Lattice Boltzmann Simulation of Fluid Flow Characteristics in a Rock Micro-Fracture Based on the Pseudo-Potential Model
Abstract
:1. Introduction
2. Slip Condition
3. Coexistence Densities and Maxwell Construction Rule
4. Numerical Model
4.1. The MRT-LBM
4.2. The Original Pseudo-Potential Model
4.3. The Improved Pseudo-Potential Model
4.4. Flowchart of the MRT-LBM
4.5. Verification
4.5.1. The Thermodynamic Consistency
4.5.2. Poiseuille Flow
5. Results and Discussion
5.1. Contact Angle Test
5.2. Discussion
5.2.1. Effect of the Contact Angle
5.2.2. Effect of the Driving Pressure
5.2.3. Effect of the Liquid-Gas Density Ratio
6. Conclusions
- (1)
- With increasing contact angle, the slip length increases at the wall, and the larger the contact angle, the more obvious the slip length changes.
- (2)
- Under the laminar flow regime, the fluid flow velocity is proportional to the driving pressure, but there is almost no change in the slip length with the driving pressure increasing, so the driving pressure has almost no impact on the slip length.
- (3)
- The slip length increases with the increasing of the liquid-gas density ratio, and the larger the wall contact angle, the more remarkable it shows. The liquid-gas density ratio has an important influence on the fluid flow characteristics, especially for the hydrophobic wall.
- (4)
- The wall slip is induced by the changing of liquid density near the solid surface, which is attributed to the varying interaction force between fluid particles and the solid wall. With the decrease of interaction force, the liquid density near the wall decreases and the slip length increases.
Author Contributions
Funding
Conflicts of Interest
References
- Wang, F.; Liu, Y.; Hu, C.; Shen, A.; Liang, S.; Cai, B.; Sciubba, E. A simplified physical model construction method and gas-water micro scale flow simulation in tight sandstone gas reservoirs. Energies 2018, 11, 1559. [Google Scholar] [CrossRef]
- Zhu, W.; Li, B.; Liu, Y.; Song, H.; Wang, X. Solid-liquid interfacial effects on residual oil distribution utilizing three-dimensional micro network models. Energies 2017, 10, 2059. [Google Scholar] [CrossRef]
- Di, Q.; Shen, C.; Wang, Z.H. Experimental research on drag reduction of flow in micro channels of rock using nano-particle adsorption method. Acta Pet. Sin. 2009, 30, 125–128. [Google Scholar]
- Coli, N.; Pranzini, G.; Alfi, A.; Boerio, V. Evaluation of rock-mass permeability tensor and prediction of tunnel inflows by means of geostructural surveys and finite element seepage analysis. Eng. Geol. 2008, 101, 174–184. [Google Scholar] [CrossRef]
- Voronov, R.S.; Papavassiliou, D.V.; Lee, L.L. Slip length and contact angle over hydrophobic surfaces. Chem. Phys. Lett. 2007, 441, 273–276. [Google Scholar] [CrossRef]
- Burton, Z.; Bhushan, B. Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro-and nanoelectromechanical systems. Nano Lett. 2005, 5, 1607. [Google Scholar] [CrossRef] [PubMed]
- Hanna, R.B.; Rajaram, H. Influence of aperture variability on dissolutional growth of fissures in Karst Formations. Water Resour. Res. 1998, 34, 2843–2853. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.Y.; Chen, M.; Guo, Z.Y. Velocity slip of liquid flow in nanochannels. Acta Phys. Sin. Chin. Ed. 2006, 55, 5305–5310. [Google Scholar]
- Xu, C.; He, Y.; Wang, Y. Molecular dynamics studies of velocity slip phenomena in a nanochannel. J. Eng. Thermophys. 2005, 26, 912–914. [Google Scholar]
- Dekany, I. Liquid adsorption and immersional wetting on hydrophilic/hydrophobic solid surfaces. Pure Appl. Chem. 1992, 64, 1499–1509. [Google Scholar] [CrossRef]
- Li, Y.; Pan, Y.; Zhao, X. Measurement and quantification of effective slip length at solid–liquid interface of roughness-induced surfaces with oleophobicity. Appl. Sci. 2018, 8, 931. [Google Scholar] [CrossRef]
- Turner, S.E. Experimental investigation of gas flow in microchannels. J. Heat Transf. 2004, 126, 753–763. [Google Scholar] [CrossRef]
- Sukop, M.C.; Thorne, D.T.J. Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers; Springer: Heidelberg/Berlin, Germany, 2007; pp. 1490–1511. [Google Scholar]
- Zhang, J.; Kwok, D.Y. Apparent slip over a solid-liquid interface with a no-slip boundary condition. Phys. Rev. E 2004, 70. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Yin, H.H.; Li, H.B. Boundary slip and surface interaction: A lattice boltzmann simulation. Chin. Phys. Lett. 2008, 25, 184–187. [Google Scholar] [CrossRef]
- Zhang, R.L.; Di, Q.; Wang, X.L. Institute numerical study of wall wettabilities and topography on drag reduction effect in micro-channel flow by lattice boltzmann method. J. Hydrodyn. 2010, 22, 366–372. [Google Scholar] [CrossRef]
