Experimental Investigation of Oil Recovery from Tight Sandstone Oil Reservoirs by Pressure Depletion
Abstract
:1. Introduction
2. Materials and Experiments
2.1. Materials
2.2. Experimental Platform and Methods
2.3. Experimental Scheme
3. Experimental Results and Analysis
3.1. Depletion Characteristics of Tight Oil without Dissolved Gas
3.1.1. Depletion Experiments with Formation Pressure Coefficient of 1
3.1.2. Depletion Experiments with Formation Pressure Coefficient of 1.5
3.1.3. Characteristics of Pressure Propagation of Dead Oil Depletion
3.2. Characteristics of Tight Oil Depletion with Dissolved Gas
3.2.1. Depletion Experiments at Room Temperature (20.1 °C)
3.2.2. Depletion Experiments at Reservoir Temperature (60 °C)
3.2.3. Characteristics of Pressure Propagation of Live Oil Depletion
4. Discussion
4.1. Effect of Formation Pressure Coefficient on Recovery Factor
4.2. Effect of the Type of Depletion on Recovery Factor
4.3. Effect of Dissolved Gas on Recovery Factor
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Chew, K.J. The future of oil: Unconventional fossil fuels. Philos. Trans. R. Soc. A 2014, 372, 34. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Feng, L.; Steve, M.; Tang, X.; Gail, T.E.; Mikael, H. China’s Unconventional Oil: A review of its resources and outlook for long-term production. Energy 2015, 82, 31–42. [Google Scholar] [CrossRef]
- Leimkhler, J.; Leveille, G. Unconventional Resources. JSPE 2012, 8, 27–28. [Google Scholar] [CrossRef]
- Qiu, Z.; Zou, C.; Li, J. Unconventional Petroleum Resources Assessment: Progress and Future Prospects. NGG 2013, 24, 238–246. [Google Scholar]
- Rich, J.; Ammerman, M. Unconventional Geophysics for Unconventional Plays. In Proceedings of the SPE Unconventional Gas Conference, Pittsburg, PA, USA, 23–25 February 2010. [Google Scholar]
- Zou, C.; Yang, Z.; Zhang, G. Conventional and Unconventional Petroleum “Orderly Accumulation”: Concept and Practical Significance. PED 2014, 41, 14–27. [Google Scholar] [CrossRef]
- Zou, C.N.; Zhai, G.M.; Zhang, G.Y.; Wang, H.J.; Zhang, G.S.; Li, J.Z. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resource. J. Pet. Explor. Dev. 2015, 42, 13–25. [Google Scholar] [CrossRef]
- Miller, R.G.; Sorrell, S.R. The future of oil supply. Philos. Trans. R. Soc. A 2014, 372, 20130179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K. Potential technical solutions to recover tight oil. Unpublished Master’s Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 2014; p. 147. [Google Scholar]
- Zhou, Q.F.; Yang, G.F. Definition and application of tight oil and shale oil terms. Oil Gas Geol. 2012, 3, 541–544. [Google Scholar]
- Wang, F.; Yang, K.; Cai, J. Fractal Characterization of Tight Oil Reservoir Pore Structure Using Nuclear Magnetic Resonance and Mercury Intrusion Porosimetry. Fractals 2018, 26, 1840017. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Z.; Jiao, L.; Wang, C.; Guo, H. A Fractal Permeability Model Coupling Boundary-Layer Effect For Tight Oil Reservoirs. Fractals 2017, 25, 1750042. [Google Scholar] [CrossRef]
