A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting
Abstract
:1. Introduction
2. Methodology of Artificial Neural Networks
3. The Proposed Deep Neural Network
4. Experimental Results
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [Google Scholar] [CrossRef]
- Da Graça Carvalho, M.; Bonifacio, M.; Dechamps, P. Building a low carbon society. Energy 2011, 36, 1842–1847. [Google Scholar] [CrossRef]
- Jiang, B.; Sun, Z.; Liu, M. China’s energy development strategy under the low-carbon economy. Energy 2010, 35, 4257–4264. [Google Scholar] [CrossRef]
- Cho, H.; Goude, Y.; Brossat, X.; Yao, Q. Modeling and forecasting daily electricity load curves: A hybrid approach. J. Am. Stat. Assoc. 2013, 108, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Javed, F.; Arshad, N.; Wallin, F.; Vassileva, I.; Dahlquist, E. Forecasting for demand response in smart grids: An analysis on use of anthropologic and structural data and short term multiple loads forecasting. Appl. Energy 2012, 96, 150–160. [Google Scholar] [CrossRef]
- Iwafune, Y.; Yagita, Y.; Ikegami, T.; Ogimoto, K. Short-term forecasting of residential building load for distributed energy management. In Proceedings of the 2014 IEEE International Energy Conference, Cavtat, Croatia, 13–16 May 2014; pp. 1197–1204. [Google Scholar] [CrossRef]
- Short Term Electricity Load Forecasting on Varying Levels of Aggregation. Available online: https://arxiv.org/abs/1404.0058v3 (accessed on 11 January 2018).
- Gerwig, C. Short term load forecasting for residential buildings—An extensive literature review. Smart Innov. Syst. 2015, 39, 181–193. [Google Scholar]
- Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst. 2001, 16, 44–55. [Google Scholar] [CrossRef]
- Metaxiotis, K.; Kagiannas, A.; Askounis, D.; Psarras, J. Artificial intelligence in short term electric load forecasting: A state-of-the-art survey for the researcher. Energy Convers. Manag. 2003, 44, 1524–1534. [Google Scholar] [CrossRef]
- Tzafestas, S.; Tzafestas, E. Computational intelligence techniques for short-term electric load forecasting. J. Intell. Robot. Syst. 2001, 31, 7–68. [Google Scholar] [CrossRef]
- Ghayekhloo, M.; Menhaj, M.B.; Ghofrani, M. A hybrid short-term load forecasting with a new data preprocessing framework. Electr. Power Syst. Res. 2015, 119, 138–148. [Google Scholar] [CrossRef]
- Xia, C.; Wang, J.; McMenemy, K. Short, medium and long term load forecasting model and virtual load forecaster based on radial basis function neural networks. Int. J. Electr. Power Energy Syst. 2010, 32, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Bughin, J.; Hazan, E.; Ramaswamy, S.; Chui, M. Artificial Intelligence—The Next Digital Frontier? Mckinsey Global Institute: New York, NY, USA, 2017; pp. 1–80. [Google Scholar]
- Oh, C.; Lee, T.; Kim, Y.; Park, S.; Kwon, S.B.; Suh, B. Us vs. Them: Understanding Artificial Intelligence Technophobia over the Google DeepMind Challenge Match. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 2523–2534. [Google Scholar] [CrossRef]
- Skilton, M.; Hovsepian, F. Example Case Studies of Impact of Artificial Intelligence on Jobs and Productivity. In 4th Industrial Revolution; National Academies Press: Washingtom, DC, USA, 2018; pp. 269–291. [Google Scholar]
- Ekonomou, L.; Christodoulou, C.A.; Mladenov, V. A short-term load forecasting method using artificial neural networks and wavelet analysis. Int. J. Power Syst. 2016, 1, 64–68. [Google Scholar]
- Valgaev, O.; Kupzog, F. Low-Voltage Power Demand Forecasting Using K-Nearest Neighbors Approach. In Proceedings of the Innovative Smart Grid Technologies—Asia (ISGT-Asia), Melbourne, VIC, Australia, 28 November–1 December 2016. [Google Scholar]
- Valgaev, O.; Kupzog, F. Building Power Demand Forecasting Using K-Nearest Neighbors Model—Initial Approach. In Proceedings of the IEEE PES Asia-Pacific Power Energy Conference, Xi’an, China, 25–28 October 2016; pp. 1055–1060. [Google Scholar]
- Humeau, S.; Wijaya, T.K.; Vasirani, M.; Aberer, K. Electricity load forecasting for residential customers: Exploiting aggregation and correlation between households. In Proceedings of the 2013 Sustainable Internet and ICT for Sustainability, Palermo, Italy, 30–31 October 2013. [Google Scholar]
- Veit, A.; Goebel, C.; Tidke, R.; Doblander, C.; Jacobsen, H. Household electricity demand forecasting: Benchmarking state-of-the-art method. In Proceedings of the 5th International Confrerence Future Energy Systems, Cambridge, UK, 11–13 June 2014; pp. 233–234. [Google Scholar] [CrossRef]
- Jetcheva, J.G.; Majidpour, M.; Chen, W. Neural network model ensembles for building-level electricity load forecasts. Energy Build. 2014, 84, 214–223. [Google Scholar] [CrossRef]
