Evaluating Partnerships in Sustainability-Oriented Food Supply Chain: A Five-Stage Performance Measurement Model
Abstract
:1. Introduction
2. Literature Review
3. Conceptual Model
- (1)
- Producer’s performance
- (2)
- Supplier’s performance
- (3)
- Processor’s performance
- (4)
- Distributor’s performance
- (5)
- Retailer’s performance
3.1. Producer’s Performance
3.2. Supplier’s Performance
3.3. Processor’s Performance
3.4. Impact of Distributor’s Performance
4. Research Methodology
Measures
5. Empirical Analysis
5.1. Measurement Validation
5.2. Exploratory Factor Analysis
5.2.1. Producer’s Performance
5.2.2. Supplier’s Performance
5.2.3. Processor’s Performance
5.2.4. Distributor’s performance
5.2.5. Retailer’s Performance
5.3. Test of Hypotheses
6. Discussion and Managerial Implications
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aggestam, V.; Fleib, E.; Posch, A. Scaling-up short food supply chains? A survey study on the drivers behind the intention of food producers. J. Rural Stud. 2017, 51, 64–72. [Google Scholar] [CrossRef]
- Kirwan, J.; Maye, D.; Brunori, G. Acknowledging complexity in food supply chains when assessing their performance and sustainability. J. Rural Stud. 2017, 52, 21–32. [Google Scholar] [CrossRef]
- Pigini, D.; Conti, M. NFC-based traceability in food chain. Sustainability 2017, 9, 1910. [Google Scholar] [CrossRef]
- Shashi; Cerchione, R.; Singh, R.; Centobelli, P.; Shabani, A. Food cold chain management: From a structured literature review to a conceptual framework and research agenda. Int. J. Logist. Manag. 2018, 29, 792–821. [Google Scholar]
- Shi, H.; Quan, M.-Y.; Liu, H.-C.; Duan, C.-Y. A novel integrated approach for green supplier selection with interval-valued intuitionistic uncertain linguistic information: A case study in the agri-food industry. Sustainability 2018, 10, 733. [Google Scholar] [CrossRef]
- Verdouw, C.N.; Wolfert, J.; Beulens, A.J.M.; Rialland, A. Virtualization of food supply chains with the internet of things. J. Food Eng. 2016, 176, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Roth, A.V.; Tsay, A.A.; Pullman, M.E.; Gray, J.V. Unraveling the food supply chain: Strategic insights from China and the 2007 recalls. J. Supply Chain Manag. 2008, 44, 22–39. [Google Scholar] [CrossRef]
- León-Bravo, V.; Caniato, F.; Caridi, M.; Johnsen, T. Collaboration for sustainability in the food supply chain: A multi-stage study in Italy. Sustainability 2017, 9, 1253. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, J.; Delaurentis, T. Quality control in food supply chain management: An analytical model and case study of the adulterated milk incident in China. Int. J. Prod. Econ. 2014, 152, 188–199. [Google Scholar] [CrossRef]
- Esposito, E.; Passaro, R. Evolution of the supply chain in the Italian railway industry. Supply Chain Manag. 2009, 14, 303–313. [Google Scholar] [CrossRef]
- Dania, W.A.P.; Xing, K.; Amer, Y. Collaboration behavioural factors for sustainable agri-food supply chains: A systematic review. J. Clean. Prod. 2018, 186, 851–864. [Google Scholar] [CrossRef]
- Verghese, K.; Lewis, H.; Lockrey, S.; Williams, H. Packaging’s role in minimizing food loss and waste across the supply chain. Packag. Technol. Sci. 2015, 28, 603–620. [Google Scholar] [CrossRef]
- Aramyan, L.H.; Lansink, A.G.O.; Van Der Vorst, J.G.; Van Kooten, O. Performance measurement in agri-food supply chains: A case study. Supply Chain Manag. Int. J. 2007, 12, 304–315. [Google Scholar] [CrossRef]
- Aramyan, L.; Ondersteijn, C.; van Kooten, O.; Oude Lansink, A. Performance indicators in agri-food production chains. In Quantifying the Agri-Food Supply Chain; Ondersteijn, C.J., Wijnands, J.H., Huirne, R.B., van Kooten, O., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 47–64. [Google Scholar]
- Shah, S.R.; Ganji, E.N. Lean production and supply chain innovation in baked foods supplier to improve performance. Br. Food J. 2017, 119, 2421–2447. [Google Scholar] [CrossRef] [Green Version]
- Shashi; Singh, R.; Shabani, A. Value-adding practices in food supply chain: Evidence from Indian food industry. Agribusiness 2017, 33, 116–130. [Google Scholar] [CrossRef]
- Aung, M.M.; Chang, Y.S. Traceability in a food supply chain: Safety and quality perspectives. Food Control 2014, 39, 172–184. [Google Scholar] [CrossRef]
- Balaji, M.; Arshinder, K. Modeling the causes of food wastage in Indian perishable food supply chain. Resour. Conserv. Recycl. 2016, 114, 153–167. [Google Scholar]
- Beske, P.; Land, L.; Seuring, S. Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature. Int. J. Prod. Econ. 2014, 152, 131–143. [Google Scholar] [CrossRef]
- Shukla, M.; Jharkharia, S. Agri-fresh produce supply chain management: A state of the art literature review. Int. J. Oper. Prod. Manag. 2013, 33, 114–158. [Google Scholar] [CrossRef]
- USDA. With Adequate Productivity Growth, Global Agriculture Is Resilient to Future Population and Economic Growth. 2014. Available online: http://www.ers.usda.gov/amber-waves/2014-december/with-adequate-productivity-growth,-global-agriculture-is-resilient-to-future-population-and-economic-growth.aspx#.VpdxuPl97IU (accessed on 11 December 2018).