- Law, B.E.; Curtis, J.B. Introduction to Unconventional Petroleum Systems. AAPG Bull. 2002, 86, 1851–1852. [Google Scholar]
- Lin, S.H.; Zou, C.N.; Yuan, X.J. Status quo of tight oil exploitation in the United States and its implication. Lithol. Reserv. 2011, 23, 25–30. [Google Scholar]
- Zou, C.N.; Zhu, R.K.; Wu, S.T. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance. Acta Pet. Sin. 2012, 33, 173–187. [Google Scholar]
- Jia, C.Z.; Zheng, M.; Zhang, Y.F. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Pet. Explor. Dev. 2012, 39, 129–136. [Google Scholar] [CrossRef]
- Jia, C.Z.; Zou, C.N.; Tao, S.Z. Assessment criteria, main types, basic features and resource prospects of the tight oil in China. Acta Pet. Sin. 2012, 33, 343–350. [Google Scholar]
- Jing, D.; Ding, F. The Exploration and Development of Tight Oil in USA. Land Resour. Inf. 2012, 67, 18–19. [Google Scholar]
- Yan, C.Z.; Li, L.G.; Wang, B.F. New Progress of Shale Gas Exploration and Development in North America; Petroleum Industry Press: Beijing, China, 2009. [Google Scholar]
- Yu, C.; Guan, P.; Zou, C.; Wei, H.; Deng, K.; Wang, P.; Wu, Y. Formation conditions and distribution patterns of N1 tight oil in Zhahaquan Area, Qaidam Basin, China. Energy Explor. Exploit. 2016, 34, 339–359. [Google Scholar] [CrossRef]
- Azari, M.; Hamza, F.; Hadibeik, H.; Ramakrishna, S. Well testing Challenges in Unconventional and Tight Gas Reservoirs. In Proceedings of the SPE Western Regional Meeting, Garden Grove, CA, USA, 22–27 April 2018. [Google Scholar]
- Zhao, X.; Liao, X.; Chen, Z.; Mu, L.; Zhang, F.; Zhou, Y.; Zhou, Z.; Zhao, N. A Well Testing Analysis Methodology and Application for Tight Reservoirs. In Proceedings of the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 22–25 March 2016. [Google Scholar]
- Zou, C.N.; Zhang, G.Y.; Tao, S.Z. Geological features, major discoveries and unconventional petroleum geology in the global petroleum exploration. Pet. Explor. Dev. 2010, 37, 129–145. [Google Scholar]
- Sun, Z.D.; Jia, C.Z.; Li, X.F. Unconventional Oil & Gas Exploration and Development (Upper Volume); Petroleum Industry Press: Beijing, China, 2011. [Google Scholar]
- Yang, H.; Li, S.; Liu, X. Characteristics and resource prospects of tight oil in Ordos Basin, China. Pet. Res. 2016, 1, 27–38. [Google Scholar] [CrossRef]
- Du, J.H.; He, H.Q.; Yang, T.; Li, J.Z.; Huang, F.X.; Guo, B.J.; Yan, W.P. Progress in China’s tight oil exploration and challenges. J. China Pet. Explor. 2014, 19, 1–9. [Google Scholar]
- Wei, Y.; Lashgari, H.R.; Wu, K.; Sepehrnoori, K. CO2 injection for enhance oil recovery in Bakken tight reservoirs. J. Fuel 2015, 159, 354–363. [Google Scholar]
- Clark, R.; Husain, A.; Rainey, S. Successful Post-fracture Stimulation Well Cleanup and Testing of Tight Gas Reservoir in the Sultanate of Oman. In Proceedings of the SPE Middle East Unconventional Resources Conference and Exhibition, Muscat, Oman, 26–28 January 2015. [Google Scholar]