- Kardakos, E.G.; Alexiadis, M.C.; Vagropoulos, S.I.; Simoglou, C.K.; Biskas, P.N.; Bakirtzis, A.G. Application of time series and artificial neural network models in short-term forecasting of PV power generation. In Proceedings of the 2013 48th International Universities’ Power Engineering Conference, Dublin, Ireland, 2–5 September 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Hayashi, Y. Pattern sequence-based energy demand forecast using photovoltaic energy records. In Proceedings of the 2012 International Conference on Renewable Energy Research and Applications, Nagasaki, Japan, 11–14 November 2012. [Google Scholar]
- Chaouch, M. Clustering-based improvement of nonparametric functional time series forecasting: Application to intra-day household-level load curves. IEEE Trans. Smart Grid 2014, 5, 411–419. [Google Scholar] [CrossRef]
- Niu, D.; Dai, S. A short-term load forecasting model with a modified particle swarm optimization algorithm and least squares support vector machine based on the denoising method of empirical mode decomposition and grey relational analysis. Energies 2017, 10, 408. [Google Scholar] [CrossRef]
- Deo, R.C.; Wen, X.; Qi, F. A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Appl. Energy 2016, 168, 568–593. [Google Scholar] [CrossRef]
- Soubdhan, T.; Ndong, J.; Ould-Baba, H.; Do, M.T. A robust forecasting framework based on the Kalman filtering approach with a twofold parameter tuning procedure: Application to solar and photovoltaic prediction. Sol. Energy 2016, 131, 246–259. [Google Scholar] [CrossRef]
- Hahn, H.; Meyer-Nieberg, S.; Pickl, S. Electric load forecasting methods: Tools for decision making. Eur. J. Oper. Res. 2009, 199, 902–907. [Google Scholar] [CrossRef]
- Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- Pappas, S.S.; Ekonomou, L.; Moussas, V.C.; Karampelas, P.; Katsikas, S.K. Adaptive load forecasting of the Hellenic electric grid. J. Zhejiang Univ. A 2008, 9, 1724–1730. [Google Scholar] [CrossRef]
- White, B.W.; Rosenblatt, F. Principles of neurodynamics: Perceptrons and the theory of brain mechanisms. Am. J. Psychol. 1963, 76, 705. [Google Scholar] [CrossRef]
- Hochreiter, S.; Urgen Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar] [CrossRef]
- Safavian, S.R.; Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar] [CrossRef]
Test | SVM | RF | DT | MLP | LSTM | DeepEnergy |
---|---|---|---|---|---|---|
#1 | 7.327408 | 7.639133 | 8.46043 | 9.164315 | 10.40804813 | 7.226127 |
#2 | 7.550818 | 8.196129 | 10.23476 | 11.14954 | 9.970662683 | 8.244051 |
#3 | 13.07929 | 10.11102 | 12.14039 | 19.99848 | 14.85568499 | 11.00656 |
#4 | 16.15765 | 17.27957 | 19.86511 | 22.45493 | 12.83487893 | 12.17574 |
#5 | 5.183255 | 6.570061 | 8.50582 | 15.01856 | 5.479091542 | 5.41808 |
#6 | 10.33686 | 9.944028 | 11.11948 | 10.94331 | 11.7681534 | 9.070998 |
#7 | 8.934657 | 6.698508 | 8.634132 | 7.722149 | 7.583802292 | 9.275215 |
#8 | 18.5432 | 16.09926 | 17.17215 | 16.93843 | 15.6574951 | 13.2776 |
#9 | 49.97551 | 17.9049 | 21.29354 | 29.06767 | 16.31443679 | 11.18214 |
#10 | 11.20804 | 8.221766 | 10.68665 | 12.20551 | 8.390061493 | 10.80571 |
Average | 14.82967 | 10.86644 | 12.81125 | 15.46629 | 11.32623153 | 9.768222 |
Test | SVM | RF | DT | MLP | LSTM | DeepEnergy |
---|---|---|---|---|---|---|
#1 | 9.058992 | 9.423908 | 10.57686 | 10.65546 | 12.16246177 | 8.948922 |
#2 | 10.14701 | 10.63412 | 12.99834 | 13.91199 | 12.19377007 | 10.46165 |
#3 | 17.02552 | 12.42314 | 14.58249 | 23.2753 | 16.9291218 | 13.30116 |
#4 | 21.22162 | 21.1038 | 24.48298 | 23.63544 | 14.13596516 | 14.63439 |
#5 | 6.690527 | 7.942747 | 10.10017 | 15.44461 | 6.334195125 | 6.653999 |
#6 | 11.88856 | 11.6989 | 13.39033 | 12.20149 | 12.96057349 | 10.74021 |
#7 | 10.77881 | 7.871596 | 10.35254 | 8.716806 | 8.681353107 | 10.85454 |
#8 | 19.49707 | 17.09079 | 18.95726 | 17.73124 | 16.55737557 | 14.51027 |
#9 | 54.58171 | 19.91185 | 24.84425 | 29.37466 | 17.66342548 | 13.01906 |
#10 | 13.80167 | 10.15117 | 13.06351 | 13.39278 | 10.20235927 | 13.47003 |
Average | 17.46915 | 12.8252 | 15.33487 | 16.83398 | 12.78206008 | 11.65942 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, P.-H.; Huang, C.-J. A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting. Energies 2018, 11, 213. https://doi.org/10.3390/en11010213
Kuo P-H, Huang C-J. A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting. Energies. 2018; 11(1):213. https://doi.org/10.3390/en11010213
Chicago/Turabian StyleKuo, Ping-Huan, and Chiou-Jye Huang. 2018. "A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting" Energies 11, no. 1: 213. https://doi.org/10.3390/en11010213
APA StyleKuo, P. -H., & Huang, C. -J. (2018). A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting. Energies, 11(1), 213. https://doi.org/10.3390/en11010213