Assessing Energy and Environmental Efficiency of the Spanish Agri-Food System Using the LCA/DEA Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Life-Cycle Assessment (LCA)
2.2. Energy Return on Investment (EROI)
2.3. Data Envelopment Analysis (DEA)
3. Case Study: The Spanish Food Basket
3.1. Goal and Scope
3.2. Function, Functional Unit, and System Boundaries
3.3. Life-Cycle Inventory (LCI)
3.4. Selection of the DEA Model
3.5. Inputs and Output Selection for the DEA Matrix
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pimentel, D.; Pimentel, M.H. (Eds.) Food, Energy and Society; CRC press: Boston, MA, USA, 2008. [Google Scholar]
- Bolandnazar, E.; Keyhani, A.; Omid, M. Determination of efficient and inefficient greenhouse cucumber producers using Data Envelopment Analysis approach, a case study: Jiroft city in Iran. J. Clean. Prod. 2014, 79, 108–115. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M.; Miliacca, M. Efficiency and allocation of emission allowances and energy consumption over more sustainable European economies. J. Clean. Prod. 2018, 182, 805–817. [Google Scholar] [CrossRef]
- Garcia-Herrero, I.; Hoeh, D.; Margallo, M.; Laso, J.; Bala, A.; Batlle-Bayer, I.; Fullana, P.; Vázquez-Rowe, I.; Gonzalez, M.J.; Durá, M.J.; et al. On the estimation of potential food waste reduction to support sustainable production and consumption policies. Food Policy 2018, 80, 24–38. [Google Scholar] [CrossRef]
- Pelletier, N.; Audsley, E.; Brodt, S.; Garnett, T.; Henriksson, P.; Kendall, A.; Troell, M. Energy intensity of agriculture and food systems. Annu. Rev. Environ. Resour. 2011, 36, 233–246. [Google Scholar] [CrossRef]
- OECD. Improving energy efficiency in the Agro-Food chain. In OECD Green Growth Studies; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Morone, P.; Falcone, P.M.; Lopolito, A. How to promote a new and sustainable food consumption model: A fuzzy cognitive map study. J. Clean. Prod. 2019, 208, 563–574. [Google Scholar] [CrossRef]
- Vora, N.; Shah, A.; Bilec, M.M.; Khanna, V. Food-energy-water nexus: Quantifying embodied energy and GHG emissions from irrigation through virtual water transfers in food trade. ACS Sustain. Chem. Eng. 2017, 5, 2119–2128. [Google Scholar] [CrossRef]
- Khoshroo, A.; Mulwa, R.; Emrouznejad, A.; Arabi, B. A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production. Energy 2013, 63, 189–194. [Google Scholar] [CrossRef]
- Arushanyan, Y.; Björklund, A.; Eriksson, O.; Finnveden, G.; Söderman, M.L.; Sundqvist, J.; Stenmarck, A. Environmental Assessment of Possible Future Waste Management Scenarios. Energies 2017, 10, 247. [Google Scholar] [CrossRef]
- Marique, A.; Rossi, B. Cradle-to-grave life-cycle assessment within the built environment: Comparison between the refurbishment and the complete reconstruction of an office building in Belgium. J. Environ. Manag. 2018, 224, 396–405. [Google Scholar] [CrossRef]
- Ingrao, C.; Messineo, A.; Beltramo, R.; Yigitcanlar, T.; Iioppolo, G. How can life cycle thinking support sustainability of buidings? Investigating life cycle assessment applications for energy efficiency and environmental performance. J. Clean. Prod. 2018, 201, 556–569. [Google Scholar] [CrossRef]
- Berg, F.; Fuglseth, M. Life cycle assessment and historic buidings: Energy-efficiency refurbishment versus new construction in Norway. J. Arch. Conserv. 2018, 24, 152–167. [Google Scholar]
- Li, H.; Feng, K. Life cycle assessment of the environmental impacts and energy efficiency of an integration of sludge anaerobic digestion and pyrolysis. J. Clean. Prod. 2018, 195, 476–485. [Google Scholar] [CrossRef]
- Sundaram, S.; Kolb, G.; Hessel, V.; Wang, Q. Energy-Efficient Routes for the Production of Gasoline from Biogas and Pyrolysis Oil—Process Design and Life-Cycle Assessment. Ind. Eng. Chem. Res. 2017, 56, 3373–3387. [Google Scholar] [CrossRef] [PubMed]