- Jia, H.; Sheng, J.J. Discussion of the feasibility of air injection for enhanced oil recovery in shale oil reservoirs. Petroleum 2017, 3, 249–257. [Google Scholar] [CrossRef]
- Hui, P.; Qiquan, R.; Yong, L.; Youngjun, W. Development Strategy Optimization for Different Kinds of Tight oil Reservoirs. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 24–27 April 2017. [Google Scholar]
- Manrique, E.J.; Thomas, C.P.; Ravikiran, R.; Kamouei, M.I.; Lantz, M.; Romero, J.L.; Alvarado, V. EOR: Current Status and Opportunities. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010. [Google Scholar]
- Christensen, J.R.; Stenby, E.H.; Skauge, A. Review of WAG Field Experience. SPE Reserv. Eval. Eng. 2001, 4. [Google Scholar] [CrossRef]
- Huffman, B.T. Comparison of various gases for enhance recovery from shale oil reservoirs. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 14–18 April 2012. [Google Scholar]
- Hawthorne, S.B.; Gorecki, C.D.; Sorensen, J.A.; Steadman, E.N.; Harju, J.A.; Melzer, S. Hydrocarbon Mobilization Mechanism from Upper, Middle, and Lower Bakken Reservoirs Rocks Exposed to CO2. In Proceedings of the SPE Unconventional Resources Conference Canada, Calgary, AB, Canada, 5–7 November 2013. [Google Scholar]
- Noureldien, D.M.; El-Banbi, A.H. Using Artificial Intelligence in Estimating Oil Recovery Factor. In Proceedings of the SPE North Africa Technical Conference and Exhibition, Cairo, Egypt, 14–16 September 2015. [Google Scholar]
- Demirmen, F. Reserves Estimation: The Challenge for the Industry. J. Pet. Technol. 2007, 59, 10. [Google Scholar] [CrossRef]
- Male, F.; Marder, M.; Browning, J.; Gherabati, A.; Ikonnikova, S. Production Decline Analysis in the Eagle Ford. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, San Antonio, TX, USA, 1–3 August 2016. [Google Scholar]
- Swindell, G.S. Eagle Ford Shale—An Early Look at Ultimate Recovery. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 8–10 October 2012. [Google Scholar]
- Kanfar, M.; Wattenbarger, R. Comparison of Empirical Decline Curve Methods for Shale Wells. In Proceedings of the SPE Canadian Unconventional Resources Conference, Calgary, AB, Canada, 30 October–1 November 2012. [Google Scholar]
- Moridis, N.; Soltanpour, Y.; Medina-Cetina, Z.; Lee, W.J.; Blasingame, T.A. A Production Characterization of the Eagle Ford Shale, Texas—A Bayesian Analysis Approach. In Proceedings of the SPE Canadian Unconventional Resources Conference, Calgary, AB, Canada, 30 October–1 November 2017. [Google Scholar]
- Reisz, M.R. Reservoir Evaluation of Horizontal Bakken Well Performance on the Southwestern Flank of the Williston Basin. In Proceedings of the International Meeting on Petroleum Engineering, Beijing, China, 24–27 March 1992. [Google Scholar]
- Bohrer, M.; Fried, S.; Helms, L.; Hicks, B.; Juenker, B.; McCusker, D.; Anderson, F.; LeFever, J.; Murphy, E.; Nordeng, S. State of North Dakota Bakken Formation Resource Study Project. Appendix C. Available online: https://www.legis.nd.gov/assembly/60-2007/docs/pdf/ts063008appendixc.pdf (accessed on 21 June 2018).
