Low-Carbon Energy Planning: A Hybrid MCDM Method Combining DANP and VIKOR Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Research on Sustainable Development
2.2. Methodologies of Multi-Criteria Decision Making
2.3. Research Gap
3. Background and Problem Description
3.1. Low-Carbon Energy Planning
3.2. Hierarchy Structure for Evaluation Criteria
4. Methodology
4.1. Procedure of DANP Method
4.2. Steps of VIKOR Method
5. Case Study
5.1. Data Collection
5.2. Weighing Relation between Dimensions and Criteria by DEMATEL
5.3. Weighting of Every Standard by DANP Technique
5.4. Rank the Design Alternatives of Low-Carbon Energy Planning Using the VIKOR Approach
6. Analysis and Discussion
6.1. Comparison with Previous Methods
6.2. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lang, D.J.; Wiek, A.; Bergmann, M.; Stauffacher, M.; Martens, P.; Moll, P.; Swilling, M.; Thomas, C.J. Transdisciplinary research in sustainability science: Practice, principles, and challenges. Sustain. Sci. 2002, 7, 25–43. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, D.; He, B.J.; Liu, Y.; Zhang, X.; Yu, H.; Jin, G. Using solar house to alleviate energy poverty of rural Qinghai-Tibet region, China: A case study of a novel hybrid heating system. Energy Build. 2018, 178, 294–303. [Google Scholar] [CrossRef]
- Brundiers, K.; Wiek, A. Educating students in real-world sustainability research: Vision and implementation. Innov. High. Educ. 2011, 36, 107–124. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, H.; Feng, Y.; Jia, H.; Zhang, C.; Jiang, Z.; Li, Z.; Li, P. Operation patterns analysis of automotive components remanufacturing industry development in China. J. Clean. Prod. 2017, 164, 1363–1375. [Google Scholar] [CrossRef]
- Wu, Z.; Tang, J.; Wang, D. Low carbon urban transitioning in Shenzhen: A multi-level environmental governance perspective. Sustainability 2016, 8, 720. [Google Scholar] [CrossRef]
- Abeysundara, U.Y.; Babel, S.; Gheewala, S. A matrix in life cycle perspective for selecting sustainable materials for buildings in Sri Lanka. Build. Environ. 2009, 44, 997–1004. [Google Scholar] [CrossRef]
- Singh, S.; Olugu, E.V.; Musa, S.N.; Mahat, A.B.; Wong, K.Y. Strategy selection for sustainable manufacturing with integrated AHP-VIKOR method under interval-valued fuzzy environment. J. Adv. Manuf. Technol. 2016, 84, 547–563. [Google Scholar] [CrossRef]
- Ding, L.; Shao, Z.; Zhang, H. A comprehensive evaluation of urban sustainable development in China based on the TOPSIS-entropy method. Sustainability 2016, 8, 746. [Google Scholar] [CrossRef]
- Bansal, P. Evolving sustainably: A longitudinal study of corporate sustainable development. Strateg. Manag. J. 2005, 26, 197–218. [Google Scholar] [CrossRef]
- Dincer, I. The role of exergy in energy policy making. Energy Policy 2002, 30, 137–149. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Y.; Tian, C. Strategic deliberation on development of low-carbon energy system in China. Adv. Clim. Change Res. 2016, 7, 26–34. [Google Scholar] [CrossRef]
- Tsai, B.H.; Chang, C.J.; Chang, C.H. Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models. Energy 2016, 100, 416–424. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, D.; Yu, H.; Ma, W.; Gin, G. Field measurement and numerical simulation of combined solar heating operation modes for domestic buildings based on the Qinghai-Tibetan plateau case. Energy Build. 2018, 167, 312–321. [Google Scholar] [CrossRef]
- Lugaric, L.; Krajcar, S. Transforming cities towards sustainable low-carbon energy systems using emergy synarticle for support in decision making. Energy Policy 2016, 98, 471–482. [Google Scholar] [CrossRef]