- Carrasquer, B.; Uche, J.; Martinez-Gracia, A. A new indicator to estimate the efficiency of water and energy use in agro-industries. J. Clean. Prod. 2017, 143, 462–473. [Google Scholar] [CrossRef]
- Skunca, D.; Tomasevic, I.; Nastasijevic, I.; Tomovic, V.; Djekic, I. Life cycle assessment of the chicken meat chain. J. Clean. Prod. 2018, 184, 440–450. [Google Scholar] [CrossRef]
- Pires-Gaspar, J.; Dinis-Gaspar, P.; Dinho da Silva, P.; Simoes, M.P.; Espirito-Santo, C. Energy Life-Cycle Assessment of Fruit Products—Case Study of Beira Interior’s Peach (Portugal). Sustainability 2018, 10, 3530. [Google Scholar] [CrossRef]
- Murphy, D.J.; Carbajales-Dale, M.; Moeller, D. Comparing Apples to Apples: Why the Net Energy Analysis Community Needs to Adopt the Life-Cycle Analysis Framework. Energies 2016, 9, 917. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Moreira, M.T.; Feijoo, G. Edible Protein Energy on Investment Ratio (ep-EROI) for Spanish Seafood Products. AMBIO 2014, 43, 381–394. [Google Scholar] [CrossRef]
- Pelletier, N.; Tyedmers, P. An ecological economic critique of the use of market information in life cycle assessment research. J. Ind. Ecol. 2011, 15, 342–354. [Google Scholar] [CrossRef]
- Laso, J.; Vázquez-Rowe, I.; Margallo, M.; Crujeiras, R.M.; Irabien, A.; Aldaco, R. Life cycle assessment of European anchovy (Engraulis encrasicolus) landed by purse seine vessels in northern Spain. Int. J. Life Cycle Assess. 2018, 23, 1107–1125. [Google Scholar] [CrossRef]
- Laso, J.; Margallo, M.; García-Herrero, I.; Fullana, P.; Bala, A.; Gazulla, C.; Polettini, A.; Kahhat, R.; Vázquez-Rowe, I.; Irabien, A.; et al. Combined application of life cycle assessment and linear programming to evaluate food waste-to-food strategies: Seeking for answers in the nexus approach. Waste Manag. 2018, 80, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Tyedmers, P. Energy consumed by North Atlantic fisheries. In Fisheries Impacts on North Atlantic Ecosystems: Catch, Effort and National/Regional Datasets; Zeller, D., Watson, R., Pauly, D., Eds.; Fisheries Centre Research Reports; Fisheries Centre, University of British Columbia: Kelowna, BC, Canada, 2001; Volume 9. [Google Scholar]
- Ramos, S.; Vázquez-Rowe, I.; Artetxe, I.; Moreira, M.T.; Feijoo, G.; Zufia, J. Environmental assessment of the Atlantic mackerel (Scomber scombrus) season in the Basque Country. Increasing the timeline delimitation in fishery LCA studies. Int. J. Life Cycle Assess. 2011, 16, 599–610. [Google Scholar] [CrossRef]
- Cancino-Espinoza, E.; Vázquez-Rowe, I.; Quispe, I. Organic quinoa (Chenopodium quinoa L.) production in Peru: Environmental hotspots and food security considerations using Life Cycle Assessment. Sci. Total Environ. 2018, 637–638, 221–232. [Google Scholar] [CrossRef]
- Pérez Neira, D.; Soler Montiel, M.; Delgado Cabeza, M.; Reigada, A. Energy use and carbon footprint of the tomato production in heated multi-tunnel greenhouses in Almeria within an exporting agri-food system context. Sci. Total Environ. 2018, 628–629, 1627–1636. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K. Energy Efficiency of Intensive Rice Production in Japan: An Application of Data Envelopment Analysis. Sustainability 2018, 10, 120. [Google Scholar] [CrossRef]
- Mardani, A.; Streimikiene, D.; Balezentis, T.; Zameri Mat Saman, M.; Nor, K.; Khoshnava, S. Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends. Energies 2018, 11, 2002. [Google Scholar] [CrossRef]
- Lee, W.S.; Lee, K.P. Benchmarking the performance of building energy management using data envelopment analysis. Appl. Therm. Eng. 2009, 29, 3269–3273. [Google Scholar] [CrossRef]