- Clark, A.J. Determination of recovery factor in the Bakken formation, Mountrail County, ND. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 4–7 October 2009. [Google Scholar]
- Ghaderi, S.M.; Clarkson, C.R.; Kaviani, D. Investigation of Primary Recover in Tight Oil Formations: A Look at the Cardium Formation, Alberta. In Proceedings of the Canadian Unconventional Resources Conference, Calgary, AB, Canada, 15–17 November 2011. [Google Scholar]
- Xu, Q.; Zhu, D.; Ling, H.; Gao, T.; Wang, X. Fractures Parameters Optimization of the Depletion in Fractured Horizontal Wells for Ultra-low Permeability Reservoir. J. Unconv. Oil Gas 2014, 1, 37–42. [Google Scholar]
- Xu, Y.; Yang, S.; Zhang, Z.; Han, W. Study on Mining Failure Law of Tight reservoir. J. Liaoning Shihua Univ. 2017, 37, 37–41. [Google Scholar]
- Kabir, C.S.; Rasdi, M.F.; Igboalisi, B.O. Analyzing Production Data from Tight-oil Wells. In Proceedings of the Canadian Unconventional Resources and International Petroleum Conference, Calgary, AB, Canada, 19–21 October 2010. [Google Scholar]
- Dechongkit, P.; Prasad, M. Recovery Factor and Reserves Estimation in the Bakken Petroleum System (Analysis of the Antelope, Pronghorn and Parshall fields). In Proceedings of the Canadian Unconventional Resources and International Petroleum Conference, Calgary, AB, Canada, 15–17 November 2011. [Google Scholar]
- Turbakov, M.; Shcherbakov, A. Determination of Enhanced Oil Recovery Candidate Fields in the Volga-Ural Oil and Gas Region Territory. Energies 2015, 8, 11153–11166. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.Q.; Yao, C.J.; Wang, X.D.; Zhou, R.P. Determination of oil recovery factor under the condition of exhaustion mining. J. Foreign Oil Field Eng. 2010, 26, 1–2. [Google Scholar]
- Yuan, Z.; Wang, J.; Li, S.; Ren, J.; Zhou, M. A new approach to estimating recovery factor for extra-low permeability water-flooding sandstone reservoirs. Pet. Explor. Dev. 2014, 41, 1–10. [Google Scholar] [CrossRef]
- Li, A.; Zhang, Z.; Cui, C.; Sun, R.; Yao, T. Petrophysics; China University of Petroleum Press: Qingdao, China, 2011; p. 331. [Google Scholar]
- Jiang, H.; Yao, J.; Jiang, R. Principles and Methods of Reservoir Engineering; China University of Petroleum Press: Qingdao, China, 2006; p. 141. [Google Scholar]
Temperature (°C) | Density (g/cm3) | Viscosity (mPa·s) |
---|---|---|
20.1 | 0.754 | 1.44 |
60 | 0.725 | 0.86 |
Sample | Length (cm) | Diameter (cm) | Porosity (%) | Porosity Volume (L) | Air Permeability (mD) |
---|---|---|---|---|---|
A2 | 28.959 | 9.979 | 10.420 | 0.236 | 0.350 |
A3 | 29.264 | 9.975 | 10.670 | 0.235 | 0.320 |
AB1 | 30.06 | 9.906 | 13.180 | 0.305 | 0.300 |
Total | 88.3 | - | - | 0.776 | - |
No. | Temperature (°C) | Pressure Depletion Range (MPa) | Depletion Time (min) | Pressure Depletion Rate (MPa/min) | |
---|---|---|---|---|---|
Initial Pressure | Final Pressure | ||||
1 | 20.1 | 20 | 5 | 10 | 1.50 |
2 | 20.1 | 20 | 5 | 20 | 0.75 |
3 | 20.1 | 20 | 5 | 30 | 0.50 |
4 | 20.1 | 20 | 5 | 40 | 0.38 |
5 | 20.1 | 20 | 5 | 50 | 0.30 |
6 | 20.1 | 20 | 5 | 60 | 0.25 |