- Roth, R.; Field, F.; Clark, J. Materials selection and multi-attribute utility analysis. J. Comput. Aided Mater. Des. 1993, 1, 325–342. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, H.; Feng, Y.; Wang, D.; Peng, Y.; Jia, H. Green decoration materials selection under interior environment characteristics: A grey-correlation based hybrid MCDM method. Renew. Sustain. Energy Rev. 2018, 81, 682–692. [Google Scholar] [CrossRef]
- Rao, R.V.; Davim, J.P. A decision-making framework model for material selection using a combined multiple attribute decision making method. J. Adv. Manuf. Technol. 2008, 35, 751–760. [Google Scholar] [CrossRef]
- Shahabi, H.; Hashim, M. Landslide susceptibility mapping using GIS-based statistical models and remote sensing data in tropical environment. Sci. Rep. 2015, 5, 9899. [Google Scholar] [CrossRef]
- Chatterjee, P.; Athawale, V.M.; Chakraborty, S. Selection of materials using compromise ranking and outranking methods. Mater. Des. 2009, 30, 4043–4053. [Google Scholar] [CrossRef]
- Rao, R.V. A decision making methodology for material selection using an improved compromise ranking method. Mater. Des. 2008, 29, 1949–1954. [Google Scholar] [CrossRef]
- Jahan, A.; Mustapha, F.; Ismail, Y.; Sapuan, S.M.; Bahraminasab, M. A comprehensive VIKOR method for material selection. Mater. Des. 2011, 32, 1215–1221. [Google Scholar] [CrossRef]
- Altuntas, S.; Selim, H.; Dereli, T. A fuzzy DEMATEL-based solution approach for facility layout problem: A case study. J. Adv. Manuf. Technol. 2014, 73, 749–771. [Google Scholar] [CrossRef]
- Chan, J.W.K. Application of grey relational analysis for ranking material options. J. Comput Appl Technol. 2006, 26, 210–217. [Google Scholar] [CrossRef]
- Chan, J.W.K.; Tong, T.K.L. Multi-criteria material selections and end-of-life product strategy: Grey relational analysis approach. Mater. Des. 2007, 28, 1539–1546. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Taflanidis, A.A.; Beck, J.L. Life-cycle cost optimal design of passive dissipative devices. Struct. Saf. 2009, 31, 508–522. [Google Scholar] [CrossRef]
- Avikal, S.; Jain, R.; Mishra, P.K. A Kano model: AHP and M-TOPSIS method-based technique for disassembly line balancing under fuzzy environment. Appl. Soft Comput. 2014, 25, 519–529. [Google Scholar] [CrossRef]
- Govindan, K.; Shankar, K.M.; Kannan, D. Sustainable material selection for construction industry—A hybrid multi criteria decision making approach. Renew. Sustain. Energy Rev. 2015, 55, 1274–1288. [Google Scholar] [CrossRef]
- Tavana, M.; Zareinejad, M.; Di Caprio, D.; Kaviani, M.A. An integrated intuitionistic fuzzy AHP and SWOT method for outsourcing reverse logistics. Appl. Soft Comput. 2016, 40, 544–557. [Google Scholar] [CrossRef]
- Ou Yang, Y.P.; Shieh, H.M.; Leu, J.D.; Tzeng, G.V. A novel hybrid MCDM model combined with DEMATEL and ANP with applications. J. Oper. Res. 2008, 5, 160–168. [Google Scholar]
- IPCC. Intergovernmental Panel for Climate Change Fourth Assessment Report; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Stern, N. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Committee on Climate Change. Building a Low-Carbon Economy-The UK’s Contribution to Tackling Climate Change; The Stationery Office: London, UK, 2008. [Google Scholar]
- BP Statistical Review of World Energy. Available online: http://www.bp.com/content/dam/bp/pdf/StatisticalReview-2012/statistical_review_of_world_energy_2012.pdf (accessed on 20 September 2018).
