Effect of Harvest Season on the Fuel Properties of Sida hermaphrodita (L.) Rusby Biomass as Solid Biofuel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
Climatic Conditions
2.2. Methods
3. Results and Discussion
3.1. Proximate Analysis and Lower Heating Value
3.2. Ultimate Analysis
3.3. Cell Wall Composition
3.4. Macro and Micro Element
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EC. Communication (2014) 0015 from the Commission to the European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions. A Policy Framework for Climate and Energy in the Period from 2020 to 2030, COM/2014/015 Final. Available online: https://www.eea.europa.eu/policy-documents/com-2014-15-final (accessed on 22 November 2018).
- Paris Agreement, FCCC/CP/2015/L.9/Rev.1. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 3 December 2018).
- EC. Report from the Commission on Indirect Land-Use Change Related to Biofuels and Bioliquids; European Commission: Brussels, Belgium, 2010.
- COM (2016) 767 Final/2 Proposal for a Directive of the European Parliament and of the Council on the Promotion of the Use of Energy from Renewable Sources (Recast); European Commission: Brussels, Belgium, 2017.
- Zhou, A.; Thomson, E. The development of biofuels in Asia. Appl. Energy 2009, 86, 11–20. [Google Scholar] [CrossRef]
- Tanger, P.; Field, J.L.; Jahn, C.E.; DeFoort, M.W.; Leach, J.E. Biomass for thermochemical conversion: Targets and challenges. Front. Plant. Sci. 2013, 4, 218. [Google Scholar] [CrossRef] [PubMed]
- Mladenović, M.; Paprika, M.; Marinković, A. Denitrification techniques for biomass combustion. Renew. Sustain. Energy Rev. 2017, 82, 3350–3364. [Google Scholar] [CrossRef]
- Kumar, R.; Pandey, K.K.; Chandrashekar, N.; Mohan, S. Effect of tree-age on calorific value and other fuel properties of Eucalyptus hybrid. J. For. Res. 2010, 21, 514–516. [Google Scholar] [CrossRef]
- Castaño-Díaz, M.; Álvarez-Álvarez, P.; Tobin, B.; Nieuwenhuis, M.; Afif-Khouri, E.; Cámara-Obregón, A. Evaluation of the use of low-density LiDAR data to estimate structural attributes and biomass yield in a short-rotation willow coppice: An example in a field trial. Ann. For. Sci. 2017, 74, 16. [Google Scholar] [CrossRef]
- Álvarez-Álvarez, P.; Pizarro, C.; Barrio-Anta, M.; Cámara-Obregón, A.; Bueno, J.L.M.; Álvarez, A.; Gutiérrez, I.; Burslem, D.F. Evaluation of Tree Species for Biomass Energy Production in Northwest Spain. Forests 2018, 9, 160. [Google Scholar] [CrossRef]
- Prochnow, A.; Heiermann, M.; Plöchl, M.; Amon, T.; Hobbs, P.J. Bioenergy from permanent grassland—A review: 2. Combustion. Bioresour. Technol. 2009, 100, 4945. [Google Scholar] [CrossRef]
- Barglowicz, J. Content of chosen macroelements in biomass of Virginia mallow (Sida hermaphrodita Rusby). J. Cent. Eur. Agric. 2014, 15. [Google Scholar] [CrossRef]
- Demirbas, A. Higher heating values of lignin types from wood and non-wood lignocellulosic biomasses. Energy Sources Part A 2017, 39, 592–598. [Google Scholar] [CrossRef]
- Robson, P.; Mos, M.; Clifton-Brown, J.; Donnison, I. Phenotypic Variation in Senescence in Miscanthus: Towards Optimising Biomass Quality and Quantity. Bioenergy Res. 2012, 5, 95–105. [Google Scholar] [CrossRef]
- Borkowska, H.; Molas, R. Two extremely different crops, Salix and Sida, as sources of renewable bioenergy. Biomass Bioenergy 2012, 36, 234–240. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Ibrahim, M.; Rashid, U.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. Biomass production for bioenergy using marginal lands. Sustain. Prod. Consum. 2017, 9, 3–21. [Google Scholar] [CrossRef]
- Mantineo, M.; D’Agosta, G.M.; Copani, V.; Patane, C.; Cosentino, S.L. Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Res. 2009, 114, 204–213. [Google Scholar] [CrossRef]
