Simulation-Based Analysis of the Potential of Alternative Fuels towards Reducing CO2 Emissions from Aviation
Abstract
:1. Introduction
2. Modeling Approach
2.1. Air Travel Demand
2.2. Airline Industry
2.3. Aircraft Manufacturer
2.4. Alternative Fuel Producers
3. Validation and Computational Results
3.1. Data Base and Simulation Set Up
3.2. Model Validation
3.3. Simulation Experiments and Discussion
4. Summary
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- ATAG. Facts & Figures. Available online: http://www.atag.org/facts-and-figures.html (accessed on 16 March 2017).
- Airbus. Global Market Forecast—Growing Horizons 2017/2035. Available online: http://bit.ly/2zGgJT9 (accessed on 25 July 2017).
- Meleo, L.; Nava, C.R.; Pozzi, C. Aviation and the costs of the European Emission Trading Scheme: The case of Italy. Energy Policy 2016, 88, 138–147. [Google Scholar] [CrossRef]
- Kharina, A.; Rutherford, D.; Zeinali, M. Cost Assessment of Near- and Mid-Term Technologies to Improve New Aircraft Fuel Efficiency. 2017. Available online: http://bit.ly/2heQg43 (accessed on 8 November 2017).
- Schäfer, A.W.; Evans, A.D.; Reynolds, T.G.; Dray, L. Costs of mitigating CO2 emissions from passenger aircraft. Nat. Clim. Chang. 2016, 6, 412–417. [Google Scholar] [CrossRef]
- Müller, C.; Kieckhäfer, K.; Spengler, T.S. The influence of emission thresholds and retrofit options on airline fleet planning: An optimization approach. Energy Policy 2018, 112, 242–257. [Google Scholar] [CrossRef]
- Cansino, J.M.; Román, R. Energy efficiency improvements in air traffic: The case of Airbus A320 in Spain. Energy Policy 2017, 101, 109–122. [Google Scholar] [CrossRef]
- German Environment Agency. Power-to-Liquids: Potentials and Perspectives for the Future Supply of Renewable Aviation Fuel. Available online: http://bit.ly/2zJkxk3 (accessed on 14 November 2017).
- Bann, S.J.; Malina, R.; Staples, M.D.; Suresh, P.; Pearlson, M.; Tyner, W.E.; Hileman, J.I.; Barrett, S. The costs of production of alternative jet fuel: A harmonized stochastic assessment. Bioresour. Technol. 2017, 227, 179–187. [Google Scholar] [CrossRef] [PubMed]
- International Civil Aviation Organization (ICAO). Global Emissions: Sustainable Alternative Fuels; ICAO Environmental Report, Chapter 4; International Civil Aviation Organization: Montreal, QC, Canada, 2016; pp. 153–177. [Google Scholar]
- Stratton, R.W.; Wong, H.M.; Hileman, J.I. Quantifying variability in life cycle greenhouse gas inventories of alternative middle distillate transportation fuels. Environ. Sci. Technol. 2011, 45, 4637–4644. [Google Scholar] [CrossRef] [PubMed]
- König, D.H.; Baucks, N.; Dietrich, R.-U.; Wörner, A. Simulation and evaluation of a process concept for the generation of synthetic fuel from CO2 and H2. Energy 2015, 91, 833–841. [Google Scholar] [CrossRef] [Green Version]
- König, D.H.; Freiberg, M.; Dietrich, R.-U.; Wörner, A. Techno-economic study of the storage of fluctuating renewable energy in liquid hydrocarbons. Fuel 2015, 159, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Tremel, A.; Wasserscheid, P.; Baldauf, M.; Hammer, T. Techno-economic analysis for the synthesis of liquid and gaseous fuels based on hydrogen production via electrolysis. Int. J. Hydrogen Energy 2015, 40, 11457–11464. [Google Scholar] [CrossRef]
- Kousoulidou, M.; Lonza, L. Biofuels in aviation: Fuel demand and CO2 emissions evolution in Europe toward 2030. Transp. Res. Part D Transp. Environ. 2016, 46, 166–181. [Google Scholar] [CrossRef]
- Pierson, K.; Sterman, J.D. Cyclical dynamics of airline industry earnings. Syst. Dyn. Rev. 2013, 29, 129–156. [Google Scholar] [CrossRef]
- Liehr, M.; Größler, A.; Klein, M.; Milling, P.M. Cycles in the sky: Understanding and managing business cycles in the airline market. Syst. Dyn. Rev. 2001, 17, 311–332. [Google Scholar] [CrossRef]
