Time-Section Fusion Pattern Classification Based Day-Ahead Solar Irradiance Ensemble Forecasting Model Using Mutual Iterative Optimization
Abstract
:1. Introduction
- (1)
- We propose a time-section fusion pattern classification based day-ahead solar irradiance ensemble forecasting model.
- (2)
- We propose a mutual iterative optimization framework to optimize the pattern classification and data fusion models.
- (3)
- We test the performance of the proposed ensemble forecasting model and improve the accuracy of solar irradiance day-ahead forecasting approach.
2. Ensemble Model for Day-Ahead Solar Irradiance Forecasting
2.1. Ensemble Forecasting Framework
2.2. Wavelet Decomposition Based Irradiance Forecasting
2.3. Time-Section Data Fusion and Fusion Pattern Classification
- (1)
- Solar irradiance forecasting results using original data: IRRp0;
- (2)
- Solar irradiance forecasting results using decomposed data: IRRp1, IRRp2, IRRp3, IRRp4, and IRRp5;
- (3)
- Actual solar irradiance data: IRRo;
3. Mutual Iterative Optimization for Classification and Fusion Models
3.1. Methodology
3.2. Algorithm Procedures
- (1)
- Set the counting unit . Cluster all of the forecasting results of multiple models at each time section into n classes using k-means algorithm.
- (2)
- For data in each pattern class Ci (i = 1, 2, …, n), build and train the fusion model using forecasting results (fusion model input) and actual data (fusion model output).
- (3)
- Fuse all the forecasting results using each fusion model , reclassify the data into different pattern classes according to fusion accuracy. Thus, if the fusion result of model is closest to the actual data at time section t, then reset the pattern label L(t) to Ci.
- (4)
- According to the forecasting results and their new pattern labels, build and train a data classification model .
- (5)
- Check if the iteration termination condition is satisfied.
- (6)
- If no, using model to reclassify the data, then goes back to procedure (2). If yes, output the classification model and fusion models as optimized models.
4. Simulation and Discussion
4.1. Data
4.2. Simulation Design
4.3. Simulation Results and Comparison
4.4. Simulation Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chu, Y.; Urquhart, B.; Gohari, S.M.I.; Pedro, H.T.C.; Kleissl, J.; Coimbra, C.F.M. Short-term reforecasting of power output from a 48 MWe solar PV plant. Sol. Energy 2015, 112, 68–77. [Google Scholar] [CrossRef]
- Seyboth, K.; Sverrisson, F.; Appavou, F.; Brown, A.; Epp, B.; Leidreiter, A.; Lins, C.; Musolino, E.; Murdock, H.E.; Petrichenko, K.; et al. Renewables 2016 Global Status Report; REN21: Paris, France, 2016. [Google Scholar]
- 2015 PV-Related Statistics. Available online: http://www.nea.gov.cn/2016-02/05/c_135076636.htm (accessed on 22 October 2017).
- Wang, F.; Xu, H.; Xu, T.; Li, K.; Shafie-Khah, M.; Catalão, J.P.S. The values of market-based demand response on improving power system reliability under extreme circumstances. Appl. Energy 2017, 193, 220–231. [Google Scholar] [CrossRef]
- Tuohy, A.; Zack, J.; Haupt, S.E.; Sharp, J.; Ahlstrom, M.; Dise, S.; Grimit, E.; Mohrlen, C.; Lange, M.; Casado, M.G.; et al. Solar Forecasting: Methods, Challenges, and Performance. IEEE Power Energy Mag. 2015, 13, 50–59. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, F.; Hodge, B.-M.; Zhang, J.; Li, Z.; Shafie-Khah, M.; Catalao, J.P.S. Dynamic Price Vector Formation Model Based Automatic Demand Response Strategy for PV-assisted EV Charging Station. IEEE Trans. Smart Grid 2017, 8, 2903–2915. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, L.; Ren, H.; Liu, X.; Talari, S.; Shafie-Khah, M.; Catalao, J.P.S. Multi-objective Optimization Model of Source-Load-Storage Synergetic Dispatch for Building Energy System Based on TOU Price Demand Response. IEEE Trans. Ind. Appl. 2017. [Google Scholar] [CrossRef]
- Ren, Y.; Suganthan, P.N.; Srikanth, N. Ensemble methods for wind and solar power forecasting—A state-of-the-art review. Renew. Sustain. Energy Rev. 2015, 50, 82–91. [Google Scholar] [CrossRef]
- Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-de-Pison, F.J.; Antonanzas-Torres, F. Review of photovoltaic power forecasting. Sol. Energy 2016, 136, 78–111. [Google Scholar] [CrossRef]