- Borkowska, H. Yields of Virginia fanpetals and willow on good wheat soil complex. Fragm. Agron. 2007, 2, 7–41. [Google Scholar]
- Borkowska, H.; Wardzinska, K. Some effects of Sida hermaphrodita R. cultivation on sewage sludge. Pol. J. Environ. Stud. 2003, 10, 119–122. [Google Scholar]
- Tworkowski, J.; Szczukowski, S.; Stolarski, M.J.; Kwiatkowski, J.; Graban, Ł. Productivity and properties of Virginia fanpetals biomass as fuel depending on the propagule and plant density. Fragm. Agron. 2014, 3, 115–125. [Google Scholar]
- Borkowska, H.; Styk, B. Virginia Fanpetals (Sida hermaphrodita L. Rusby): Cultivation and Utilization Monograph; University of Life Sciences: Lublin, Poland, 2006; p. 69. [Google Scholar]
- Kiesel, A.; Nunn, C.; Iqbal, Y.; Van der Weijde, T.; Wagner, M.; Özgüven, M.; Tarakanov, I.; Kalinina, O.; Trindade, L.M.; Clifton-Brown, J.; et al. Site-Specific Management of Miscanthus Genotypes for Combustion and Anaerobic Digestion: A Comparison of Energy Yields. Front. Plant. Sci. 2017, 8, 347. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Y.; Kiesel, A.; Wagner, M.; Nunn, C.; Kalinina, O.; Hastings, A.F.S.J.; Clifton-Brown, J.C.; Lewandowski, I. Harvest Time Optimization for Combustion Quality of Different Miscanthus Genotypes across Europe. Front. Plant. Sci. 2017, 8, 727. [Google Scholar] [CrossRef]
- Zub, H.W.; Arnoult, S.; Brancourt-Hulmel, M. Key traits for biomass production identified in different Miscanthus species at two harvest dates. Biomass Bioenergy 2011, 35, 637–651. [Google Scholar] [CrossRef]
- Larsen, S.U.; Jørgensen, U.; Kjeldsen, J.B.; Lærke, P.E. Long-term Miscanthus Yields Influenced by Location, Genotype, Row Distance, Fertilization and Harvest Season. BioEnergy Res. 2014, 7, 620–635. [Google Scholar] [CrossRef]
- Adler, P.R.; Sanderson, M.A.; Boateng, A.A.; Weimer, P.J.; Jung, H.J.G. Biomass Yield and Biofuel Quality of Switchgrass Harvested in Fall or Spring. Agron. J. 2006, 98, 1518–1525. [Google Scholar] [CrossRef]
- Nazli, R.I.; Tansi, V.; Öztürk, H.H.; Kusvuran, A. Miscanthus, switchgrass, giant reed, and bulbous canary grass as potential bioenergy crops in a semi-arid Mediterranean environment. Ind. Crops Prod. 2018, 125, 9–23. [Google Scholar] [CrossRef]
- Bilandzija, N.; Jurisic, V.; Voca, N.; Leto, J.; Matin, A.; Sito, S.; Kricka, T. Combustion properties of Miscanthus × giganteus biomass—Optimization of harvest time. J. Energy Inst. 2017, 90, 528–533. [Google Scholar] [CrossRef]
- Baxter, X.C.; Darvell, L.I.; Jones, J.M.; Barraclough, T.; Yates, N.E.; Shield, I. Study of Miscanthus × giganteus ash composition—Variation with agronomy and assessment method. Fuel 2012, 95, 50–62. [Google Scholar] [CrossRef]
- Kiesel, A.; Lewandowski, I. Miscanthus as biogas substrate. In Proceedings of the Conference Paper on the 23rd European Biomass Conference and Exhibition, Viena, Austria, 1–4 June 2014. [Google Scholar] [CrossRef]
- Van Dyken, S.; Bakken, B.H.; Skjelbred, H.I. Linear mixed-integer models for biomass supply chains with transport, storage and processing. Energy 2010, 35, 1338–1350. [Google Scholar] [CrossRef] [Green Version]
- Sowlati, T. Modeling of Forest and Wood Residues Supply Chains for Bioenergy and Biofuel Production. In Biomass Supply Chains Bioenergy Biorefining; Holm-Nielsen, J.B., Ehimen, E.A., Eds.; Elsevier: Amsterdam, The Netherland, 2016; pp. 167–190. ISBN 978-1-78242-366-9. [Google Scholar]
- European Committee for Standardization. Solid Biofuels—Fuel Specifications and Classes; CEN: Brussels, Belgium, 2005. [Google Scholar]
- Zaninović, K.; Gajić-Čapka, M.; Perčec Tadić, M.; Vučetić, M.; Milković, J.; Bajić, A.; Cindrić, K.; Cvitan, L.; Katušin, Z.; Kaučić, D.; et al. Climate Atlas of Croatia 1961–1990, 1971–2000; Croatian Meteorological and Hydrological Service: Zagreb, Croatia, 2008; ISBN 978-953-7526-01-6. [Google Scholar]
