greenhouse Gas Emissions; Technip & Ophrys Editions: Paris, France, 2010. [Google Scholar]
- Europe Commission. Climate and Energy Framework. Available online: http://ec.europa.eu/clima/policies/strategies//indexen (accessed on 25 October 2016).
- Europe Union. Eurostat Statistics Explained. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Greenhouse_gas_emission_statistics (accessed on 25 October 2016).
- Safdarnejad, S.M.; Hedengren, J.D.; Baxter, L.L. Plant level dynamic optimization of Cryogenic Carbon Capture with conventional and renewable power sources. Appl. Energy 2015, 149, 354–366. [Google Scholar] [CrossRef]
- Belaissaoui, B.; Cabot, G.; Cabot, M.S.; Wilson, D.; Favre, E. CO2 capture for gas turbines an integrated energyefficient process combining combustion in oxygenenriched air flue gas recirculation and membrane separation. Chem. Eng. Sci. 2013, 97, 256–263. [Google Scholar] [CrossRef]
- Gopan, A.; Kumfer, B.M.; Phillips, J.; Thimsen, D.; Axelbaum, R.L. Process design and performance analysis of a Staged Pressurized Oxy-Combustion (SPOC) power plant for carbon capture. Appl. Energy 2014, 125, 179–188. [Google Scholar] [CrossRef]
- Liang, Z.; Rongwong, W.; Liu, H.; Fu, K.; Gao, H.; Cao, F.; Zhang, R.; Sema, T.; Henni, A.; Sumon, K.; et al. Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents. Int. J. Greenh. Gas Control 2015, 40, 26–54. [Google Scholar] [CrossRef]
- IPCC Special Report on Carbon Dioxide Capture and Storage. Available online: http://www.ipcc.ch/publications_and_data/_reports_carbon_dioxide.htm (accessed on 25 October 2016).
- Rochelle, G.T. Amine scrubbing for CO2 capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef] [PubMed]
- Chakma, A.; Meisen, A. Corrosivity of diethanolamine solutions and their degradation products. Ind. Eng. Chem. Res. Dev. 1986, 25, 627–630. [Google Scholar] [CrossRef]
- Chi, S.; Rochelle, G.T. Oxidative degradation of Monoethanolamine. Ind. Eng. Chem. Res. 2002, 41, 4178–4186. [Google Scholar] [CrossRef]
- Khakharia, P.; Brachert, L.; Mertens, J.; Anderlohr, C.; Huizinga, A.; Fernandez, E.S.; Schallert, B.; Schaber, K.; Vlugt, T.J.; Goetheer, E. Understanding aerosol based emissions in a Post Combustion CO2 Capture process: Parameter testing and mechanisms. Int. J. Greenh. Gas Control 2015, 34, 63–74. [Google Scholar] [CrossRef]
- Khakharia, P.; Brachert, L.; Mertens, J.; Anderlohr, C.; Huizinga, A.; Fernandez, E.S.; Schallert, B.; Schaber, K.; Vlugt, T.J.; Goetheer, E. Investigations of areosol based emission of MEA due to sulphuric acid aerosol and soot in a Post Combustion CO2 capture process. Int. J. Greenh. Gas Control 2013, 19, 138–144. [Google Scholar] [CrossRef]
