Do We Need Gas as a Bridging Fuel? A Case Study of the Electricity System of Switzerland
Abstract
:1. Introduction
2. Swiss Case Study
3. Method
4. Results
5. Discussion and Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- International Energy Agency (IEA). Energy and Climate Change: World Energy Outlook Special Report; IEA: Paris, France, 2015. [Google Scholar]
- United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement. In Proceedings of the 2015 United Nations Climate Change Conference, Paris, France, 30 November–12 December 2015. [Google Scholar]
- Kyriakopoulos, G.L.; Arabatzis, G.; Chalikias, M. Renewables exploitation for energy production and biomass use for electricity generation. A multi-parametric literature-based review. AIMS Energy 2016, 4, 762–803. [Google Scholar] [CrossRef]
- Renewable Energy Policy Network for the 21st Century (REN21). Renewables Global Futures Report: Great Debates Towards 100% Renewable Energy; REN21: Paris, France, 2017. [Google Scholar]
- Kyriakopoulos, G.L.; Arabatzis, G. Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renew. Sustain. Energy Rev. 2016, 56, 1044–1067. [Google Scholar] [CrossRef]
- Jülch, V. Comparison of electricity storage options using levelized cost of storage (LCOS) method. Appl. Energy 2016, 183, 1594–1606. [Google Scholar] [CrossRef]
- Patt, A. Transforming Energy: Solving Climate Change with Technology Policy; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Global Energy Assessment (GEA). The Global Energy Assessment; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- European Climate Foundation (ECF). Roadmap 2050: A Practical Guide to a Prosperous, Low-Carbon Europe; European Climate Foundation: The Hague, The Netherlands, 2010. [Google Scholar]
- International Energy Agency (IEA). Energy Technology Perspectives 2014: Harnessing Electricity’s Potential; International Energy Agency: Paris, France, 2014. [Google Scholar]
- International Renewable Energy Agency (IRENA). Irena Working Paper: Renewable Energy Technologies: Cost Analysis Series. Power Sector. Concentrating Solar Power; International Renewable Energy Agency: Abu Dhabi, UAE, 2012. [Google Scholar]
- Shankleman, J.; Parkin, B. Wind power blows through nuclear, coal as costs drop at sea. Bloomberg, 9 March 2017. [Google Scholar]
- European Academies Science Advisory Council (EASAC). Concentrating Solar Power: Its Potential Contribution to a Sustainable Energy Future; European Academies Science Advisory Council: Cardiff, UK, 2011; p. 58. [Google Scholar]
- Densing, M.; Hirschberg, S.; Turton, H. Review of Swiss Electricity Scenarios 2050; Paul Scherrer Institute (PSI): Villigen, Switzerland, 2014. [Google Scholar]
- Schröder, A.; Kunz, F.; Meiss, J.; Mendelevitch, R.; Hirschhausen, C.V. Current and Prospective Costs of Electricity Generation Until 2050; DIW-Deutsches Institut für Wirtschaftsforschung: Berlin, Germany, 2013. [Google Scholar]
- Hobohm, J.; Krampe, L.; Peter, F.; Gerken, A.; Heinrich, P.; Richter, M. Cost Reduction Potentials of Offshore Wind Power in Germany; Prognos AG & Fichtner GmbH & Co. KG: Berlin, Germany, 2013. [Google Scholar]
- Santos-Alamillos, F.J.; Pozo-Vázquez, D.; Ruiz-Arias, J.A.; von Bremen, L.; Tovar-Pescador, J. Combining wind farms with concentrating solar plants to provide stable renewable power. Renew. Energy 2015, 76, 539–550. [Google Scholar] [CrossRef]
- Grave, K.; Paulus, M.; Lindenberger, D. A method for estimating security of electricity supply from intermittent sources: Scenarios for Germany until 2030. Energy Policy 2012, 46, 193–202. [Google Scholar] [CrossRef]
- Hall, P.J.; Bain, E.J. Energy-storage technologies and electricity generation. Energy Policy 2008, 36, 4352–4355. [Google Scholar] [CrossRef]
- Fthenakis, V.; Mason, J.E.; Zweibel, K. The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the us. Energy Policy 2009, 37, 387–399. [Google Scholar] [CrossRef]
- Krajačić, G.; Duić, N.; Zmijarević, Z.; Mathiesen, B.V.; Vučinić, A.A.; da Graça Carvalho, M. Planning for a 100% independent energy system based on smart energy storage for integration of renewables and CO2 emissions reduction. Appl. Therm. Eng. 2011, 31, 2073–2083. [Google Scholar] [CrossRef]
- Brouwer, A.S.; Broek, M.V.D.; Zappa, W.; Turkenburg, W.C.; Faaij, A. Least-cost options for integrating intermittent renewables in low-carbon power systems. Appl. Energy 2016, 161, 48–74. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2014; International Renewable Energy Agency: Masdar, UAE, 2015. [Google Scholar]
- Giannakopoulou, E.; Henbest, S. New Energy Outlook 2016 (NEO). Long-Term Projections of the Global Energy Sector. Executive Summary; Bloomberg New Energy Finance: New York, NY, USA, 2016. [Google Scholar]