- Tian, Y.; Zhou, X.; Lin, S.; Ji, X.; Bai, J.; Xu, M. Syngas production from air-steam gasification of biomass with natural catalysts. Sci. Environ. 2018, 645, 518–523. [Google Scholar]
- Chianese, S.; Fail, S.; Binder, M.; Rauch, R.; Hofbauer, H.; Molino, A.; Blasi, A.; Musmarra, D. Experimental investigations of hydrogen production from CO catalytic conversion of tar rich syngas by biomass gasification. Cat. Today 2016, 277, 182–191. [Google Scholar] [CrossRef]
- Zhou, Y.; Hao, F.; Meng, W. Scenario analysis of energy-based low-carbon development in China. J. Environ. Sci. 2014, 26, 1631–1640. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Kang, C.; Xia, Q. Power generation expansion planning model towards low-carbon economy and its application in China. IEEE Trans. Power Syst. 2015, 25, 1117–1125. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, V.; McCalley, J.D. The role of bio-renewables in national energy and transportation systems portfolio planning for low carbon economy. Renew. Energ. 2016, 91, 207–223. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J. Study on Uncertain Multi-Objective Optimization and Multi-attribute Decision Making for Low Carbon Power Supply Planning; Yanshan University: Qinhuangdao, China, 2015. [Google Scholar]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; Rws Publications: Pittsburgh, Pennsylvania, 1996. [Google Scholar]
- Saaty, T.L. Fundamentals of the analytic network process. In Proceedings of the ISAPH International Symposium on the Analytic Hierarchy Process, Kobe, Japan, 12–14 August 1999. [Google Scholar]
- Hsu, C.H.; Wang, F.K.; Tzeng, G.H. The best vendor selection for conducting the recycled material based on a hybrid MCDM model combining DANP with VIKOR. Resour. Conserv. Recycl. 2012, 66, 95–111. [Google Scholar] [CrossRef]
- Liu, H.C.; You, J.X.; Fan, X.J. A novel hybrid multiple criteria decision making model for material selection with target-based criteria. Mater. Des. 2016, 60, 380–390. [Google Scholar] [CrossRef]
- Chiu, W.Y.; Tzeng, G.H.; Li, H.L. A new hybrid MCDM model combining DANP with VIKOR to improve e-store business. Knowl. Based Syst. 2013, 37, 48–61. [Google Scholar] [CrossRef]
- Opricovic, S. Multi-Criteria Optimization of Civil Engineering Systems. Ph.D. Thesis, Faculty of Civil Engineering, Belgrade, Serbia, 1998. [Google Scholar]
- Opricovic, S.; Tzeng, G.-H. Multicriteria planning of post-earthquake sustainable reconstruction. Comput.-Aided Civ. Infrastruct. Eng. 2002, 17, 211–220. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Tian, G.; Zhou, M.; Li, P. Disassembly sequence planning considering fuzzy component quality and varying operational cost. IEEE Trans. Autom. Sci. Eng. 2018, 15, 748–760. [Google Scholar] [CrossRef]
- Pi-Fang, H. Evaluation of advertising spokespersons via the ANP-GRA selection model. J. Grey Syst. 2009, 21, 35–48. [Google Scholar]