- Mertens, J.; Lepaumier, H.; Desagher, D.; Thielens, M.L. Understanding ethanolamine (MEA) and ammonia emissions from amine based post combustion carbon capture: Lessons learned from field tests. Int. J. Greenh. Gas Control 2013, 13, 72–77. [Google Scholar] [CrossRef]
- Rochelle, G.T. Thermal degradation of amines for CO2 capture. Curr. Opin. Chem. Eng. 2012, 1, 183–190. [Google Scholar] [CrossRef]
- Kohl, A.L.; Nielsen, R.B. Gas Purification, 5th ed.; Gulf Professional Publishing: Houston, TX, USA, 1997. [Google Scholar]
- Da Silva, E.F.; Lepaumier, H.; Grimstvedt, A.; Vevelstad, S.J.; Einbu, A.; Vernstad, K.; Svendsen, H.F.; Zahlsen, K. Understanding 2-Ethanolamine Degradation in Postcombustion CO2 Capture. Ind. Eng. Chem. Res. 2012, 51, 13329–13338. [Google Scholar] [CrossRef]
- Lepaumier, H.; Da Silva, E.F.; Einbu, A.; Grimstvedt, A.; Knudsen, J.N.; Zahlsen, K.; Svendsen, H.F. Comparison of MEA degradation in pilot-scale with lab-scale experiments. Energy Procedia 2011, 4, 1652–1659. [Google Scholar] [CrossRef]
- Knudsen, J.N.; Jensen, J.N.; Vilhelmsen, P.J.; Biede, O. First year operation experience with a 1 t/h CO2 absorption pilot plant at Esbjerg coal-fired power plant. In Proceedings of the European Congress of Chemical Engineering (ECCE-6), Copenhagen, Denmark, 16–20 September 2007. [Google Scholar]
- Pinto, D.D.; Brodtkorb, T.W.; Vevelstad, S.J.; Knuutila, H.; Svendsen, H.F. Modeling of oxidative MEA degradation. Energy Procedia 2014, 63, 940–950. [Google Scholar] [CrossRef]
- Supap, T.; Idem, R.; Tontiwachwuthikul, P.; Saiwan, C. Kinetics of sulfur dioxide and oxygen-induced degradation of aqueous monoethanolamine solution during CO2 absorption from power plant flue gas streams. Int. J. Greenh. Gas Control 2009, 3, 133–142. [Google Scholar] [CrossRef]
- Uyanga, I.J.; Idem, R.O. Studies of SO2 and O2 Induced Degradation of during CO2 Capture from Power Plant Flue Gas Streams. Ind. Eng. Chem. Res. 2007, 46, 2558–2566. [Google Scholar] [CrossRef]
- Bedell, S.A. Oxidative degradation mechanisms for amines in flue gas capture. Energy Procedia 2009, 1, 771–778. [Google Scholar] [CrossRef]
- Brian, R.; Strazisar, R.R.A.; Curt, M. White, Degradation Pathways for Monoethanolamine in a CO2 Capture Facility. Energy Fuels 2003, 17, 1034–1039. [Google Scholar]
- Rieder, A.; Dhingra, S.; Khakharia, P.; Zangrilli, L.; Schallert, B.; Irons, R.; Untenberger, S.; Os, P.V.; Goetheer, E. Undertsanding Solvent Degradation A Study from Three Different Pilot Plants within the OCTAVIUS Project. Available online: https://az659834.vo.msecnd.net/eventsairwesteuprod/production-ieaghg-public/4f36f3a0eca94bbe834e156b0dbaec30 (accessed on 15 February 2017).
