Decomposition Characteristics of SF6 and Partial Discharge Recognition under Negative DC Conditions
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Wiring
2.2. Insulation Defect Model
2.3. Experimental Method
3. Experimental Results
3.1. PD Characteristics
3.2. Concentrations of SF6 Decomposed Components
3.2.1. Concentrations of CF4 and CO2
3.2.2. Concentrations of SO2F2, SOF2, and SO2
3.3. Formation Rates of SF6 Decomposed Components
3.4. Concentration Ratios of SF6 Decomposed Components
4. PD Recognition
5. Discussion
6. Conclusions
- The negative DC partial discharges caused by the four defects decompose the SF6 gas and generate five stable decomposed components, namely, CF4, CO2, SO2F2, SOF2, and SO2. A close relationship exists between the decomposition characteristics of SF6 and the types of insulation defects. The decomposition characteristics of SF6 can be used to diagnose the type and severity of insulation fault in DC-GIE.
- BP neural network algorithm is used to recognize the PD types. The recognition results show that the total recognition accuracy rate is 67.63% and 87.33% when the concentrations and concentration ratios of SF6 decomposed components are selected as the input matrix of the network, respectively. Therefore, the concentration ratios of SF6 decomposed components are more suitable as the characteristic quantities for PD recognition than the concentrations of those.
- C(SOF2 + SO2)/C(SO2F2), Ln(C(CO2)/C(CF4)), and C(SO2F2 + SOF2 + SO2)/C(CF4 + CO2) are used to recognize the PD types. The 24 groups of concentration ratio data in this study are selected to train the BP neural network model. Then, the trained model is used to recognize another 24 groups of concentration ratio data produced by the same experiment. The total recognition accuracy rate is 87.5%, and a good recognition effect is obtained.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ohki, Y. Thyristor valves and GIS in Kii channel HVDC link. IEEE Electr. Insul. Mag. 2001, 17, 78–79. [Google Scholar] [CrossRef]
- Hasegawa, T.; Yamaji, K.; Hatano, M. Development of insulation structure and enhancement of insulation reliability of 500 kV DC GIS. IEEE Trans. Power Deliv. 1997, 12, 192–202. [Google Scholar] [CrossRef]
- Hasegawa, T.; Yamaji, K.; Hatano, M. DC dielectric characteristics and conception of insulation design for DC GIS. IEEE Trans. Power Deliv. 1996, 11, 1776–1782. [Google Scholar] [CrossRef]
- Menju, S.; Takahashi, K. DC dielectric strength of a SF6 gas insulated system. IEEE Trans. Power Deliv. 1978, 97, 217–224. [Google Scholar] [CrossRef]
- Evgeni, K.V. HVDC gas insulated apparatus: Electric field specificity and insulation design concept. IEEE Electr. Insul. Mag. 2002, 18, 7–14. [Google Scholar]
- Mendik, M.; Lowder, S.M.; Elliott, F. Long term performance verification of high voltage DC GIS. In Proceedings of the 1999 IEEE Transmission and Distribution Conference, New Orleans, LA, USA, 11–16 April 1999; pp. 484–488. [Google Scholar]
- Beyer, C.; Jenett, H.; Kfockow, D. Influence of reactive SFx gases on electrode surfaces after electrical discharges under SF6 atmosphere. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 234–240. [Google Scholar] [CrossRef]
- Chu, F.Y. SF6 decomposition in gas-insulated equipment. IEEE Trans. Dielectr. Electr. Insul. 1986, 21, 693–725. [Google Scholar] [CrossRef]
- Van Brunt, R.J.; Herron, J.T. Fundamental processes of SF6 decomposition and oxidation in glow and corona discharges. IEEE Trans. Dielectr. Electr. Insul. 1990, 25, 75–94. [Google Scholar] [CrossRef]