- Penzar, I.; Penzar, B. Agrometeorology Školska Knjiga; Croatian Meteorological and Hydrological Service: Zagreb, Croatia, 2000; ISBN 978-953-0-30678-3. [Google Scholar]
- European Committee for Standardization. Solid Biofuels—Determination of Moisture Content, Oven Dry Method, Total Moisture, Simplified Method; CEN: Brussels, Belgium, 2009. [Google Scholar]
- European Committee for Standardization. Solid Biofuels—Determination of Ash Content; CEN: Brussels, Belgium, 2009. [Google Scholar]
- European Committee for Standardization. Solid Biofuels—Method for the Determination of the Content of Volatile Matter; CEN: Brussels, Belgium, 2009. [Google Scholar]
- Croatian Committee for Standardization. Solid Biofuels—Determination of Calorific Value; HRN: Vukovara, Croatia, 2010. [Google Scholar]
- Croatian Committee for Standardization. Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen—Instrumental Methods; HRN: Vukovara, Croatia, 2011. [Google Scholar]
- Croatian Committee for Standardization. Solid Biofuels—Determination of Total Content of Sulfur and Chlorine; HRN: Vukovara, Croatia, 2011. [Google Scholar]
- International Organization for Standardization. Cellulose in Dilute Solutions—Determination of Limiting Viscosity Number; ISO: Geneva, Switzerland, 2002. [Google Scholar]
- Croatian Standard Institute. Solid Biofuels—Determination of Major Elements—Al, Ca, Fe, Mg, P, K, Si, Na and Ti; HRN: Vukovara, Croatia, 2015. [Google Scholar]
- Croatian Standard Institute. Solid Biofuels—Determination of Minor Elements; HRN: Vukovara, Croatia, 2015. [Google Scholar]
- Software SAS 9.3: SAS; Institute Inc.: Cary, NC, USA, 2001.
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Biomass Proximate Analysis using Thermogravimetry. Bioresour. Technol. 2013, 139, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Obernberger, I.; Thek, G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Parmar, K. Biomass—An Overview on Composition Characteristics and Properties. IRA-JAS 2017, 7, 42–51. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Śnieg, M.; Słomińska, E.; Piórkowski, M.; Filipkowski, R. Thermophysical and chemical properties of perennial energy crops depending on harvest period. Int. Agrophys. 2014, 28, 201–211. [Google Scholar] [CrossRef]
- Jablonowski, N.D.; Kollmann, T.; Nabel, M.; Damm, T.; Klose, H.; Müller, M.; Bläsing, M.; Seebold, S.; Krafft, S.; Kuperjans, I.; et al. Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes. GCB Bioenergy 2017, 9, 202–214. [Google Scholar] [CrossRef]
- Hodgson, E.M.; Fahmi, R.; Yates, N.; Barraclough, T.; Shield, I.; Allison, G.; Bridgwater, A.V.; Donnison, I.S. Miscanthus as a feedstock for fast-pyrolysis: Does agronomic treatment affect quality? Bioresour. Technol. 2010, 101, 6185–6191. [Google Scholar] [CrossRef]
- Šiaudinis, G.; Jasinskas, A.; Šarauskis, E.; Steponavičius, D.; Karčauskienė, D.; Liaudanskienė, I. The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physico-mechanical properties and energy expenses. Energy 2015, 93, 606–612. [Google Scholar] [CrossRef]
- Kacprzak, M.; Ociepa, A.; Bien, J. The influence of soil fertilization on the amounts of ashes and contents of heavy metals in biomass ashes. Arch. Combust. 2010, 30, 125–131. [Google Scholar]
- Howaniec, N.; Smoliński, A. Steam gasification of energy crops of high cultivation potential in Poland to hydrogen-rich gas. Int. J. Hydrogen Energy 2011, 36, 2038–2043. [Google Scholar] [CrossRef]
- Slepetys, J.; Kadziuliene, Z.; Sarunaite, L.; Tilvikiene, V.; Kryzeviciene, A. Biomass Potential of Plants Grown for Bioenergy Production. International Scientific Conference Renewable Energy and Energy Efficiency 2012, 66–72. Available online: http://llufb.llu.lv/conference/Renewable_energy_energy_efficiency/Latvia_Univ_Agriculture_REEE_conference_2012-66-72.pdf (accessed on 4 December 2018).