- Kunert, C.; Harting, J. On the effect of surfactant adsorption and viscosity change on apparent slip in hydrophobic microchannels. Prog. Comp. Fluid Dyn. Int. J. 2006, 8, 197–205. [Google Scholar] [CrossRef]
- Huang, H.; Krafczyk, M.; Lu, X. Forcing term in single-phase and shan-chen-type multiphase lattice boltzmann models. Phys. Rev. E 2011, 84. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Schaefer, L. Equations of state in a lattice Boltzmann model. Phys. Fluids 2006, 18, 042101. [Google Scholar] [CrossRef]
- Li, Q.; Luo, K.H.; Li, X.J. Lattice boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Phys. Rev. E 2013, 87. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zheng, C.; Shi, B. Discrete lattice effects on the forcing term in the lattice boltzmann method. Phys. Rev. E 2002, 65. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Luo, L.S.; Miller, C.T. An evaluation of lattice boltzmann schemes for porous medium flow simulation. Comput. Fluids 2006, 35, 898–909. [Google Scholar] [CrossRef]
- Mukherjee, S.; Abraham, J. A pressure-evolution-based multi-relaxation-time high-density-ratio two-phase lattice-Boltzmann model. Comput. Fluids 2007, 36, 1149–1158. [Google Scholar] [CrossRef]
- Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E.M. The Lattice Boltzmann Method-Principles and Practice; Springer International Publishing: New York, NY, USA, 2017. [Google Scholar]
- Chen, L.; Kang, Q.; Mu, Y.; He, Y.; Tao, W. A critical review of the pseudopotential multiphase lattice boltzmann model: Methods and applications. Int. J. Heat Mass Transf. 2014, 76, 210–236. [Google Scholar] [CrossRef]
- Shan, X. Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. Phys. Rev. E 2008, 77. [Google Scholar] [CrossRef] [PubMed]
- Sbragaglia, M.; Benzi, R.; Biferale, L.; Succi, S.; Sugiyama, K.; Toschi, F. Generalized lattice boltzmann method with multirange pseudopotential. Phys. Rev. E 2007, 75. [Google Scholar] [CrossRef] [PubMed]
- Sbragaglia, M.; Shan, X. Consistent pseudopotential interactions in lattice boltzmann models. Phys. Rev. E 2011, 84. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Doolen, G. Multicomponent lattice-boltzmann model with interparticle interaction. J. Stat. Phys. 1995, 81, 379–393. [Google Scholar] [CrossRef]
- Li, Q.; Luo, K.H.; Li, X.J. Forcing scheme in pseudopotential lattice boltzmann model for multiphase flows. Phys. Rev. E 2012, 86. [Google Scholar] [CrossRef] [PubMed]
- Yen, T.H.; Soong, C.Y. Effective boundary slip and wetting characteristics of water on substrates with effects of surface morphology. Mol. Phys. 2015, 114, 1–13. [Google Scholar] [CrossRef]
- Ramos-Alvarado, B.; Kumar, S.; Peterson, G.P. Wettability transparency and the quasiuniversal relationship between hydrodynamic slip and contact angle. Appl. Phys. Lett. 2016, 108. [Google Scholar] [CrossRef]
- Du, Y.P. The Study on Relationship of the Hydrophobic Surface Nanobubbles Characteristics and Solid-Liquid Boundary Slip Length. Master’s Thesis, Harbin Institute of Technology, Harbin, China, June 2012. [Google Scholar]
- Thompson, P.A.; Robbins, M.O. Shear flow near solids: Epitaxial order and flow boundary conditions. Phys. Rev. A 1990, 41, 6830–6837. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H. Heat Transport in Nanoparticle and Nanoporous Media and Nanoscale Liquid Flow. Ph.D. Thesis, Tsinghua University, Beijing, China, April 2008. [Google Scholar]
- Huang, Y.D. Research on the Effect of Surface Micro Topography on Boundary Slip and Flow Resistance. Master’s Thesis, Harbin Institute of Technology, Harbin, China, July 2015. [Google Scholar]
Wall Density (ρw) | 0.02 | 0.06 | 0.10 | 0.14 | 0.18 |
Contact Angle (θ) | 148.7° | 115.9° | 92.6° | 76.0° | 61.9° |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Wang, Z.; Shen, L.; Xin, L. Lattice Boltzmann Simulation of Fluid Flow Characteristics in a Rock Micro-Fracture Based on the Pseudo-Potential Model. Energies 2018, 11, 2576. https://doi.org/10.3390/en11102576
Wang P, Wang Z, Shen L, Xin L. Lattice Boltzmann Simulation of Fluid Flow Characteristics in a Rock Micro-Fracture Based on the Pseudo-Potential Model. Energies. 2018; 11(10):2576. https://doi.org/10.3390/en11102576
Chicago/Turabian StyleWang, Pengyu, Zhiliang Wang, Linfang Shen, and Libin Xin. 2018. "Lattice Boltzmann Simulation of Fluid Flow Characteristics in a Rock Micro-Fracture Based on the Pseudo-Potential Model" Energies 11, no. 10: 2576. https://doi.org/10.3390/en11102576
APA StyleWang, P., Wang, Z., Shen, L., & Xin, L. (2018). Lattice Boltzmann Simulation of Fluid Flow Characteristics in a Rock Micro-Fracture Based on the Pseudo-Potential Model. Energies, 11(10), 2576. https://doi.org/10.3390/en11102576