Topology-Based Estimation of Missing Smart Meter Readings
Abstract
:1. Introduction
2. Model and Formulation
2.1. Model and Premises
- (1)
- Detection: Servers receive meter readings every 15 min. If the servers do not receive a reading, the servers log the details of the missing meter node that fails to transfer the reading.
- (2)
- Operation: Once the servers detect the missing meter node, the servers request the neighboring nodes to send voltage, current, and power factor data for instances during the period coinciding with the missing reading. These data from the neighbors are used to estimate the missing reading. The resolution of the time instance data is assumed to be 1 min. All smart meters store time instance data for the immediate past 15 min.
- (3)
- Estimation: The span of 15 min is divided into even periods of ∆t as shown in Figure 2. In this study, ∆t is assumed to be one minute and active power consumption is assumed to be fixed during ∆t. The power consumption for the time instances indicated with circles in Figure 2 are defined along with , , …, . The missing load variation at Node(2) is estimated according to the following procedure. Based on the measured values for current, voltage, and energy consumption at Node(1) and Node(3) at time , the values for the missing voltage and current data at Node(2) at time are calculated by utilizing circuit theory principles as shown in Section 3. The active power instances at followed by , , …, are also estimated in the same way as at . Estimation of the 15 active power instances at Node(2) enables the energy consumption at the instances between and to be obtained for Node(2).
2.2. Formulation
3. Case Study
3.1. Performance Validation Compared with Other Methods
- Proposed method
- NN-based regression method
- Average method
3.2. Performance Validation with Various Load Patterns
3.2.1. Classification of One-Year Data
3.2.2. Validation of Estimation for Missing Meter Readings with Classified Load Data
4. Discussion
4.1. Evaluation of Robustness for Measurement Error
4.2. Effect of Taking Average of One Minute
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Liang, X.; Li, X.; Lu, R.; Lin, X.; Shen, X. UDP: Usage-based dynamic pricing with privacy preservation for smart grid. IEEE Trans. Smart Grid 2013, 4, 141–150. [Google Scholar] [CrossRef]
- Yoon, J.H.; Member, S.; Baldick, R.; Novoselac, A. Dynamic Demand Response Controller Based on Real-Time Retail Price for Residential Buildings. IEEE Trans. Smart Grid 2014, 5, 121–129. [Google Scholar] [CrossRef]
- Hayes, B.; Melatti, I.; Mancini, T.; Prodanovic, M.; Tronci, E. Residential Demand Management using Individualised Demand Aware Price Policies. IEEE Trans. Smart Grid 2016, 8, 1284–1294. [Google Scholar] [CrossRef]
- Chen, H.H.; Member, S.; Li, Y.; Member, S.; Louie, R.H.Y. Autonomous Demand Side Management Based on Energy Consumption Scheduling and Instantaneous Load Billing: An Aggregative Game Approach. IEEE Trans. Smart Grid 2014, 5, 1744–1754. [Google Scholar] [CrossRef]
- Wei, C.; Member, S.; Fadlullah, Z. GT-CFS: A Game Theoretic Coalition Formulation Strategy for Reducing Power Loss in Micro Grids. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 2307–2317. [Google Scholar] [CrossRef]
- Peppanen, J.; Grimaldo, J.; Reno, M.J.; Grijalva, S.; Harley, R.G. Increasing Distribution System Model Accuracy with Extensive Deployment of Smart Meters. In Proceedings of the 2014 IEEE PES General Meeting, Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [Google Scholar]
- Alejandro, L.; Blair, C.; Bloodgood, L.; Khan, M.; Lawless, M. Global Market for Smart Electricity Meters: Government Policies Driving Strong Growth; Office of Industries U.S. International Trade Commission: Washington, DC, USA, 2014.
- Sioshansi, F.P. Smart Grid: Integrating Renewable, Distributed and Efficient Energy, 1st ed.; Academic Press: New York, NY, USA, 2011. [Google Scholar]
- Peppanen, J.; Reno, M.J.; Thakkar, M.; Grijalva, S.; Harley, R.G. Leveraging AMI Data for Distribution System Model Calibration and Situational Awareness. IEEE Trans. Smart Grid 2015, 6, 2050–2059. [Google Scholar] [CrossRef]
- Haben, S.; Singleton, C.; Grindrod, P. Analysis and clustering of residential customers energy behavioral demand using smart meter data. IEEE Trans. Smart Grid 2016, 7, 136–144. [Google Scholar] [CrossRef]
- Kavousian, A.; Rajagopal, R.; Fischer, M. Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants’ behavior. Energy 2013, 55, 184–194. [Google Scholar] [CrossRef]
- Blair, S.M.; Booth, C.D.; Williamson, G.; Poralis, A.; Turnham, V. Automatically Detecting and Correcting Errors in Power Quality Monitoring Data. IEEE Trans. Power Deliv. 2016, 32, 1005–1013. [Google Scholar] [CrossRef]
- Quilumba, F.L.; Lee, W.J.; Huang, H.; Wang, D.Y.; Szabados, R.L. Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities. IEEE Trans. Smart Grid 2015, 6, 911–918. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Chen, Q.; Kirschen, D.S.; Li, P.; Xia, Q. Data-Driven Probabilistic Net Load Forecasting with High Penetration of Invisible PV. IEEE Trans. Power Syst. 2017. [Google Scholar] [CrossRef]