- Diorio, N.; Dobos, A.; Janzou, S. Economic Analysis Case Studies of Battery Energy Storage with SAM; National Renewable Energy Laboratory: Golden, CO, USA, 2015. [Google Scholar]
- Bundesamt für Energie (BFE). Energiespeicher in der Schweiz; Bundesamt für Energie: Bern, Switzerland, 2013. [Google Scholar]
- Schaeffer, M.; Rogelj, J.; Roming, N.; Sferra, F.; Hare, B.; Serdeczny, O. Feasibility of Limiting Warming to 1.5 and 2 °C; Climate Analytics: Berlin, Germany, 2015; p. 20. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007 the Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- International Energy Agency (IEA). CO2 Emissions from Fuel Dombustion-2016 Edition-Key CO2 Emissions Trends; International Energy Agency: Paris, France, 2016. [Google Scholar]
- Piot, M. Energiestrategie 2050 der schweiz. In 13 Symposium Energieinnovation; TU Graz: Graz, Austria, 2014; p. 28. [Google Scholar]
- Bundesamt für Energie (BFE). Schweizerische Elektrizitätsstatistik 2015; Bundesamt für Energie (BFE): Bern, Switzerland, 2016; p. 52. [Google Scholar]
- Anon. Energiegesetz. In EnG; Bundeskanzlei: Bern, Switzerland, 2016; pp. 7683–7730. [Google Scholar]
- Bundesamt für Energie (BFE). Gesamte Erzeugung und Abgabe Elektrischer Energie in der Schweiz; Bundesamt für Energie (BFE): Bern, Switzerland, 2016. [Google Scholar]
- Hübner, G.; Löffler, E.; Hampl, N.; Wüstenhagen, R. Wirkungen Von Windkraftanlagen Auf Anwohner in der Schweiz; Einflussfaktoren und Empfehlungen-Abschlussbericht: Halle, Germany, 2013. [Google Scholar]
- Kruyt, B.; Lehning, M.; Kahl, A. Potential contributions of wind power to a stable and highly renewable Swiss power supply. Appl. Energy 2017, 192, 1–11. [Google Scholar] [CrossRef]
- Marcucci, A.; Turton, H. Swiss energy strategies under global climate change and nuclear policy uncertainty. Swiss J. Econ. Stat. 2012, 148, 317–346. [Google Scholar]
- Weidmann, N.O. Transformation Strategies Towards a Sustainable Swiss Energy System: An Energy-Economic Scenario Analysis. Ph.D. Thesis, ETHZ, Zürich, Switzerland, 2013. [Google Scholar]
- Trieb, F.; Kern, J.; Caldés, N.; Rua, C.D.L.; Frieden, D.; Tuerk, A. Rescuing the concept of solar electricity transfer from North Africa to Europe. Int. J. Energy Sect. Manag. 2016, 10, 448–473. [Google Scholar] [CrossRef]
- Battaglini, A.; Lilliestam, J.; Haas, A.; Patt, A. Development of supersmart grids for a more efficient utilisation of electricity from renewable sources. J. Clean. Prod. 2009, 17, 911–918. [Google Scholar] [CrossRef]
- Purvins, A.; Wilkening, H.; Fulli, G.; Tzimas, E.; Celli, G.; Mocci, S.; Pilo, F.; Tedde, S. A european supergrid for renewable energy: Local impacts and far-reaching challenges. J. Clean. Prod. 2011, 19, 1909–1916. [Google Scholar] [CrossRef]
- Lilliestam, J.; Labordena, M.; Patt, A.; Pfenninger, S. Empirically observed learning rates for concentrating solar power and their responses to regime change. Nat. Energy 2017, 2. [Google Scholar] [CrossRef]
- Richts, C. The moroccan solar plan. A Comparative Analysis of CSP and PV Utilization Until 2020. Master’s Thesis, University of Kassel, Kassel, Germany, 15 February 2012. [Google Scholar]
- Komendantova, N.; Patt, A.; Barras, L.; Battaglini, A. Perception of risks in renewable energy projects: The case of concentrated solar power in north Africa. Energy Policy 2012, 40, 103–109. [Google Scholar] [CrossRef]
- Pfenninger, S.; Gauche, P.; Lilliestam, J.; Damerau, K.; Wagner, F.; Patt, A. Potential for concentrating solar power to provide baseload and dispatchable power. Nat. Clim. Chang. 2014, 4, 689–692. [Google Scholar] [CrossRef]
- Labordena, M.; Lilliestam, J. Cost and transmission requirements for reliable solar electricity from deserts in China and the United States. Energy Procedia 2015, 76, 77–86. [Google Scholar] [CrossRef]
- Fairley, P. Germany takes the lead in HVDC. New developments in high-voltage DC electronics could herald an epic shift in energy delivery. IEEE Spectrum, 29 April 2013. [Google Scholar]
- Weigt, H.; Jeske, T.; Leuthold, F.; Hirschhausen, C.V. “Take the long way down”: Integration of large-scale north sea wind using HVDC transmission. Energy Policy 2010, 38, 3164–3173. [Google Scholar] [CrossRef]
- Neukirch, M. Protests against german electricity grid extension as a new social movement? A journey into the areas of conflict. Energy Sustain. Soc. 2016, 6, 4. [Google Scholar] [CrossRef]
- Amprion. Ultranet-projektbeschreibung. Available online: http://netzausbau.amprion.net/projekte/ultranet/downloads (accessed on 12 May 2016).