No. | Temperature (°C) | Pressure Depletion Range (MPa) | Depletion Time (min) | Pressure Depletion Rate (MPa/min) | |
---|---|---|---|---|---|
Initial Pressure | Final Pressure | ||||
1 | 20.1 | 20 | 15 | 60 | 8.33 × 10−2 |
2 | 20.1 | 15 | 10 | 60 | 8.33 × 10−2 |
3 | 20.1 | 10 | 5 | 60 | 8.33 × 10−2 |
4 | 20.1 | 5 | 0 | 60 | 8.33 × 10−2 |
No. | Temperature (°C) | Pressure Depletion Range (MPa) | Depletion Time (min) | Pressure Depletion Rate (MPa/min) | |
---|---|---|---|---|---|
Initial Pressure | Final Pressure | ||||
1 | 20.1 | 30 | 5 | 0 | ∞ |
2 | 20.1 | 30 | 5 | 1 | 25.0 |
3 | 20.1 | 30 | 5 | 10 | 2.5 |
4 | 20.1 | 30 | 5 | 60 | 4.2 × 10−1 |
5 | 20.1 | 30 | 5 | 120 | 2.1 × 10−1 |
6 | 20.1 | 30 | 5 | 180 | 1.4 × 10−1 |
7 | 20.1 | 30 | 5 | 240 | 1.0 × 10−1 |
8 | 20.1 | 30 | 5 | 480 | 5.2 × 10−2 |
No. | Oil Type | GOR (m3/m3) | Saturation Pressure (MPa) | Pressure Depletion Range (MPa) | Depletion Time (min) | Pressure Depletion Rate (MPa/min) | |
---|---|---|---|---|---|---|---|
Initial Pressure | Final Pressure | ||||||
1 | dead oil | 20 | 5 | 240 | 0.0625 | ||
2 | live oil | 90 | 9.1 | 20 | 5 | 240 | 0.0625 |
3 | live oil | 90 | 9.1 | 20 | 5 | 240 | 0.0625 |
4 | live oil | 90 | 9.1 | 20 | 5 | 240 | 0.0625 |
No. | Formation Pressure Coefficient | Pressure Depletion Range (MPa) | Depletion Time (min) | Pressure Depletion Rate (MPa/min) | Oil Type | GOR (m3/m3) | Saturation Pressure (MPa) | |
---|---|---|---|---|---|---|---|---|
Initial Pressure | Final Pressure | |||||||
1 | 1.5 | 30 | 5 | 1440 | 0.0173 | live oil | 50 | 8.85 |
2 | 1.25 | 25 | 6 | 1440 | 0.0132 | live oil | 50 | 8.85 |
3 | 0.8 | 16 | 6 | 750 | 0.0133 | live oil | 50 | 8.85 |
4 | 0.8 | 16 | 6 | 750 | 0.0133 | live oil | 50 | 8.85 |
5 | 0.8 | 16 | 6 | 750 | 0.0133 | live oil | 50 | 8.85 |
No. | Produced Gas Volume (mL) | Produced Oil Volume (mL) | Ultimate Oil Recovery Factor (%) |
---|---|---|---|
1 | 11,827.8 | 133.72 | 18.18 |
2 | 5660.28 | 88.62 | 12.35 |
3 | 5496.11 | 77.6 | 11.27 |
4 | 6364.32 | 79.6 | 11.56 |
5 | 5234.4 | 78.42 | 11.39 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Zhang, Z.; Liu, Q.; Chen, X.; Opoku Appau, P.; Wang, F. Experimental Investigation of Oil Recovery from Tight Sandstone Oil Reservoirs by Pressure Depletion. Energies 2018, 11, 2667. https://doi.org/10.3390/en11102667
Chen W, Zhang Z, Liu Q, Chen X, Opoku Appau P, Wang F. Experimental Investigation of Oil Recovery from Tight Sandstone Oil Reservoirs by Pressure Depletion. Energies. 2018; 11(10):2667. https://doi.org/10.3390/en11102667
Chicago/Turabian StyleChen, Wenxiang, Zubo Zhang, Qingjie Liu, Xu Chen, Prince Opoku Appau, and Fuyong Wang. 2018. "Experimental Investigation of Oil Recovery from Tight Sandstone Oil Reservoirs by Pressure Depletion" Energies 11, no. 10: 2667. https://doi.org/10.3390/en11102667
APA StyleChen, W., Zhang, Z., Liu, Q., Chen, X., Opoku Appau, P., & Wang, F. (2018). Experimental Investigation of Oil Recovery from Tight Sandstone Oil Reservoirs by Pressure Depletion. Energies, 11(10), 2667. https://doi.org/10.3390/en11102667