- Leonard, G.; Toye, D.; Heyen, G. Expermiental study and kinetic model of monoethanolamine oxidative and thermal degradation for post combustion CO2 capture. Int. J. Greenh. Gas Control 2014, 30, 171–178. [Google Scholar] [CrossRef]
- Rieder, A.; Uuterberger, S. EnBWs PostCombustion Capture Pilot Plant at HeilbronnResults of the First Years Testing Programme. Energy Procedia 2013, 37, 6464–6472. [Google Scholar] [CrossRef]
- Khakharia, P.; Mertens, J.; Huizinga, A.; de Vroey, S.; Fernandez, E.; Srinivasan, S.; Vlugt, T.; Goetheer, E. Online corrosion monitoring in a post combustion CO2 capture pilot plant and its relation to solvent degradation and ammonia emissions. Ind. Eng. Chem. Res. 2015, 54, 5336–5344. [Google Scholar] [CrossRef]
- Artanto, Y.; Jansen, J.; Pearson, P.; Do, T.; Cottrell, A.; Meuleman, E.; Feron, P. Performance of MEA and amineblends in the CSIRO PCC pilot plant at Loy Yang Power in Australia. Fuel 2012, 101, 264–275. [Google Scholar] [CrossRef]
- Knudsen, J.N.; Jensen, J.N.; Vilhelmsen, P.J.; Biede, O. Experience with CO2 capture from coal flue gas in pilotscale: Testing of different amine solvents. Energy Procedia 2009, 1, 783–790. [Google Scholar] [CrossRef]
- Bui, M.; Gunawan, I.; Verheyen, T.V.; Meuleman, E.; Feron, P. Dynamic Operation of Post-combustion CO2 Capture in Australian Coal-fired Power Plants. Energy Procedia 2014, 63, 1368–1375. [Google Scholar] [CrossRef]
- Azzi, M.; Tibbett, A.; Halliburton, B.; Element, A.; Artanto, Y.; Meuleman, E.; Feron, P. Assessing Atmospheric Emissions from Amine Based CO2 Post-Combustion Capture Processes and Their Impacts on the Environment—A Case Study; CSIRO: Canberra, Australia, 2014. [Google Scholar]
- Reynolds, A.J.; Verheyen, T.V.; Adeloju, S.B.; Chaffee, A.; Meuleman, E. Primary sources and accumulation rates of inorganic anions and dissolved metals in a MEA absorbent during PCC at a brown coal-fired power station. Int. J. Greenh. Gas Control 2015, 41, 239–248. [Google Scholar] [CrossRef]
- Schallert, B.; Neuhaus, S.; Satterley, C.J. Is Fly Ash boosting amine losses in carbon capture from coal? Energy Procedia 2014, 63, 1944–1956. [Google Scholar] [CrossRef]
- Tanthapanichakoon, W.; Veawab, A.; McGarvey, B. Electrochemical Investigation on the Effect of Heatstable Salts on Corrosion in CO2 Capture Plants Using Aqueous Solution of MEA. Ind. Eng. Chem. Res. 2005, 8, 2586–2593. [Google Scholar]
- Andrew, J.; Sexton, G.T.R. Reaction Products from the Oxidative Degradation of Monoethanolamine. Ind. Eng. Chem. Res. 2011, 50, 667–673. [Google Scholar]
- Sexton, A.J.; Rochelle, G.T. Catalysts and inhibitors for oxidative degradation of monoethanolamine. Int. J. Greenh. Gas Control 2009, 3, 704–711. [Google Scholar] [CrossRef]
- Chandan, P.; Richburg, L.; Bhatnagar, S.; Remias, J.E.; Liu, K. Impact of fly ash on monoethanolamine degradation during CO2 capture. Int. J. Greenh. Gas Control 2014, 25, 102–108. [Google Scholar] [CrossRef]
- Wang, M.; Ledoux, A.; Estel, L. Oxygen Solubility Measurements in a MEA/H2O/CO2 Mixture. J. Chem. Eng. Data 2013, 58, 117–1121. [Google Scholar] [CrossRef]
- Fytianos, G.; Ucar, S.; Grimstvedt, A.; Hyldbakk, A.; Svendsen, H.F.; Knuutila, H.K. Corrosion and degradation in MEA based post-combustion CO2 capture. Int. J. Greenh. Gas Control 2016, 46, 48–56. [Google Scholar] [CrossRef]