- Hu, X.; Liu, C. Slacks-based data envelopment analysis for eco-efficiency assessment in the Australian construction industry. Constr. Manag. Econ. 2017, 35, 693–706. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, B.; Shen, Y.; Wang, X. The energy efficiency of China’s regional construction industry based on the three-stage DEA model and the DEA-DA model. KSCE. J. Civ. Eng. 2016, 20, 34–47. [Google Scholar] [CrossRef]
- Duan, N.; Guo, J.P.; Xie, B.C. Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach. Appl. Energy 2016, 162, 1552–1563. [Google Scholar] [CrossRef]
- Sözen, A.; Alp, I.; Özdemir, A. Assessment of operational and environmental performance of the thermal power plants in Turkey by using data envelopment analysis. Energy Policy 2010, 38, 6194–6203. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H. Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emissions of wheat production. Energy 2013, 58, 588–593. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, D.; Du, T.; Zhang, A.; Zhou, Y. Total-Factor Energy Efficiency in China’s Agricultural Sector: Trends, Disparities and Potentials. Energies 2018, 11, 853. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Safarzadeh, D.; Ahmadi, E.; Nabavi-Pelesaraei, A.; Hosseinzadeh-Bandbafha, E. Applying data envelopment analysis to evaluation of energy efficiency and decreasing of greenhouse gas emissions of fattening farms. Energy 2017, 120, 652–662. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Safarzadeh, D.; Ahmadi, E.; Nabavi-Pelesaraei, A. Optimization of energy consumption of dairy farms using data envelopment analysis—A case study: Qazvin city of Iran. J. Saudi Soc. Agric. Sci. 2018, 17, 217–228. [Google Scholar] [CrossRef]
- Mohseni, P.; Borghei, A.M.; Khanali, M. Coupled life cycle assessment and data envelopment analysis for mitigation of environmental impacts and enhancement of energy efficiency in grape production. J. Clean. Prod. 2018, 197, 937–947. [Google Scholar] [CrossRef]
- Paramesh, V.; Arunachalam, V.; Nikkhah, A.; Das, B.; Ghnimi, S. Optimization of energy consumption and environmental impacts of arecanut production through coupled data envelopment analysis and life cycle assessment. J. Clean. Prod. 2018, 203, 674–684. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Iribarren, D.; Moreira, M.T.; Feijoo, G. Combined application of life cycle assessment and data envelopment analysis as a methodological approach for the assessment of fisheries. Int. J. Life Cycle Assess. 2010, 15, 272–283. [Google Scholar] [CrossRef]
- Laso, J.; Vázquez-Rowe, I.; Margallo, M.; Irabien, A.; Aldaco, R. Revisiting the LCA+DEA method in fishing fleets. How should we be measuring efficiency? Mar. Pol. 2018, 91, 34–40. [Google Scholar] [CrossRef]
- Masuda, K. Measuring eco-efficiency of wheat production in Japan: A combined application of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2016, 373–381. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Rafiee, S.; Mohtasebi, S.S.; Hosseinzadeh-Bandbafha, H.; Chau, K. Energy consumption enhancement and environmental life cycle assessment in paddy production using optimization techniques. J. Clean. Prod. 2017, 162, 571–586. [Google Scholar] [CrossRef]
- Cecchini, L.; Venanzi, S.; Pierri, A.; Chiorri, M. Environmental efficiency analysis and estimation of CO2 abatement cost in dairy cattle farms in Umbria (Italy): A SBM-DEA model with undesirable output. J. Clean. Prod. 2018, 197, 894–907. [Google Scholar] [CrossRef]
- Iribarren, D.; Hospido, A.; Moreira, M.T.; Feijoo, G. Benchmarking environmental and operational parameters through eco-efficiency criteria for dairy farms. Sci. Total Environ. 2011, 409, 1786–1798. [Google Scholar] [CrossRef] [PubMed]
- Margallo, M.; Onandía, R.; Aldaco, R.; Irabien, A. When life cycle thinking is necessary for decision making: Emerging cleaner technologies in the chlor-alkali industry. Chem. Eng. Trans. 2016, 52, 475–480. [Google Scholar]
- ISO 14040: Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization: London, UK, 2006.