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- García, R.; Pizaro, C.; Lavín, A.G.; Bueno, J.J. Characterization of Spanish biomass wastes for energy use. Bioresour. Technol. 2012, 103, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M.; Gulczyński, P.; Mleczek, M. Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renew. Energy 2013, 57, 20–26. [Google Scholar] [CrossRef]
- Sulaiman, S.A.; Bamufleh, H.S.; Tamili, S.N.A.; Inayat, M.; Naz, M.Y. Characterization of date palm fronds as a fuel for energy production. Bull. Chem. Soc. Ethiop. 2016, 30, 465–472. [Google Scholar] [CrossRef]
- Yin, C.Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 2011, 90, 1128–1132. [Google Scholar] [CrossRef] [Green Version]
- Nussbaumer, T. Combustion and co-combustion of biomass. In Proceedings of the 12th European Biomass Conference, Amsterdam, The Netherland, 17 June 2002; Volume I, pp. 31–37, ISBN 88-900442-5-X. [Google Scholar]
- Williams, A.; Jones, J.M.; Ma, L.; Pourkashanian, M. Pollutants from the combustion of solid biomass fuels. Prog. Energy Combust. Sci. 2012, 38, 113–137. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical properties of solid biofuels—Significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Keller, R. Primarmassnahmen zur NOx-Minderung bei der Holzverbrennung mit dem Schwerpunkt der Luftstufung; Laboratorium furEnergiesysteme, Ed.; ETH Zurich: Zurich, Switzerland, 1994. [Google Scholar]
- Obernberger, I. Physical Characteristics and Chemical Composition of Solid Biomass Fuels; Eindhofen University of Technology, Department for Mechanical Engineering, Section Process Technology, Eds.; Eindhofen University: Eindhofen, The Netherlands, 2003. [Google Scholar]
- Clarke, S.; Preto, F. Biomass Burn Characteristics; Ministry of Agriculture, Food and Rural Affairs: Guelph, ON, Canada, 2011; pp. 11–33.
- Kron, I.; Porvaz, P.; Kráľová-Hricindová, A.; Tóth, Š.; Sarvaš, J.; Polák, M. Green harvests of three perennial energy crops and their chemical composition. IJAER 2017, 3, 2870–2883. [Google Scholar]
- Jørgensen, H.; Bach, K.J.; Felby, C. Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels Bioprod. Bioref. 2007, 1, 119–134. [Google Scholar] [CrossRef]
- Predojević, Z. Postupci pripreme lignocelulozne sirovine za dobivanje bietanola. Hem. Ind. 2010, 64, 283–310. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.C.; Andersson, B.; Basch, G.; Christian, D.G.; Jorgensen, U.; Jones, M.B.; Riche, A.B.; Schwarz, K.U.; Tayebi, K.; et al. Enviroment and harvest time affect the combustion qualities of Miskantus genotypes. Agron. J. 2003, 95, 1274–1280. [Google Scholar] [CrossRef]
- Wright, L.; Boundy, B.; Perlack, B.; Davis, S.; Saulsbury, B. Biomass Energy Data Book; US Department of Energy Publications: Washington, DC, USA, 2006; Volume 1.