- Chang, C.; Chang, C.S.; Jin, J.; Hoshino, T.; Hanai, M.; Kobayashi, N. Source classification of partial discharge for gas insulated substation using wave shape pattern recognition. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 374–386. [Google Scholar] [CrossRef]
- Dreisbusch, K.; Kranz, H.G.; Schnettler, A. Determination of a failure probability prognosis based on PD-diagnostics in GIS. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1707–1714. [Google Scholar] [CrossRef]
- Istad, M.; Runde, M. Thirty-six years of service experience with a national population of gas-insulated substations. IEEE Trans. Power Deliv. 2010, 25, 2448–2454. [Google Scholar] [CrossRef]
- Van Brunt, R.J. Production rates for oxy-fluorides SOF2, SO2F2 and SOF4 in SF6 corona discharges. J. Res. Natl. Bur. Stand. 1985, 90, 229–253. [Google Scholar] [CrossRef]
- Piemontesi, M.; Niemeyer, L. Sorption of SF6 and SF6 decomposition products by activated alumina and molecular sieve 13X. In Proceedings of the 1996 IEEE International Symposium on Electrical Insulation, Montreal, QC, Canada, 16–19 June 1996; pp. 828–838. [Google Scholar]
- Van Brunt, R.J.; Herron, J.T. Plasma chemical model for decomposition of SF6 in a negative glow corona discharge. Phys. Scr. 1994, 53, 9–29. [Google Scholar] [CrossRef]
- Prakash, K.S.; Srivastava, K.D.; Morcos, M.M. Movement of particles in compressed SF6 GIS with dielectric coated enclosure. IEEE Trans. Dielectr. Electr. Insul. 1997, 4, 344–347. [Google Scholar] [CrossRef]
- Casanovas, A.M.; Casanovas, J.; Lagarde, F. Study of the decomposition of SF6 under dc negative polarity corona discharges (point-to-plane geometry): Influence of the metal constituting the plane electrode. J. Appl. Phys. 1992, 72, 3344–3354. [Google Scholar] [CrossRef]
- Belmadani, B.; Casanovas, B.; Casanovas, A.M. SF6 decomposition under power arcs: Chemical aspects. IEEE Trans. Dielectr. Electr. Insul. 1992, 26, 1177–1182. [Google Scholar] [CrossRef]
- Sauers, I.; Ellis, H.W.; Christophorou, L.G. Neutral decomposition products in spark breakdown of SF6. IEEE Trans. Dielectr. Electr. Insul. 1986, 21, 111–120. [Google Scholar] [CrossRef]
- Tang, J.; Li, T.; Hu, Z.; Xiao, B.; Zhang, X.X. Analysis of SF6 gaseous decomposition components under two kinds of PD defects. High Volt. Eng. 2009, 35, 487–492. [Google Scholar]
- Tang, J.; Liu, F.; Zhang, X.X.; Meng, Q.H.; Zhou, J.B. Partial discharge recognition through an analysis of SF6 decomposition products part 1: Decomposition characteristics of SF6 under four different partial discharges. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 29–36. [Google Scholar] [CrossRef]
- Tang, J.; Liu, F.; Meng, Q.H.; Zhang, X.X.; Tao, J.G. Partial discharge recognition through an analysis of SF6 decomposition products part 2: Feature extraction and decision tree-based pattern recognition. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 37–44. [Google Scholar] [CrossRef]
- Derdouri, A. Study of the decomposition of wet SF6, subjected to 50-Hz ac corona discharges. J. Appl. Phys. 1989, 65, 1852–1857. [Google Scholar] [CrossRef]
- Belarbi, A.; Pradayrol, C.; Casanovas, J.; Casanovas, A.M. Influence of discharge production conditions, gas pressure, current intensity and voltage type on SF6 dissociation under point-plane corona discharges. J. Appl. Phys. 1995, 77, 1398–1406. [Google Scholar] [CrossRef]
- Chen, C.L.; Chantry, P.J. Photo-enhanced dissociative electron attachment in SF6 and its isotopic selectivity. J. Chem. Phys. 1979, 71, 38–97. [Google Scholar] [CrossRef]