- ISO 14044: Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: London, UK, 2006.
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment—Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef] [PubMed]
- Guinée, J.B.; Udo de Haes, H.A.; Huppes, G. Quantitative life cycle assessment of products. 1: Goal definition and inventory. J. Clean. Prod. 1993, 1, 3–13. [Google Scholar] [CrossRef]
- Margallo, M.; Dominguez-Ramos, A.; Aldaco, R.; Bala, A.; Fullana, P.; Irabien, A. Environmental sustainability assessment in the process industry: A case study of waste-to-energy plants in Spain. Resour. Conserv. Recycl. 2014, 93, 144–155. [Google Scholar] [CrossRef]
- PE International. Gabi 6 Software and Database on Life Cycle Assessment; PE International: Leinfelden-Echterdingen, Germany, 2014. [Google Scholar]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Emanuelsson, A. The Methodology of the FAO Study “Global Food Losses and Food Waste—Extent, Causes and Prevention”; FAO, The Swedish Institute for Food and Biotechnology (SIK): Göteborg, Sweden, 2013. [Google Scholar]
- Brand-Correa, L.; Brockway, P.; Copeland, C.; Foxon, T.; Owen, A.; Taylor, P. Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI). Energies 2017, 10, 534. [Google Scholar] [CrossRef]
- Hall, C.A.S.; Kiltgaard, K.A. Energy and the Wealth of Nations. Understanding the Biophysical Economy; Springer: New York, NY, USA, 2012. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Chu, J.; Wu, J.; Song, M. An SBM-DEA model with parallel computing design for environmental efficiency evaluation in the big data context: A transportation system application. Ann. Oper. Res. 2018, 270, 105–124. [Google Scholar] [CrossRef]
- Iribarren, D.; Vázquez-Rowe, I.; Moreira, M.T.; Feijoo, G. Further potentials in the joint implementation of life cycle assessment and data envelopment analysis. Sci. Total Environ. 2010, 408, 5265–5272. [Google Scholar] [CrossRef] [PubMed]
- Avadí, A.; Vázquez-Rowe, I.; Fréon, P. Eco-efficiency assessment of the Peruvian anchoveta steel and wooden fleets using LCA + DEA framework. J. Clean. Prod. 2014, 70, 118–131. [Google Scholar] [CrossRef]
- Carrillo-Álvarez, E.; Pintó-Domingo, G.; Cussó-Parcerisas, I.; Riera-Romani, J. The Spanish Healthy Food Basket Complete Report. Pilot Project for the Development of a Common Methodology on Reference Budgets in Europe; Grup de Recerca en Pedagogia, Societat i Innovació amb el suport de les TIC (PSITIC): Barcelona, Spain, 2016. [Google Scholar]
- MAPAMA, Spanish Ministry of Agriculture, Fishery, Food and Environment. Household Consumption Database. 2017. Available online: www.mapama.gob.es/es/alimentacion/temas/consumo-y-comercializacion-ydistribucion-alimentaria/panel-de-consumo-alimentario/base-de-datos-de-consumo-en-hogares/ (accessed on 19 September 2018). (In Spanish).
- Batlle-Bayer, L.; Bala, A.; García-Herrero, I.; Lemaire, E.; Song, G.; Aldaco, R.; Fullana, P. National Dietary Guidelines: A potential tool to reduce greenhouse gas emissions of current dietary patterns. The case of Spain. J. Clean. Prod. Under review.
- Eurostat. Fishery Production in All Fishing Regions (tag00117). 2015. Available online: http://ec.europa.eu/eurostat/data/database (accessed on 19 September 2018).
- Eurostat. Production and Utilization of Milk on the Farm—Annual Data (apro_mk_ farm). 2015. Available online: http://ec.europa.eu/eurostat/web/agriculture/data/database (accessed on 19 September 2018).