- Wróblewska, H.; Komorowicz, M.; Pawłowski, J.; Cichy, W. Chemical and energetical properties of selected lignocellulosic raw materials. Folia For. Pol. 2009, 40, 67–78. [Google Scholar]
- Stolarski, M.J.; Niksa, D.; Krzyżaniak, M. Elemental composition of willow short rotation crops biomass depending on variety and harvest cycle. Biomass Bioenergy 2017, 105, 342–350. [Google Scholar] [CrossRef]
- Cassida, K.A.; Muir, J.P.; Hussey, M.A.; Read, J.C.; Venuto, B.C.; Ocumpaugh, W.R. Biofuel component concentrations and yields of switchgrass in South central US environments. Crop. Sci. 2005, 45, 682–692. [Google Scholar] [CrossRef]
- Reumerman, P.J.; Van den Berg, D. Reduction of Fouling, Slagging and Corrosion Characteristics of Miscanthus (the BIOMIS Project); European Commission: Brussels, Belgium, 2002.
- Masia, A.A.T.; Buhre, B.J.P.; Gupta, R.P.; Wall, T.F. Characterising ash of biomass and waste. Fuel Process. Technol. 2007, 88, 1071–1081. [Google Scholar] [CrossRef]
- Khan, A.A.; de Jong, W.; Jansens, P.J.; Spliethoff, H. Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Process. Technol. 2009, 90, 21–50. [Google Scholar] [CrossRef]
- Obernberger, I. Nutzung Fester Biomasse in Verbrennungsanlagen unter Besonderer Berucksichtigung des Verhaltens Aschebildender Elemente. Schriftenreihe “Thermische Biomassenutzung”; Dbv-Verlag der Technischen Universitat Graz: Graz, Austria, 1997; ISBN 3-7041-0241-5. [Google Scholar]
- Van Loo, S.; Koppejan, J. Handbook of Biomass Combustion and Co-Firing; IEA: Paris, France, 2002; ISBN 9036517737. [Google Scholar]
- Van Loo, S.; Koppejan, J. The Handbook of Biomass Combustion and Co-Firing; Earthscan: London, UK, 2008; ISBN 9781844072491. [Google Scholar]
- Bläsing, M.; Müller, M. Mass spectrometric investigations on the release of inorganic species during gasification and combustion of Rhenish lignite. Fuel 2010, 89, 2417–2424. [Google Scholar] [CrossRef]
- Bläsing, M.; Müller, M. Mass spectrometric investigations on the release of inorganic species during gasification and combustion of German hard coal. Combust. Flam 2010, 157, 1374–1381. [Google Scholar] [CrossRef]
- Porbatzki, D.; Stemmler, M.; Müller, M. Release of inorganic trace elements during gasification of wood, straw, and miscanthus. Biomass Bioenergy 2011, 35, 79–86. [Google Scholar] [CrossRef]
- Borkowska, H.; Lipiński, W. The content of selected elements in the biomass of several species of energy plants. Acta Agrophys. 2007, 10, 287–292. [Google Scholar]
- Monti, A.; Di Virgiliob, N.; Venturia, G. Mineral composition and ash content of six major energy crops. Biomass Bioenergy 2008, 32, 216–223. [Google Scholar] [CrossRef] [Green Version]
Location/Investigated Parameters | pH | % | mg/100 g Soil | |||
---|---|---|---|---|---|---|
H2O | 1 M KCl | O.M. | N | P2O5 | K2O | |
Ivanić Grad | 5.39 | 4.73 | 1.79 | 0.09 | 8.98 | 22.0 |