- Sanchez-Lozano, J.M.; Fernandez-Martinez, M. Near-Earth object hazardous impact: A multi-criteria decision making approach. Sci. Rep. 2006, 6, 37055. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhang, Z.; Tian, G.; Lv, Z.; Tian, S.; Jia, H. Data-driven accurate design of variable blank holder force in sheet forming under interval uncertainty using sequential approximate multi-objective optimization. Future Gener. Comput. Syst. 2018, 86, 1242–1250. [Google Scholar] [CrossRef]
Criteria | Alternative 1 | Alternative 2 | Alternative 3 | Alternative 4 |
---|---|---|---|---|
Power shortage expectations (C1) | 4.19 | 14.2 | 3.16 | 8.67 |
Power shortage frequency (C2) | 16,801 | 17,558 | 704 | 8019 |
Duration of power shortage (C3) | 2.45 | 3.92 | 2.45 | 4.14 |
Low battery expectations (C4) | 87.67 | 82.47 | 1.95 | 49.27 |
Power load matching degree (C5) | 1.26 | 1.46 | 1.62 | 1.81 |
The proportion of intermittent energy (C6) | 1.872 | 0.107 | 1.431 | 0.294 |
Positive peaking capacity (C7) | −14.34 | 0.536 | -3.705 | 26.481 |
The proportion of outside electricity (C8) | 11.075 | 3.643 | 2.522 | −34.229 |
Investment costs (C9) | 2897.27 | 1872.89 | 2461.87 | 2134.69 |
Operating costs (C10) | 835.06 | 449.54 | 629.51 | 543.79 |
Plant electricity rate (C11) | 5.44 | 6.40 | 7.43 | 8.02 |
Carbon emissions costs (C12) | 256.05 | 120.51 | 203.02 | 194.38 |
Proportion of renewable energy (C13) | 7.41 | 7.91 | 3.17 | 4.23 |
CO2 emissions (C14) | 35,006.94 | 20,511.42 | 29,212.80 | 24,757.93 |
Nitrogen oxide emissions (C15) | 254.42 | 149.07 | 212.31 | 179.94 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 0 | 1 | 1 | 2 | 1 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 |
C2 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
C3 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
C4 | 1 | 2 | 1 | 0 | 1 | 1 | 2 | 1 | 1 | 3 | 1 | 2 | 4 | 1 | 1 |
C5 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
C6 | 1 | 2 | 2 | 2 | 1 | 0 | 2 | 3 | 2 | 1 | 1 | 1 | 2 | 3 | 2 |
C7 | 2 | 1 | 3 | 2 | 2 | 1 | 0 | 3 | 4 | 1 | 2 | 1 | 3 | 3 | 2 |
C8 | 3 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 3 | 1 | 1 | 2 | 3 | 2 | 2 |
C9 | 2 | 3 | 1 | 2 | 2 | 3 | 2 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 4 |
C10 | 1 | 1 | 1 | 1 | 3 | 1 | 2 | 2 | 2 | 0 | 1 | 2 | 3 | 2 | 3 |
C11 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 0 | 2 | 1 | 2 | 2 |
C12 | 1 | 2 | 1 | 1 | 2 | 2 | 3 | 2 | 1 | 2 | 1 | 0 | 1 | 1 | 2 |
C13 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 2 | 1 |
C14 | 2 | 1 | 2 | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 3 | 2 | 2 | 0 | 1 |
C15 | 2 | 1 | 1 | 1 | 2 | 3 | 2 | 1 | 2 | 3 | 2 | 1 | 1 | 2 | 0 |
E1 | E2 | E3 | E4 | |
---|---|---|---|---|
E1 | 0 | 2 | 3 | 1 |
E2 | 2 | 0 | 3 | 2 |
E3 | 1 | 1 | 0 | 2 |
E4 | 3 | 2 | 2 | 0 |
Criteria | ri | ci | ri + ci | ri − ci | |
---|---|---|---|---|---|
1 | Power shortage expectations (C1) | 2.784 | 2.673 | 5.457 | 0.111 |
2 | Power shortage frequency (C2) | 2.782 | 2.126 | 4.908 | 0.656 |