- Weil, H.B. Commodization of Technology-Based Products and Services: A Generic Model of Market Dynamics; Sloan School of Management, Massachusetts Institute of Technology: Cambridge, MA, USA, 1996. [Google Scholar]
- Lyneis, J.M.; Glucksman, M.A. Market Analysis and Forecasting as a Strategic Business Tool. In Computer-Based Management of Complex Systems, Proceedings of the 1989 International Conference of the System Dynamics Society, Stuttgart, Germany, 10–14 July 1989; Milling, P.M., Zahn, E.O.K., Eds.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 136–143. [Google Scholar]
- Kleer, B.; Cronrath, E.-M.; Zock, A. Market development of airline companies: A system dynamics view on strategic movements. In Proceedings of the 26th International Conference of the System Dynamics Society, Athens, Greece, 20–24 July 2008. [Google Scholar]
- Pfänder, H.; Jimenez, H.; Mavris, D. Environmental impact analysis of fleet and policy options of aircraft operators using system dynamics. In Proceedings of the 10th AIAA Technology, Integration and Operations (ATIO) Conference, Fort Worth, TX, USA, 13–15 September 2010. [Google Scholar]
- Urban, M.; Kluge, U.; Plötner, K.O.; Barbeito, G.; Pickl, S.; Hornung, M. Modelling the European air transport system: A System Dynamics approach. In Proceedings of the Deutscher Luft- und Raumfahrtkongress 2017, Munich, Germany, 5–7 September 2017. [Google Scholar]
- Sgouridis, S.; Bonnefoy, P.A.; Hansman, R.J. Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation. Transp. Res. Part A Policy Pract. 2011, 45, 1077–1091. [Google Scholar] [CrossRef]
- Sterman, J.D. Business Dynamics: Systems Thinking and Modeling for a Complex World; Irwin/McGraw-Hill: Boston, MA, USA, 2000. [Google Scholar]
- Sterman, J.D.; Henderson, R.; Beinhocker, E.D.; Newman, L.I. Getting big too fast: Strategic dynamics with increasing returns and bounded rationality. Manag. Sci. 2007, 53, 683–696. [Google Scholar] [CrossRef]
- Liebeck, R.H.; Andrastek, D.A.; Chau, J.; Girvin, R.; Lyon, R.; Rawdon, B.K.; Scott, P.W.; Wright, R.A. Advanced Subsonic Airplane Design and Economic Studies; CR-195443; National Aeronautics and Space Administration, Lewis Research Center National Technical Information Service: Cleveland, OH, USA, 1995.
- Energy Information Administration (EIA). U.S. Gulf Coast Kerosene-Type Jet Fuel Spot Price FOB. Available online: http://bit.ly/2BAyemi (accessed on 19 December 2017).
- United Nations (UN). World Population Prospects: The 2015 Revision—Key Findings and Advance Tables; Working Paper No. ESA/P/WP.241; United Nations (UN): New York, NY, USA, 2015. [Google Scholar]
- World Bank. GDP Per Capita (Constant 2010 US$). Available online: http://bit.ly/2D5egjF (accessed on 19 December 2017).
- World Bank. Consumer Prices for the World. Available online: http://bit.ly/2oLcwcp (accessed on 19 December 2017).
- Boeing. Current Market Outlook; Boeing: Seattle, WA, USA, 2005; Available online: http://bit.ly/2BySmVO (accessed on 19 December 2017).
- Boeing. Current Market Outlook: 2009–2028; Boeing: Seattle, WA, USA, 2009; Available online: http://bit.ly/2BeE3sn (accessed on 19 December 2017).
- Boeing. Current Market Outlook: 2016–2035; Boeing: Seattle, WA, USA, 2016; Available online: http://bit.ly/2usBHiK (accessed on 19 December 2017).
- International Civil Aviation Organization (ICAO). ICAO Data+ Demo: Passenger Load Factor. Available online: http://bit.ly/2kMtzFB (accessed on 19 December 2017).
- Sgouridis, S.P. Symbiotic Strategies in Enterprise Ecology: Modeling Commercial Aviation as an Enterprise of Enterprises. Ph.D. Thesis, Massachussetts Institute of Technology, Cambridge, MA, USA, 2007. [Google Scholar]
- International Air Transport Association (IATA). Technology Roadmap. 2013. Available online: http://bit.ly/2D8EEte (accessed on 20 March 2017).