- Bundesamt für Energie (BFE). Botschaft Zum Ersten Massnahmenpaket der Energiestrategie 2050 (Revision des Energierechts) und Zur Volksinitiative; Bundesamt für Energie (BFE): Bern, Switzerland, 2013. [Google Scholar]
- Prognos AG. Die Energieperspektiven Für die Schweiz Bis 2050. Energienachfrage und Elektrizitätsangebot in der Schweiz 2000–2050; Bundesamt für Energie (BFE): Basel, Switzerland, 2012; p. 842. [Google Scholar]
- Gunzinger, A. Kraftwerk Schweiz: Plädoyer Für Eine Energiewende Mit Zukunft; Zytglogge: Basel, Switzerland, 2015. [Google Scholar]
- Hanger, S.; Komendantova, N.; Schinke, B.; Zejli, D.; Ihlal, A.; Patt, A. Community acceptance of large-scale solar energy installations in developing countries: Evidence from Morocco. Energy Res. Soc. Sci. 2016, 14, 80–89. [Google Scholar] [CrossRef]
- Nghiem, A.; Mbistrova, A. Wind in Power. 2016 European Statistics; WindEurope: Brussels, Belgium, 2017. [Google Scholar]
- Klessmann, C.; Nabe, C.; Burges, K. Pros and cons of exposing renewables to electricity market risks—A comparison of the market integration approaches in Germany, Spain, and the UK. Energy Policy 2008, 36, 3646–3661. [Google Scholar] [CrossRef]
- European Commission (EC). Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions on Energy Roadmap 2050; COM(2011) 885 Final; European Commission (EC): Brussels, Belgium, 2011. [Google Scholar]
- Zickfeld, F.; Wieland, A. Desert Power 2050. Perspectives on a Sustainable Power System for Eumena; Dii GmbH: Munich, Germany, 2012. [Google Scholar]
- Broesamle, H.; Mannstein, H.; Schillings, C.; Trieb, F. Assessment of solar electricity potentials in north Africa based on satellite data and a geographic information system. Sol. Energy 2001, 70, 1–12. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Technology Roadmap. Concentrating Solar Power; International Energy Agency: Paris, France, 2010. [Google Scholar]
- German Aerospace Center (DLR). Trans-csp Trans-Mediterranean Interconnection for Concentrating Solar Power; DLR: Köln, Germany, 2006. [Google Scholar]
- Richte, C. Concentrating Solar Power. Global Outlook 09. Why Renewable Energy is Hot; Greenpeace: Amsterdam, The Netherlands; SolarPACES: Tabernas, Spain; ESTELA: Brussels, Belgium, 2009. [Google Scholar]
- Swissgrid. Aggregated Energy Data of the Control Block Switzerland; Transmission System Operator of Switzerland: Laufenburg, Switzerland, 2015. [Google Scholar]
- Pfenninger, S.; Keirstead, J. Renewables, nuclear, or fossil fuels? Scenarios for great britain’s power system considering costs, emissions and energy security. Appl. Energy 2015, 152, 83–93. [Google Scholar] [CrossRef]
- MeteoSwiss. Idaweb Swiss Meteorological Data; Federal Office of Meteorology and Climatology: Zurich, Switzerland, 2015. [Google Scholar]
- JRC. Photovoltaic Geographical Information System (PVGIS); Joint Research Centre. European Commission: Ispra, Italy, 2015. [Google Scholar]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.Y.; Iredell, M.; et al. Ncep Climate Forecast System Version 2 (CFSV2) Selected Hourly Time-series Products; Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory: Boulder, CO, USA, 2011. [Google Scholar]
- Pfenninger, S.; Staffell, I. Long-term patterns of european PV output using 30 years of validated hourly reanalysis and satellite data. Energy 2016, 114, 1251–1265. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory (NREL). System Advisor Model (SAM); NREL: Golden, CO, USA, 2014.