- Eurostat. Slaughtering in Slaughterhouses—Annual Data (apro_mt_pann). 2015. Available online: http://ec.europa.eu/eurostat/web/agriculture/data/database (accessed on 19 September 2018).
- Eurostat. Crop Products—Annual Data (apro_cpp_crop). 2015. Available online: https://ec.europa.eu/eurostat/web/agriculture/data/database (accessed on 19 September 2018).
- Datacomex. Estadísticas del comercio exterior español, Agencia Española de Administración Tributaria. 2008. Available online: http://datacomex.comercio.es/ (accessed on 19 September 2018).
- Milà i Canals, L.; Munoz, I.; Mclaren, S.J.; Brandão, M. LCA Methodology and Modelling Considerations for Vegetable Production and Consumption; Centre for Environmental Strategy, University of Surrey: Surrey, UK, 2007. [Google Scholar]
- Nielsen, P.H.; Nielsen, A.M.; Weidema, B.P.; Dalgaard, R.; Halberg, N. LCA Food Database. 2003. Available online: http://www.lcafood.dk/ (accessed on 24 September 2018).
- Foster, C.; Green, K.; Bleda, M.; Dewick, P.; Evans, B.; Flynn, M.J. Production and consumption: A research report completed for the department for environment. In Food and Rural Affairs by Manchester Business School; DEFRA: London, UK, 2006. [Google Scholar]
- Farran, A.; Zamora, R.; Cervera, P. Nutrition and Dietetics Institute. In Food Composition Tables from CESNID; Barcelona University: Barcelona, Spain, 2004. [Google Scholar]
- FAO-INFOODS. International Network of Food Data Systems. 2018. Available online: http://www.fao.org/infoods/infoods/tablas-y-bases-de-datos/es/ (accessed on 24 September 2018).
- Jahanshahloo, G.R.; Hosseinzadeh, F.; Shoja, N.; Tohidi, G.; Razavyan, S. Undesirable inputs and outputs in DEA models. Appl. Math. Comp. 2005, 169, 917–925. [Google Scholar] [CrossRef]
- Monforti-Ferrario, R.; Pinedo Pascua, I. Energy Use in the EU Food Sector: State of Play and Opportunities for Improvement; JRC Science and Policy Report; European Commission: Brussels, Belgium, 2015; ISBN 978-92-79-48299-1. [Google Scholar]
- DEA Frontier. Joe Zhu’s Research on Data Envelopment Analysis. 2018. Available online: http://www.deafrontier.net/index.html (accessed on 4 October 2018).
- Murillo-Zamorano, L.R. Economic efficiency and frontier techniques. J. Econ. Surv. 2004, 18, 33–78. [Google Scholar] [CrossRef]
- Ghasempour, A.; Ebrahim, A. Assessment of the environment impacts of egg production chain using life cycle assessment. J. Environ. Manag. 2016, 183, 980–987. [Google Scholar] [CrossRef]
- Avadí, A.; Fréon, P.; Quispe, I. Environmental assessment of Peruvian anchoveta food production: Is less refined better? Int. J. Life Cycle Assess. 2014, 19, 1276–1293. [Google Scholar] [CrossRef]
- Avadí, A.; Bolaños, C.; Sandoval, I.; Ycaza, C. Life cycle assessment of Ecuadorian processed tuna. Int. J. Life Cycle Assess. 2015, 20, 1415–1428. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Hospido, A.; Moreira, M.T.; Feijoo, G. Life cycle assessment of European pilchard (Sardina pilchardus) consumption. A case study for Galicia (NW Spain). Sci. Total Environ. 2014, 475, 48–60. [Google Scholar] [CrossRef]
Food Category | Commodities Included |
---|---|
Cereals | Wheat, rice, maize, and others |
Roots and tubers | Potatoes |
Sugar | Sugar |