Harvest Season | Parameters | ||||
---|---|---|---|---|---|
Moisture (%) | Ash (%, db) | Fixed Carbon (%, db) | Volatile Matter (%, db) | Lower Heating Value (MJ/kg, db) | |
HS-1 | 45.21 a ± 0.19 | 9.27 a ± 0.42 | 3.54 c ± 0.42 | 84.19 b ± 0.42 | 17.69 ba ± 0.14 |
HS-2 | 24.87 b ± 0.08 | 2.85 b ± 0.71 | 5.08 b ± 0.06 | 88.87 a ± 0.07 | 18.31 a ± 0.09 |
HS-3 | 18.64 c ± 0.17 | 1.94 c ± 0.31 | 6.21 a ± 0.98 | 87.29 a ± 0.98 | 17.56 b ± 0.18 |
Harvest Season | Parameters | ||||
---|---|---|---|---|---|
C (%, db) | N (%, db) | O (%, db) | S (%, db) | H (%, db) | |
HS-1 | 46.79 b ± 0.09 | 1.82 a ± 0.10 | 45.06 b ± 0.04 | 0.26 a ± 0.02 | 6.07 a ± 0.06 |
HS-2 | 32.22 c ± 0.24 | 0.22 c ± 0.01 | 63.14 a ± 0.12 | 0.19 b ± 0.01 | 4.24 b ± 0.04 |
HS-3 | 50.08 a ± 0.08 | 0.65 b ± 0.05 | 42.95 c ± 0.05 | 0.23 ba ± 0.03 | 6.10 a ± 0.09 |
Harvest Season | Parameters | ||
---|---|---|---|
Cellulose (%, db) | Hemicellulose (%, db) | Lignin (%, db) | |
HS-1 | 39.03 b ± 1.06 | 30.08 a ± 2.08 | 19.88 b ± 1.10 |
HS-2 | 43.89 a ± 1.15 | 30.10 a ± 1.09 | 23.68 a ± 1.06 |
HS-3 | 45.04 a ± 1.03 | 27.33 a ± 1.12 | 25.45 a ± 1.10 |
Parameters | Harvest Season | CEN/TS 14961:2005 | ||
---|---|---|---|---|
HS-1 | HS-2 | HS-3 | ||
Macroelements (mg/kg, db) | ||||
Na | 29.76 a ± 0.60 | 27.29 a ± 3.40 | 20.73 b ± 0.60 | 200–500 |
Mg | 501.7 a ± 0.72 | 499.7 a ± 1.61 | 500.1 a ± 2.40 | 300–900 |
K | 12,360 a ± 61.29 | 794.6 c ± 23.53 | 11,340 b ± 30.71 | 1000–11,000 |
Ca | 7259 a ± 348.73 | 7583 a ± 204.59 | 7569 a ± 159.81 | 900–3000 |
Microelements (mg/kg, db) | ||||
Fe | 48.87 c ± 1.03 | 60.73 b ± 0.78 | 75.39 a ± 0.51 | 40–400 |
Zn | 13.58 a ± 2.28 | 8.92 b ± 0.64 | 10.27 b ± 1.07 | 10–20 |
Cr | 5.26 a ± 1.74 | 5.40 a ± 1.88 | 4.73 a ± 3.12 | 0.4–6.0 |
Ni | 5.71 a ± 1.64 | 5.43 a ± 3.49 | 6.72 a ± 1.47 | 0.5–5.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilandžija, N.; Krička, T.; Matin, A.; Leto, J.; Grubor, M. Effect of Harvest Season on the Fuel Properties of Sida hermaphrodita (L.) Rusby Biomass as Solid Biofuel. Energies 2018, 11, 3398. https://doi.org/10.3390/en11123398
Bilandžija N, Krička T, Matin A, Leto J, Grubor M. Effect of Harvest Season on the Fuel Properties of Sida hermaphrodita (L.) Rusby Biomass as Solid Biofuel. Energies. 2018; 11(12):3398. https://doi.org/10.3390/en11123398
Chicago/Turabian StyleBilandžija, Nikola, Tajana Krička, Ana Matin, Josip Leto, and Mateja Grubor. 2018. "Effect of Harvest Season on the Fuel Properties of Sida hermaphrodita (L.) Rusby Biomass as Solid Biofuel" Energies 11, no. 12: 3398. https://doi.org/10.3390/en11123398
APA StyleBilandžija, N., Krička, T., Matin, A., Leto, J., & Grubor, M. (2018). Effect of Harvest Season on the Fuel Properties of Sida hermaphrodita (L.) Rusby Biomass as Solid Biofuel. Energies, 11(12), 3398. https://doi.org/10.3390/en11123398