- Moser, M.; Pregger, T.; Simon, S.; König, D.H.; Wörner, A.; Dietrich, R.-U.; Köhler, M.; Oßwald, P.; Grohmann, J.; Kathrotia, T.; et al. Synthetic liquid hydrocarbons from renewable energy: Results of the Helmholtz energy alliance. Chem. Ing. Tech. 2017, 89, 274–288. [Google Scholar] [CrossRef]
- De Jong, S.; Hoefnagels, R.; Faaij, A.; Slade, R.; Mawhood, R.; Junginger, M. The feasibility of short-term production strategies for renewable jet fuels: A comprehensive techno-economic comparison. Biofuels Bioprod. Biorefin. 2015, 9, 778–800. [Google Scholar] [CrossRef]
- Forrester, J.W.; Senge, P.M. Tests for building confidence in system dynamics models. In System Dynamics; Legasto, A.A., Forrester, J.W., Lyneis, J.M., Eds.; North-Holland: Amsterdam, The Netherlands, 1980; pp. 209–228. [Google Scholar]
- Hekimoğlu, M.; Barlas, Y.; Luna-Reyes, L. Sensitivity analysis for models with multiple behavior modes: A method based on behavior pattern measures. Syst. Dyn. Rev. 2016, 32, 332–362. [Google Scholar] [CrossRef]
- Berghof, R.; Schmitt, A.; Middel, J.; Eyers, C.; Hancox, R.; Gruebler, A.; Hepting, M. CONSAVE 2050. Final Technical Report. 2005. Available online: http://bit.ly/2kNdVdg (accessed on 19 December 2017).
Parameter | Value Range for Biofuels | Value Range for Electrofuels |
---|---|---|
Conversion costs [€2012/L] | 0.79 | 0.83 |
Feedstock costs [€2012/L] | [0.096, 0.84] | [0.17, 3.92] |
Mitigation potential [-] | [0.35, 0.8] | 1 |
Drop-in quota [-] | 0.5 | 0.5 |
Time to adjust capacity [a] | [3,7] | [3,7] |
Growth factor of conventional jet fuel prices [-] | [0.8, 1.2] | [0.8, 1.2] |
Variable | Fraction of Mean Square Error Due to | ||
---|---|---|---|
Bias | Unequal Variation | Unequal Covariation | |
Aircraft in use | 0.005 | 0.001 | 0.993 |
Airline fares | 0.044 | 0.027 | 0.929 |
Air travel demand | 0.002 | 0.014 | 0.984 |
CO2 emissions | 0.303 | 0.243 | 0.453 |
Load factor | 0.026 | 0.166 | 0.808 |
Operating margin | 0.001 | 0.225 | 0.744 |
Parameter | Pro Alternative | Baseline | Pro Conventional |
---|---|---|---|
Feedstock costs [€2012/L] | 0.096 | 0.47 | 0.84 |
Mitigation potential [-] | 0.8 | 0.5 | 0.35 |
Time to adjust capacity [a] | 3 | 5 | 7 |
Growth factor of conventional jet fuel prices [-] | 1.2 | 1.0 | 0.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kieckhäfer, K.; Quante, G.; Müller, C.; Spengler, T.S.; Lossau, M.; Jonas, W. Simulation-Based Analysis of the Potential of Alternative Fuels towards Reducing CO2 Emissions from Aviation. Energies 2018, 11, 186. https://doi.org/10.3390/en11010186
Kieckhäfer K, Quante G, Müller C, Spengler TS, Lossau M, Jonas W. Simulation-Based Analysis of the Potential of Alternative Fuels towards Reducing CO2 Emissions from Aviation. Energies. 2018; 11(1):186. https://doi.org/10.3390/en11010186
Chicago/Turabian StyleKieckhäfer, Karsten, Gunnar Quante, Christoph Müller, Thomas Stefan Spengler, Matthias Lossau, and Wolfgang Jonas. 2018. "Simulation-Based Analysis of the Potential of Alternative Fuels towards Reducing CO2 Emissions from Aviation" Energies 11, no. 1: 186. https://doi.org/10.3390/en11010186
APA StyleKieckhäfer, K., Quante, G., Müller, C., Spengler, T. S., Lossau, M., & Jonas, W. (2018). Simulation-Based Analysis of the Potential of Alternative Fuels towards Reducing CO2 Emissions from Aviation. Energies, 11(1), 186. https://doi.org/10.3390/en11010186