Vegetable oils | Sunflower seed oil, palm oil, olive oil, and others |
Vegetables | Tomatoes, onions, and others |
Fruit | Oranges and mandarins, grapes (excluding grapes for winemaking), apples, and others |
Pulses | Beans, peas, and others |
Meat and animal fat | Beef, pork, lamb, and poultry |
Fish and seafood | Fish and seafood |
Dairy | Milk, cheese, and butter |
Eggs | Eggs |
Food Category | PED (kcal/cap/d) | Energy Provided to Consumer (kcal) | GWP (g CO2 eq./cap/d) | Embodied Energy in FLW (kcal/cap/d) | Embodied GWP in FLW (g CO2 eq./cap/d) |
---|---|---|---|---|---|
Eggs | 1059 | 41 | 221 | 163 | 35 |
Meat | 5465 | 261 | 1673 | 1162 | 378 |
Fish and seafood | 3170 | 99 | 468 | 852 | 128 |
Dairy | 1411 | 289 | 496 | 137 | 55 |
Cereals | 2717 | 456 | 372 | 1042 | 143 |
Sweets | 156 | 103 | 28 | 35 | 8 |
Pulses | 490 | 58 | 85 | 142 | 27 |
Vegetable Oils | 717 | 461 | 158 | 150 | 39 |
Vegetables | 3297 | 72 | 261 | 745 | 70 |
Fruits | 690 | 159 | 159 | 171 | 52 |
Roots | 330 | 53 | 51 | 88 | 16 |
Total | 19,501 | 2000 | 3971 | 4685 | 951 |
Food Category | Eggs | Meat | Fish and Seafood | Dairy | Cereals | Sweets |
EROI (%) | 3.90 | 3.96 | 3.14 | 20.52 | 16.79 | 66.00 |
Food category | Pulses | Vegetable Oils | Vegetables | Fruits | Roots | |
EROI (%) | 11.75 | 64.27 | 2.18 | 23.05 | 16.10 |
Food Category | DMU | Input 1 | Bad Output (Input 2) | Output 1 |
---|---|---|---|---|
Primary Energy Invested (MJ/cap/day) | GWP (g CO2 eq/cap/day) | Nutritional Supply (kcal/cap/day) | ||
Eggs | 1 | 4.43 | 221 | 41.3 |
Meat | 2 | 22.84 | 1672 | 216 |
Fish and seafood | 3 | 13.25 | 468 | 99.7 |
Dairy | 4 | 5.90 | 496 | 289 |
Cereals | 5 | 11.36 | 371 | 456 |
Sweets | 6 | 0.53 | 28.5 | 103 |
Pulses | 7 | 2.05 | 85.0 | 57.6 |
Vegetable Oils | 8 | 3.00 | 158 | 461 |
Vegetables | 9 | 13.78 | 261 | 71.7 |
Fruits | 10 | 2.84 | 154 | 151 |
Roots | 11 | 1.38 | 50.5 | 53.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laso, J.; Hoehn, D.; Margallo, M.; García-Herrero, I.; Batlle-Bayer, L.; Bala, A.; Fullana-i-Palmer, P.; Vázquez-Rowe, I.; Irabien, A.; Aldaco, R. Assessing Energy and Environmental Efficiency of the Spanish Agri-Food System Using the LCA/DEA Methodology. Energies 2018, 11, 3395. https://doi.org/10.3390/en11123395
Laso J, Hoehn D, Margallo M, García-Herrero I, Batlle-Bayer L, Bala A, Fullana-i-Palmer P, Vázquez-Rowe I, Irabien A, Aldaco R. Assessing Energy and Environmental Efficiency of the Spanish Agri-Food System Using the LCA/DEA Methodology. Energies. 2018; 11(12):3395. https://doi.org/10.3390/en11123395
Chicago/Turabian StyleLaso, Jara, Daniel Hoehn, María Margallo, Isabel García-Herrero, Laura Batlle-Bayer, Alba Bala, Pere Fullana-i-Palmer, Ian Vázquez-Rowe, Angel Irabien, and Rubén Aldaco. 2018. "Assessing Energy and Environmental Efficiency of the Spanish Agri-Food System Using the LCA/DEA Methodology" Energies 11, no. 12: 3395. https://doi.org/10.3390/en11123395
APA StyleLaso, J., Hoehn, D., Margallo, M., García-Herrero, I., Batlle-Bayer, L., Bala, A., Fullana-i-Palmer, P., Vázquez-Rowe, I., Irabien, A., & Aldaco, R. (2018). Assessing Energy and Environmental Efficiency of the Spanish Agri-Food System Using the LCA/DEA Methodology. Energies, 11(12), 3395. https://doi.org/10.3390/en11123395