- Ding, N.; Benoit, C.; Foggia, G.; Bésanger, Y.; Member, S.; Wurtz, F. Neural Network-Based Model Design for Short-Term Load Forecast in Distribution Systems. IEEE Trans. Power Syst. 2016, 31, 72–81. [Google Scholar] [CrossRef]
- Al-Wakeel, A.; Wu, J.; Jenkins, N. k-Means based load estimation of domestic smart meter measurements. Appl. Energy 2016, 194, 333–342. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, Z.Y.; Meng, K.; Wong, K.P.; Zhang, R. Short-term load forecasting of Australian National Electricity Market by an ensemble model of extreme learning machine. IET Gener. Transm. Distrib. 2013, 7, 391–397. [Google Scholar]
- Li, S.; Wang, P.; Goel, L. A novel wavelet-based ensemble method for short-term load forecasting with hybrid neural networks and feature selection. IEEE Trans. Power Syst. 2016, 31, 1788–1798. [Google Scholar] [CrossRef]
- Sun, X.; Luh, P.B.; Cheung, K.W.; Guan, W.; Michel, L.D.; Venkata, S.S.; Miller, M.T. An Efficient Approach to Short-Term Load Forecasting at the Distribution Level. IEEE Trans. Power Syst. 2016, 31, 2526–2537. [Google Scholar] [CrossRef]
- Hayes, B.; Gruber, J.; Prodanovic, M. Short-Term Load Forecasting at the Local Level using Smart Meter Data. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015. [Google Scholar]
- Lork, C.; Zhou, Y.; Batchu, R.; Yuen, C.; Pindoriya, N.M. An Adaptive data driven approach to single unit residential air-conditioning prediction and forecasting using regression trees. In Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems SMARTGREENS 2017, Porto, Portugal, 22–24 April 2017; pp. 67–76. [Google Scholar]
- Weng, Y.; Negi, R.; Faloutsos, C.; Ilic, M.D. Robust Data-Driven State Estimation for Smart Grid. IEEE Trans. Smart Grid 2017, 8, 1956–1967. [Google Scholar] [CrossRef]
- Barbeiro, P.N.P.; Teixeira, H.; Pereira, J.; Bessa, R. An ELM-AE State Estimator for real-time monitoring in poorly characterized distribution networks. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015. [Google Scholar]
- Chen, J.; Li, W.; Lau, A.; Cao, J.; Wang, K. Automated load curve data cleansing in power systems. IEEE Trans. Smart Grid 2010, 1, 213–221. [Google Scholar] [CrossRef]
- Mateos, G.; Giannakis, G.B. Load Curve Data Cleansing and Imputation Via Sparsity and Low Rank. IEEE Trans. Smart Grid 2013, 4, 2347–2355. [Google Scholar] [CrossRef]
- Han, S.; Kodaira, D.; Han, S.; Kwon, B.; Hasegawa, Y.; Aki, H. An Automated Impedance Estimation Method in Low-Voltage Distribution Network for Coordinated Voltage Regulation. IEEE Trans. Smart Grid 2016, 7, 1012–1020. [Google Scholar] [CrossRef]
- Molina-Garcia, A.; Mastromauro, R.; Garcia-Sanchez, T.; Pugliese, S.; Liserre, M.; Stasi, S. Reactive Power Flow Control for PV Inverters Voltage Support in LV Distribution Networks. IEEE Trans. Smart Grid 2016, 8, 447–456. [Google Scholar] [CrossRef]
- Demirok, E.; Sera, D.; Teodorescu, R.; Rodriguez, P.; Borup, U. Clustered PV inverters in LV networks: An overview of impacts and comparison of voltage control strategies. In Proceedings of the 2009 IEEE Electrical Power & Energy Conference (EPEC), Montreal, QC, Canada, 22–23 October 2009; pp. 1–6. [Google Scholar]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Nanchian, S.; Majumdar, A.; Pal, B.C. Ordinal Optimization Technique for Three Phase Distribution Network State Estimation Including Discrete Variables. IEEE Trans. Sustain. Energy 2017, 8, 1528–1535. [Google Scholar] [CrossRef]
- Jia, Z.; Chen, J.; Liao, Y. State estimation in distribution system considering effects of AMI data. In Proceedings of the IEEE Southeastcon, Jacksonville, FL, USA, 4–7 April 2013. [Google Scholar]
Proposed Method | Load Forecasting | Data Cleansing | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Node(2) | Node(4) | Node(6) | Node(8) | Node(10) | |||||||||
(a) | (b) | (a) | (b) | (a) | (b) | (a) | (b) | (a) | (b) | [19] | [20] | [25] | |
MAPE (%) | 6.8 | 6.7 | 7.1 | 7.2 | 6.7 | 6.6 | 3.9 | 4.0 | 5.2 | 5.0 | 37–105 | 20–30 | 6–8 |
Group1 | Group2 | Group3 | Group4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Node(2) | Node(4) | Node(10) | Node(2) | Node(4) | Node(10) | Node(2) | Node(4) | Node(10) | Node(2) | Node(4) | Node(10) | |
MAPE (%) | 4.46 | 6.77 | 4.88 | 5.32 | 5.21 | 5.32 | 4.20 | 4.35 | 4.82 | 3.91 | 4.45 | 4.85 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodaira, D.; Han, S. Topology-Based Estimation of Missing Smart Meter Readings. Energies 2018, 11, 224. https://doi.org/10.3390/en11010224
Kodaira D, Han S. Topology-Based Estimation of Missing Smart Meter Readings. Energies. 2018; 11(1):224. https://doi.org/10.3390/en11010224
Chicago/Turabian StyleKodaira, Daisuke, and Sekyung Han. 2018. "Topology-Based Estimation of Missing Smart Meter Readings" Energies 11, no. 1: 224. https://doi.org/10.3390/en11010224
APA StyleKodaira, D., & Han, S. (2018). Topology-Based Estimation of Missing Smart Meter Readings. Energies, 11(1), 224. https://doi.org/10.3390/en11010224