- Dincer, M.S.; Raju, G.R. Monte Carlo simulation of the motion of electrons in SF6 in uniform electric field. J. Appl. Phys. 1983, 54, 6311–6316. [Google Scholar] [CrossRef]
- Sauers, I.; Adcock, J.L.; Christophorou, L.G. Gas phase hydrolysis of sulfur tetrafluoride. J. Chem. Phys. 1985, 83, 2618–2619. [Google Scholar] [CrossRef]
- Boggs, S.A.; Stone, C. Fundamental limitations in the measurement of corona and partial discharge. IEEE Trans. Dielectr. Electr. Insul. 1982, 17, 143–150. [Google Scholar] [CrossRef]
- Fanni, A.; Giua, A.; Sandoli, E. Neural networks for multiple fault diagnosis in analog circuits. In Proceedings of the 1993 IEEE International Workshop on Defect and Fault Tolerance in VLSI systems, Venice, Italy, 27–29 October 1993; pp. 303–310. [Google Scholar]
- Kirkland, L.V.; Wright, R.G. Using neural networks to solve testing problems. IEEE Aerosp. Electron. Syst. Mag. 1996, 12, 36–40. [Google Scholar] [CrossRef]
- Aminian, M.; Aminian, F. Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 2000, 47, 151–156. [Google Scholar] [CrossRef]
- Karnin, E.D. A simple procedure for punning back-propagation trained neural networks. IEEE Trans. Neural Netw. 1990, 1, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Mas’ud, A.A.; Albarracín, R.; Ardila-Rey, J.A.; Muhammad-Sukki, F.; Illias, H.A.; Bani, N.A.; Munir, A.B. Artificial neural network application for partial discharge recognition: Survey and future directions. Energies 2016, 9, 574. [Google Scholar] [CrossRef]
- Khan, Y. Partial discharge pattern analysis using PCA and back-propagation artificial neural network for the estimation of size and position of metallic particle adhering to spacer in GIS. Electr. Eng. 2016, 98, 29–42. [Google Scholar] [CrossRef]
- Majidi, M.; Fadali, M.S.; Etezadi-Amoli, M.; Oskuoee, M. Partial discharge pattern recognition via sparse representation and ANN. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1061–1070. [Google Scholar] [CrossRef]
- Gulski, E.; Krivda, A. Neural networks as a tool for recognition of partial discharges. IEEE Trans. Dielectr. Electr. Insul. 1993, 28, 984–1001. [Google Scholar] [CrossRef]
- Satish, L.; Zaengl, W.S. Artificial neural networks for recognition of 3-D partial discharge patterns. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 265–275. [Google Scholar] [CrossRef]
- Hozumi, N.; Okamoto, T.; Imajo, T. Discrimination of partial discharge patterns using a neural network. IEEE Trans. Dielectr. Electr. Insul. 1992, 27, 550–556. [Google Scholar] [CrossRef]
- Ding, W.D.; Zhou, W.W.; Ren, X. Decomposition characteristics of SF6 under partial discharges with point-to-plane electrode defect. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 1727–1736. [Google Scholar]
- Okabe, S.; Yamagiwa, T.; Okubo, H. Detection of harmful metallic particles inside gas insulated switchgear using UHF sensor. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 701–709. [Google Scholar] [CrossRef]
- Ren, M.; Zhang, C.X.; Dong, M. Partial discharges triggered by metal-particle on insulator surface under standard oscillating impulses in SF6 gas. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3007–3018. [Google Scholar] [CrossRef]
- Tang, J.; Ren, X.L.; Zhang, X.X.; Liu, F. Decomposition characteristics of SF6 under different partial discharge strengths caused by defected insulation in air gap. Power Syst. Technol. 2012, 36, 40–45. [Google Scholar]
- DL/T 596–1996 Preventive Test Code for Electric Power Equipment. Available online: http://www.doc88.com/p-9763610841190.html (accessed on 12 April 2017).