- Wang, F.; Zhen, Z.; Mi, Z.; Sun, H.; Su, S.; Yang, G. Solar irradiance feature extraction and support vector machines based weather status pattern recognition model for short-term photovoltaic power forecasting. Energy Build. 2015, 86, 427–438. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, F.; Wang, B.; Chen, Q.; Engerer, N.A.; Mi, Z. Correlation Feature Selection and Mutual Information Theory Based Quantitative Research on Meteorological Impact Factors of Module Temperature for Solar Photovoltaic Systems. Energies 2016, 10, 7. [Google Scholar] [CrossRef]
- Monteiro, C.; Santos, T.; Fernandez-Jimenez, L.A.; Ramirez-Rosado, I.J.; Terreros-Olarte, M.S. Short-term power forecasting model for photovoltaic plants based on historical similarity. Energies 2013, 6, 2624–2643. [Google Scholar] [CrossRef]
- Wang, F.; Mi, Z.; Su, S.; Zhao, H. Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters. Energies 2012, 5, 1355–1370. [Google Scholar] [CrossRef]
- Marquez, R.; Coimbra, C.F.M. Intra-hour DNI forecasting based on cloud tracking image analysis. Sol. Energy 2013, 91, 327–336. [Google Scholar] [CrossRef]
- Chow, C.W.; Belongie, S.; Kleissl, J. Cloud motion and stability estimation for intra-hour solar forecasting. Sol. Energy 2015, 115, 645–655. [Google Scholar] [CrossRef]
- Wang, F.; Zhen, Z.; Liu, C.; Mi, Z.; Hodge, B.-M.; Shafie-Khah, M.; Catalão, J.P.S. Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting. Energy Convers. Manag. 2018, 157, 123–135. [Google Scholar] [CrossRef]
- Pierro, M.; Bucci, F.; De Felice, M.; Maggioni, E.; Moser, D.; Perotto, A.; Spada, F.; Cornaro, C. Multi-Model Ensemble for day ahead prediction of photovoltaic power generation. Sol. Energy 2016, 134, 132–146. [Google Scholar] [CrossRef]
- Aburomman, A.A.; Ibne Reaz, M. Bin A novel SVM-kNN-PSO ensemble method for intrusion detection system. Appl. Soft Comput. J. 2016, 38, 360–372. [Google Scholar] [CrossRef]
- Li, S.; Wang, P.; Goel, L. A novel wavelet-based ensemble method for short-term load forecasting with hybrid neural networks and feature selection. IEEE Trans. Power Syst. 2016, 31, 1788–1798. [Google Scholar] [CrossRef]
- Bessa, R.J.; Trindade, A.; Silva, C.S.P.; Miranda, V. Probabilistic solar power forecasting in smart grids using distributed information. Int. J. Electr. Power Energy Syst. 2015, 72, 16–23. [Google Scholar] [CrossRef]
- Iversen, E.B.; Morales, J.M.; Møller, J.K.; Madsen, H. Short-term probabilistic forecasting of wind speed using stochastic differential equations. Int. J. Forecast. 2015, 32, 981–990. [Google Scholar] [CrossRef]
- Men, Z.; Yee, E.; Lien, F.-S.; Wen, D.; Chen, Y. Short-term wind speed and power forecasting using an ensemble of mixture density neural networks. Renew. Energy 2016, 87, 203–211. [Google Scholar] [CrossRef]
- Chui, C.K. Wavelets: A Tutorial in Theory and Applications (Wavelet Analysis and Its Applications); Chui, C.K., Ed.; Academic Press: San Diego, CA, USA, 1992. [Google Scholar]
- Azimi, R.; Ghofrani, M.; Ghayekhloo, M. A hybrid wind power forecasting model based on data mining and wavelets analysis. Energy Convers. Manag. 2016, 127, 208–225. [Google Scholar] [CrossRef]
- Feng, X.; Li, Q.; Zhu, Y.; Hou, J.; Jin, L.; Wang, J. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 2015, 107, 118–128. [Google Scholar] [CrossRef]
- Zhu, T.; Wei, H.; Zhao, X.; Zhang, C.; Zhang, K. Clear-sky model for wavelet forecast of direct normal irradiance. Renew. Energy 2017, 104, 1–8. [Google Scholar] [CrossRef]
- Panapakidis, I.P.; Dagoumas, A.S. Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model. Energy 2017, 118, 231–245. [Google Scholar] [CrossRef]
- Yang, Z.; Ce, L.; Lian, L. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Appl. Energy 2017, 190, 291–305. [Google Scholar] [CrossRef]
- Tascikaraoglu, A.; Sanandaji, B.M.; Poolla, K.; Varaiya, P. Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform. Appl. Energy 2016, 165, 735–747. [Google Scholar] [CrossRef]
- Cui, F.; Deng, X.; Shao, H. Short-term wind speed forecasting using the wavelet decomposition and AdaBoost technique in wind farm of East China. IET Gener. Transm. Distrib. 2016, 10, 2585–2592. [Google Scholar]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Meng, A.; Ge, J.; Yin, H.; Chen, S. Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers. Manag. 2016, 114, 75–88. [Google Scholar] [CrossRef]
- Lave, M.; Kleissl, J. Cloud speed impact on solar variability scaling—Application to the wavelet variability model. Sol. Energy 2013, 91, 11–21. [Google Scholar] [CrossRef]
- US Department of Commerce, NOAA, Earth System Research Laboratory. ESRL Global Monitoring Division—Global Radiation Group. Available online: https://www.esrl.noaa.gov/gmd/grad/surfrad/ (accessed on 13 September 2017).