- Thürler, G. Statistik der Wasserkraftanlagen der Schweiz; Bundesamt für Energie (BFE): Ittigen, Switzerland, 2014. [Google Scholar]
- ENTSO-E. Regional Investment Plan 2014. Continental Central South. Final; European Network of Transmission System Operators for Electricity: Brussels, Belgium, 2014; p. 274. [Google Scholar]
- Mehos, M.; Turchi, C.; Jorgens, J. On the Path to Sunshot: Advancing Concentrating Solar Power Technology, Performance, and Dispatchability; National Renewable Energy Laboratory: Golden, CO, USA, 2016. [Google Scholar]
- PSI. Switzerland Energy Transition Scenarios–Development and Application of the Swiss Times Energy System Model (stem); PSI: Villigen, Switzerland, 2014; p. 126. [Google Scholar]
- Eurostat. Hicp–Annual Percentage Changes, Breakdown by Purpose of Consumption; Eurostat: Luxembourg, 2016. [Google Scholar]
- Czisch, G.; Giebel, G.; Keramane, A. Totally renewable electricity supply: A European/trans-European example. Medenergie 2008, 27, 1–19. [Google Scholar]
- Trieb, F.; Schillings, C.; Pregger, T.; O’Sullivan, M. Solar electricity imports from the middle east and north africa to Europe. Energy Policy 2012, 42, 341–353. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Europe’s Onshore and Offshore Wind Energy Potential. An Assessment of Environmental and Economic Constraints; European Environment Agency’s European Topic Centre for Air and Climate Change (ETC/ACC): Luxembourg, 2009; p. 85. [Google Scholar]
- Greenpeace. Energy (R) Evolution-A Sustainable World Energy Outlook; Primavera Quint: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Peter, S.; Lehmann, H. Renewable Energy Outlook 2030. Energy Watch Group Global Renewable Energy Scenarios; Energy Watch Group & Ludwig-Boelkow-Foundation: Berlin, Germany, 2008. [Google Scholar]
- International Energy Agency (IEA). World Energy Model–Methodology and Assumptions; International Energy Agency: Paris, France, 2011. [Google Scholar]
- VGB PowerTech. Investment and Operation Cost Figures–Generation Portfolio; VGB PowerTech: Essen, Germany, 2012. [Google Scholar]
- Bolinger, M.; Wiser, R. Understanding wind turbine price trends in the U.S. Over the past decade. Energy Policy 2012, 42, 628–641. [Google Scholar] [CrossRef]
- Brugger, E.A.; Dietrich, P.; Gessler, R.; Kaiser, T.; Vellacott, T.; Wokaun, A.; Zepf, N.; Wettstein-Strässle, D. Energie-strategie 2050. Impulse Für die Schweizerische Energiepolitik; Energie Trialog Schweiz: Zürich, Switzerland, 2009. [Google Scholar]
- Hildmann, M.; Ulbig, A.; Andersson, G. Electricity grid in-feed from renewable sources: A risk for pumped-storage hydro plants? In Proceedings of the 2011 8th International Conference on the European Energy Market (EEM), Zagreb, Croatia, 25–27 May 2011; pp. 185–190. [Google Scholar]
- Singh, A.; Willi, D.; Chokani, N.; Abhari, R.S. Optimal power flow analysis of a Switzerland’s transmission system for long-term capacity planning. Renew. Sustain. Energy Rev. 2014, 34, 596–607. [Google Scholar] [CrossRef]
- Fischedick, M.; Schaeffer, R.; Adedoyin, A.; Akai, M.; Bruckner, T.; Clarke, L.; Krey, V.; Savolainen, I.; Teske, S.; Ürge-Vorsatz, D.; et al. Mitigation Potential and Costs; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, P.; Van Vliet, O.; Patt, A. Do We Need Gas as a Bridging Fuel? A Case Study of the Electricity System of Switzerland. Energies 2017, 10, 861. https://doi.org/10.3390/en10070861
Díaz P, Van Vliet O, Patt A. Do We Need Gas as a Bridging Fuel? A Case Study of the Electricity System of Switzerland. Energies. 2017; 10(7):861. https://doi.org/10.3390/en10070861
Chicago/Turabian StyleDíaz, Paula, Oscar Van Vliet, and Anthony Patt. 2017. "Do We Need Gas as a Bridging Fuel? A Case Study of the Electricity System of Switzerland" Energies 10, no. 7: 861. https://doi.org/10.3390/en10070861
APA StyleDíaz, P., Van Vliet, O., & Patt, A. (2017). Do We Need Gas as a Bridging Fuel? A Case Study of the Electricity System of Switzerland. Energies, 10(7), 861. https://doi.org/10.3390/en10070861