- Goff, G.S.; Rochelle, G.T. Monoethanolamine Degradation: O2 Mass Transfer Effects under CO2 Capture Conditions. Ind. Eng. Chem. Res. 2004, 43, 6400–6408. [Google Scholar] [CrossRef]
Operating Parameters | EnBW | TNO | CSIRO | DONG |
---|---|---|---|---|
Flue Gas Quality | ||||
- O2 (vol. % dry) | 6.4 | 7.4 | 4–5 | 5–9 |
- SOx (ppm) | 13 | Not measured | 120–200 | 2–10 |
- NOx (ppm) | Not measured | Not measured | 150–250 | 15–65 |
- Particulate Matter (mg/Nm3) | Not measured | Not measured | - | 3–25 |
Temperatures (°C) | ||||
- Flue gas to absorber | 35 | 40 | 35 | 45–50 |
- Rich inlet cross HEX | 37 | 51 | 35–55 | 42–50 |
- Rich outlet cross HEX | 100 | 110 | 69 | 101–113 |
Residence time (min) | ||||
- Absorber Sump | 30 | 27 | 3 | 13 |
- Rich side cross HEX | 1.3 | 0.7 | - | - |
- Total plant inventory | 108 | 53 | 42 | 43 |
Solvent flow rate (L/h) | 5000 | 3200 | 240–420 | 18,000 |
Flue gas flow rate (Nm3/h) | 1500 | 800 | 100–140 | 5000 |
Parameters | Absorber Sump | HEX |
---|---|---|
Temperature (°C) | 35 | 72 |
Dissolved Oxygen (10−5 mol/L) | 1.1 | 0.5 |
(10−10 mol/L.s) | 32 | 43 |
Residence time (min) | 30 | 1.3 |
Total degradation during one cycle (10−6 mol/L) | 5.8 | 0.3 |
Parameters | Auto-Catalytic Model | Leonard’s Model |
---|---|---|
Energy of activation (J/mol) | 35,210 | 41,730 |
a | 0.47 | - |
kcorrosion (mol/L.s) | 3.4 × 10−6 | - |
b | 1.36 | - |
Pilot Campaign | Dissolved Iron | Ammonia | ||
---|---|---|---|---|
AD (%) | AAD (%) | AD (%) | AAD (%) | |
TNO | 61 | 39 | 153 | 179 |
DONG | 68 | 14 | 103 | 106 |
CSIRO | 84 | 55 | 50 | 17 |
Pilot Campaign | First 15% of Operating Hours | Last 15% of Operating Hours | ||
---|---|---|---|---|
AD (%) | AAD (%) | AD (%) | AAD (%) | |
TNO | 22 | 10 | 92 | 21 |
DONG | 54 | 14 | 59 | 17 |
CSIRO | 80 | 33 | 94 | 25 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhingra, S.; Khakharia, P.; Rieder, A.; Cousins, A.; Reynolds, A.; Knudsen, J.; Andersen, J.; Irons, R.; Mertens, J.; Abu Zahra, M.; et al. Understanding and Modelling the Effect of Dissolved Metals on Solvent Degradation in Post Combustion CO2 Capture Based on Pilot Plant Experience. Energies 2017, 10, 629. https://doi.org/10.3390/en10050629
Dhingra S, Khakharia P, Rieder A, Cousins A, Reynolds A, Knudsen J, Andersen J, Irons R, Mertens J, Abu Zahra M, et al. Understanding and Modelling the Effect of Dissolved Metals on Solvent Degradation in Post Combustion CO2 Capture Based on Pilot Plant Experience. Energies. 2017; 10(5):629. https://doi.org/10.3390/en10050629
Chicago/Turabian StyleDhingra, Sanjana, Purvil Khakharia, Alexander Rieder, Ashleigh Cousins, Alicia Reynolds, Jacob Knudsen, Jimmy Andersen, Robin Irons, Jan Mertens, Mohammad Abu Zahra, and et al. 2017. "Understanding and Modelling the Effect of Dissolved Metals on Solvent Degradation in Post Combustion CO2 Capture Based on Pilot Plant Experience" Energies 10, no. 5: 629. https://doi.org/10.3390/en10050629
APA StyleDhingra, S., Khakharia, P., Rieder, A., Cousins, A., Reynolds, A., Knudsen, J., Andersen, J., Irons, R., Mertens, J., Abu Zahra, M., Van Os, P., & Goetheer, E. (2017). Understanding and Modelling the Effect of Dissolved Metals on Solvent Degradation in Post Combustion CO2 Capture Based on Pilot Plant Experience. Energies, 10(5), 629. https://doi.org/10.3390/en10050629