Forecasting Models | RMSE | ||
---|---|---|---|
Clear Sky Days | Cloudy Days | ||
WD based forecasting model | WD level 0 | 79.57 | 112.40 |
WD level 1 | 101.76 | 109.44 | |
WD level 2 | 55.34 | 120.43 | |
WD level 3 | 23.16 | 100.19 | |
WD level 4 | 23.06 | 46.02 | |
WD level 5 | 17.32 | 46.23 | |
Ensemble forecasting model | Single fusion model | 19.55 | 43.78 |
Classified fusion model | 16.76 | 36.83 |
Model | WD Based Forecasting Model | Ensemble Model | Persistence Model | ARIMA Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
WD Level 0 | WD Level 1 | WD Level 2 | WD Level 3 | WD Level 4 | WD Level 5 | Single Fusion Model | Classified Fusion Models | |||
RMSE | 74.66 | 51.86 | 38.66 | 32.10 | 36.07 | 76.99 | 31.81 | 31.15 | 49.83 | 112.19 |
MAE | 30.33 | 23.09 | 16.96 | 14.81 | 16.04 | 48.70 | 14.50 | 12.62 | 19.41 | 62.10 |
COR | 0.9815 | 0.9908 | 0.9950 | 0.9965 | 0.9959 | 0.9955 | 0.9965 | 0.9967 | 0.9916 | 0.9589 |
Model | WD Based Forecasting Model | Ensemble Model | Persistence Model | ARIMA Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
WD Level 0 | WD Level 1 | WD Level 2 | WD Level 3 | WD Level 4 | WD Level 5 | Single Fusion Model | Classified Fusion Models | |||
RMSE | 102.45 | 106.22 | 103.14 | 82.26 | 38.61 | 37.98 | 31.81 | 31.15 | 125.01 | 143.98 |
MAE | 68.56 | 69.63 | 63.73 | 52.41 | 24.72 | 23.80 | 14.50 | 12.62 | 70.72 | 84.21 |
COR | 0.8322 | 0.8113 | 0.8500 | 0.9075 | 0.9777 | 0.9782 | 0.9965 | 0.9967 | 0.7059 | 0.5517 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Zhen, Z.; Liu, C.; Mi, Z.; Shafie-khah, M.; Catalão, J.P.S. Time-Section Fusion Pattern Classification Based Day-Ahead Solar Irradiance Ensemble Forecasting Model Using Mutual Iterative Optimization. Energies 2018, 11, 184. https://doi.org/10.3390/en11010184
Wang F, Zhen Z, Liu C, Mi Z, Shafie-khah M, Catalão JPS. Time-Section Fusion Pattern Classification Based Day-Ahead Solar Irradiance Ensemble Forecasting Model Using Mutual Iterative Optimization. Energies. 2018; 11(1):184. https://doi.org/10.3390/en11010184
Chicago/Turabian StyleWang, Fei, Zhao Zhen, Chun Liu, Zengqiang Mi, Miadreza Shafie-khah, and João P. S. Catalão. 2018. "Time-Section Fusion Pattern Classification Based Day-Ahead Solar Irradiance Ensemble Forecasting Model Using Mutual Iterative Optimization" Energies 11, no. 1: 184. https://doi.org/10.3390/en11010184
APA StyleWang, F., Zhen, Z., Liu, C., Mi, Z., Shafie-khah, M., & Catalão, J. P. S. (2018). Time-Section Fusion Pattern Classification Based Day-Ahead Solar Irradiance Ensemble Forecasting Model Using Mutual Iterative Optimization. Energies, 11(1), 184. https://doi.org/10.3390/en11010184