- IEC 60270:2000 High-voltage Test Techniques—Partial Discharge Measurements. Available online: http://www.doc88.com/p-868119919771.html (accessed on 12 April 2017).
- Auger, P.; Poggiale, J.C. Emergence of population growth models: Fast migration and slow growth. J. Theor. Biol. 1996, 182, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Sibly, R.M.; Barker, D.; Denham, M.C.; Home, J.; Pagel, M. On the regulation of populations of mammals, birds, fish and insects. Ecol. Lett. 2005, 309, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zeng, F.P.; Pan, J.Y.; Zhang, X.X.; Yao, Q. Correlation analysis between formation process of SF6 decomposed components and partial discharge qualities. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 864–875. [Google Scholar] [CrossRef]
- IEC 60480:2004 Guidelines for the Checking and Treatment of Sulfur Hexafluoride (SF6) Taken from Electrical Equipment and Specification for Its Re-Use. Available online: http://pan.baidu.com/share/link?shareid=3125702881&uk=3894130273 (accessed on 12 April 2017).
- Tang, J.; Pan, J.Y.; Zhang, X.X.; Zeng, F.P.; Yao, Q.; Hou, X.Z. Correlation analysis between SF6 decomposed components and charge magnitude of partial discharges initiated by free metal particles. IET Sci. Meas. Technol. 2014, 8, 170–177. [Google Scholar] [CrossRef]
- Zeng, F.P.; Tang, J.; Zhang, X.X.; Pan, J.Y. Influence regularity of trace H2O on SF6 decomposition characteristics under partial discharge of needle-plate electrode. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 287–295. [Google Scholar] [CrossRef]
- Tang, J.; Zeng, F.P.; Zhang, X.X.; Pan, J.Y.; Qiu, Y.J. Influence regularity of trace O2 on SF6 decomposition characteristics and its mathematical amendment under partial discharge. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 105–115. [Google Scholar] [CrossRef]
- Tang, J.; Zeng, F.P.; Liang, X. Study on the influence of adsorbent on SF6 decomposition characteristics under partial discharge. Proc. Chin. Soc. Electr. Eng. 2014, 34, 486–494. [Google Scholar]
Voltage | Defect Type | |||
---|---|---|---|---|
Protrusion | Particle | Pollution | Gap | |
PD initial voltage (U0) | −31.2 kV | −28.3 kV | −20.3 kV | −49.7 kV |
Experimental voltage (1.2 U0) | −37.4 kV | −34.0 kV | −24.4 kV | −59.6 kV |
Defect Type | N (pulse/s) | Qavg (pC/pulse) | Qsec (pC/s) |
---|---|---|---|
Protrusion | 1836 | 3.9 | 7160.4 |
Particle | 322 | 10.5 | 3381.0 |
Pollution | 216 | 6.1 | 1317.6 |
Gap | 18 | 29.1 | 523.8 |
Defect Type | RRMS (ppm/day) | ||||
---|---|---|---|---|---|
CF4 | CO2 | SO2F2 | SOF2 | SO2 | |
Protrusion | 0.04 | 5.59 | 18.79 | 79.96 | 1.95 |
Particle | 0.68 | 1.53 | 1.66 | 10.00 | 1.25 |
Pollution | 0.05 | 2.76 | 1.02 | 3.50 | 0.33 |
Gap | 0.09 | 1.26 | 0.44 | 1.31 | 0.10 |