3 | Duration of power shortage (C3) | 2.625 | 2.137 | 4.762 | 0.488 |
4 | Low battery expectations (C4) | 2.749 | 2.871 | 5.620 | −0.122 |
5 | Power load matching degree (C5) | 2.737 | 2.237 | 4.974 | 0.500 |
6 | The proportion of intermittent energy (C6) | 3.284 | 2.908 | 6.192 | 0.376 |
7 | Positive peaking capacity (C7) | 2.881 | 3.876 | 6.757 | −0.995 |
8 | The proportion of outside electricity (C8) | 3.275 | 3.227 | 6.502 | 0.048 |
9 | Investment costs (C9) | 3.030 | 3.495 | 6.525 | −0.465 |
10 | Operating costs (C10) | 3.273 | 2.638 | 5.911 | 0.635 |
11 | Plant electricity rate (C11) | 2.659 | 2.720 | 5.379 | −0.061 |
12 | Carbon emissions costs (C12) | 2.933 | 2.761 | 5.694 | 0.172 |
13 | Proportion of renewable energy (C13) | 3.491 | 2.582 | 6.073 | 0.909 |
14 | CO2 emissions (C14) | 3.027 | 3.099 | 6.126 | −0.072 |
15 | Nitrogen oxide emissions (C15) | 3.476 | 3.193 | 6.669 | 0.283 |
Criteria | ri | ci | ri + ci | ri − ci | |
---|---|---|---|---|---|
1 | Reliability property (E1) | 2.672 | 2.664 | 5.336 | 0.008 |
2 | Safety property (E2) | 2.331 | 3.079 | 5.410 | −0.748 |
3 | Economy property (E3) | 3.479 | 2.004 | 5.483 | 1.475 |
4 | Environmental property (E4) | 2.411 | 3.145 | 5.556 | −0.734 |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight | 0.059 | 0.065 | 0.030 | 0.071 | 0.082 | 0.094 | 0.099 | 0.027 | 0.097 | 0.085 | 0.020 | 0.081 | 0.070 | 0.095 | 0.025 |
Sj | Rank | Rj | Rank | Qj | Rank | |
---|---|---|---|---|---|---|
Alternative 1 | 0.568 | 3 | 0.182 | 4 | 0.527 | 3 |
Alternative 2 | 0.845 | 4 | 0.180 | 3 | 0.850 | 4 |
Alternative 3 | 0.294 | 2 | 0.075 | 2 | 0.113 | 2 |
Alternative 4 | 0.204 | 1 | 0.064 | 1 | 0.086 | 1 |
VIKOR | Rank | GRA | Rank | TOPSIS | Rank | |
---|---|---|---|---|---|---|
Alternative 1 | 0.527 | 3 | 0.390 | 3 | 0.445 | 4 |
Alternative 2 | 0.850 | 4 | 0.252 | 4 | 0.458 | 3 |
Alternative 3 | 0.113 | 2 | 0.548 | 2 | 0.748 | 2 |
Alternative 4 | 0.086 | 1 | 0.716 | 1 | 0.854 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Sun, H.; Zhang, L.; Zhuang, Q.; Zhang, L.; Zhang, X.; Chen, Y. Low-Carbon Energy Planning: A Hybrid MCDM Method Combining DANP and VIKOR Approach. Energies 2018, 11, 3401. https://doi.org/10.3390/en11123401
Liu R, Sun H, Zhang L, Zhuang Q, Zhang L, Zhang X, Chen Y. Low-Carbon Energy Planning: A Hybrid MCDM Method Combining DANP and VIKOR Approach. Energies. 2018; 11(12):3401. https://doi.org/10.3390/en11123401
Chicago/Turabian StyleLiu, Ruijun, Hao Sun, Lu Zhang, Qianwei Zhuang, Lele Zhang, Xueyi Zhang, and Ye Chen. 2018. "Low-Carbon Energy Planning: A Hybrid MCDM Method Combining DANP and VIKOR Approach" Energies 11, no. 12: 3401. https://doi.org/10.3390/en11123401
APA StyleLiu, R., Sun, H., Zhang, L., Zhuang, Q., Zhang, L., Zhang, X., & Chen, Y. (2018). Low-Carbon Energy Planning: A Hybrid MCDM Method Combining DANP and VIKOR Approach. Energies, 11(12), 3401. https://doi.org/10.3390/en11123401