PD Type | k | t/h | C(SOF2 + SO2)/C(SO2F2) | Ln(C(CO2)/C(CF4)) | C(SO2F2 + SOF2 + SO2)/C(CF4 + CO2) |
---|---|---|---|---|---|
Protrusion | 1 | 36 | 4.57 | 5.59 | 18.28 |
2 | 48 | 4.33 | 5.53 | 17.27 | |
3 | 60 | 4.17 | 5.33 | 17.79 | |
4 | 72 | 4.27 | 5.21 | 19.19 | |
5 | 84 | 4.29 | 5.04 | 19.44 | |
6 | 96 | 4.25 | 4.97 | 18.97 | |
Particle | 7 | 36 | 8.22 | 0.78 | 5.49 |
8 | 48 | 7.29 | 0.83 | 5.67 | |
9 | 60 | 6.83 | 0.79 | 5.72 | |
10 | 72 | 6.89 | 0.76 | 5.90 | |
11 | 84 | 6.78 | 0.85 | 5.84 | |
12 | 96 | 6.69 | 0.87 | 5.98 | |
Pollution | 13 | 36 | 3.77 | 4.09 | 1.53 |
14 | 48 | 3.84 | 4.12 | 1.62 | |
15 | 60 | 3.65 | 4.10 | 1.57 | |
16 | 72 | 3.67 | 3.92 | 1.79 | |
17 | 84 | 3.86 | 3.88 | 1.86 | |
18 | 96 | 3.79 | 3.84 | 1.86 | |
Gap | 19 | 36 | 3.05 | 2.18 | 1.99 |
20 | 48 | 3.01 | 2.21 | 1.82 | |
21 | 60 | 3.17 | 2.35 | 1.64 | |
22 | 72 | 3.20 | 2.48 | 1.54 | |
23 | 84 | 3.35 | 2.59 | 1.55 | |
24 | 96 | 3.26 | 2.69 | 1.44 |
Number | Output Matrix (T) | PD Type |
---|---|---|
1 | [0, 0, 0, 1] | Protrusion |
2 | [0, 0, 1, 0] | Particle |
3 | [0, 1, 0, 0] | Pollution |
4 | [1, 0, 0, 0] | Gap |
Item | PD Type | Total | |||
---|---|---|---|---|---|
Protrusion | Particle | Pollution | Gap | ||
Sample number | 169 | 141 | 138 | 152 | 600 |
Accuracy number | 169 | 132 | 114 | 109 | 524 |
Accuracy rate | 100% | 93.62% | 82.61% | 71.71% | 87.33% |
Item | PD Type | Total | |||
---|---|---|---|---|---|
Protrusion | Particle | Pollution | Gap | ||
Sample number | 176 | 216 | 187 | 221 | 800 |
Accuracy number | 167 | 165 | 105 | 104 | 541 |
Accuracy rate | 94.89% | 76.39% | 56.15% | 47.06% | 67.63% |
Real PD Type | Number of Samples in Each PD Type in the Recognition Result | |||
---|---|---|---|---|
Protrusion | Particle | Pollution | Gap | |
Protrusion | 6 | 0 | 0 | 0 |
Particle | 0 | 6 | 0 | 0 |
Pollution | 0 | 0 | 5 | 1 |
Gap | 0 | 0 | 2 | 4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Yang, X.; Ye, G.; Yao, Q.; Miao, Y.; Zeng, F. Decomposition Characteristics of SF6 and Partial Discharge Recognition under Negative DC Conditions. Energies 2017, 10, 556. https://doi.org/10.3390/en10040556
Tang J, Yang X, Ye G, Yao Q, Miao Y, Zeng F. Decomposition Characteristics of SF6 and Partial Discharge Recognition under Negative DC Conditions. Energies. 2017; 10(4):556. https://doi.org/10.3390/en10040556
Chicago/Turabian StyleTang, Ju, Xu Yang, Gaoxiang Ye, Qiang Yao, Yulong Miao, and Fuping Zeng. 2017. "Decomposition Characteristics of SF6 and Partial Discharge Recognition under Negative DC Conditions" Energies 10, no. 4: 556. https://doi.org/10.3390/en10040556
APA StyleTang, J., Yang, X., Ye, G., Yao, Q., Miao, Y., & Zeng, F. (2017). Decomposition Characteristics of SF6 and Partial Discharge Recognition under Negative DC Conditions. Energies, 10(4), 556. https://doi.org/10.3390/en10040556