- Bhattacharya, R.; Gupta, A.S. Drivers and impact of food inflation in India. Macroecon. Financ. Emerg. Mark. Econ. 2017, in press. [Google Scholar] [CrossRef]
- Devi, C.U. Trade performance of Indian processed foods in the international market. Procedia Soc. Behav. Sci. 2014, 133, 84–92. [Google Scholar] [CrossRef]
- GHI. Global Hunger Indexes the Inequalities of Hunger. 2017. Available online: http://www.globalhungerindex.org/pdf/en/2017.pdf (accessed on 11 December 2018).
- Andoju, S. Food Wastage Costs India: 1 Lakh Crore Every Year. Here’s how You Can Stop It. 2017. Available online: https://www.youthkiawaaz.com/2017/03/what-you-can-do-about-food-wastage-in-india/ (accessed on 11 December 2018).
- Business Standard. Why India’s Exports of Fruit and Vegetables Have Dipped. 2017. Available online: http://www.rediff.com/money/report/why-indias-exports-of-fruit-and-vegetables-have-dipped/20171227.htm (accessed on 11 December 2018).
- Business Today. Reducing Food Waste Top Priority for India: Badal. 2017. Available online: https://www.businesstoday.in/sectors/agriculture/reducing-food-waste-top-priority-for-india-badal/story/261242.html (accessed on 11 December 2018).
- Indian Briefing. The Food Processing Industry in India: Investment Prospects. 2017. Available online: https://www.india-briefing.com/news/the-food-processing-industry-in-india-investment-prospects-14169.html/ (accessed on 11 December 2018).
- Mrunal. Introduction, Scope, Significance, Awesomeness (Hardly), Obstacles (Truckload of) for GS Mains. 2013. Available online: http://mrunal.org/2013/08/food-processing-introduction-scope-significance-awesomeness-hardly-obstacles-truckload-of-for-gs-mains.html#381 (accessed on 11 December 2018).
- The Economic Times. Food Processing Will Be Main Industry in Future: Jaitley. 2017. Available online: https://economictimes.indiatimes.com/industry/cons-products/food/food-processing-will-be-main-industry-in-future-jaitley/articleshow/61485828.cms (accessed on 11 December 2018).
- Akhtar, P.; Tse, Y.K.; Khan, Z.; Rao-Nicholson, R. Data-driven and adaptive leadership contributing to sustainability: Global agri-food supply chains connected with emerging markets. Int. J. Prod. Econ. 2016, 181, 392–401. [Google Scholar] [CrossRef]
- Koufteros, X.; Guanyi, Lu. Food supply chain safety and security: A concern of global importance. J. Mark. Channels 2017, 24, 111–114. [Google Scholar] [CrossRef]
- Ringsberg, H.A. Implementation of global traceability standards: Incentives and opportunities. Br. Food J. 2015, 117, 1826–1842. [Google Scholar] [CrossRef]
- Bhagwat, R.; Sharma, M.K. Performance measurement of supply chain management: A balanced scorecard approach. J. Comput. Ind. Eng. 2007, 53, 43–62. [Google Scholar] [CrossRef]
- Bigliardi, B.; Bottani, E. Performance measurement in the food supply chain: A balanced scorecard approach. Facilities 2010, 28, 249–260. [Google Scholar] [CrossRef]
- Bourlakis, M.; Maglaras, G.; Aktas, E.; Gallear, D.; Fotopoulos, C. Firm size and sustainable performance in food supply chains: Insights from Greek SMEs. Int. J. Prod. Econ. 2014, 152, 112–130. [Google Scholar] [CrossRef]
- Spoolder, H.A.M.; Burbidge, J.A.; Edwards, S.A.; Lawrence, A.B.; Simmins, P.H. Effects of food level on performance and behaviour of sows in a dynamic group-housing system with electronic feeding. Anim. Sci. 1997, 65, 473–482. [Google Scholar] [CrossRef]
- Spoolder, H.A.M.; Burbidge, J.A.; Edwards, S.A.; Simmins, P.H.; Lawrence, A.B. Effects of food level and straw bedding during pregnancy on sow performance and responses to an ACTH challenge. Livest. Prod. Sci. 1996, 47, 51–57. [Google Scholar] [CrossRef]
- Osorio, A.E.; Corradini, M.G.; Dewi, G. In-store cold chain failures: Food safety considerations. J. Mark. Channels 2017, 24, 153–170. [Google Scholar] [CrossRef]
- Shabani, A.; Torabipour, S.M.R.; Saen, R.F. A new super-efficiency Dual-Role FDH procedure: An application in dairy cold chain for vehicle selection. Int. J. Shipp. Transp. Logist. 2015, 71, 426–456. [Google Scholar] [CrossRef]
- Azoury, K.S.; Miyoka, J. Managing production and distribution for supply chains in the processed food industry. Prod. Oper. Manag. 2013, 22, 1250–1268. [Google Scholar] [CrossRef]
- Van der Vorst, J.G.A.J.; Tromp, S.-O.; van der Zee, D.-J. Simulation modelling for food supply chain redesign; integrated decision making on product quality, sustainability and logistics. Int. J. Prod. Res. 2009, 47, 6611–6631. [Google Scholar] [CrossRef] [Green Version]
- Ryu, I.; So, S.; Koo, C. The role of partnership in supply chain performance. Ind. Manag. Data Syst. 2009, 109, 496–514. [Google Scholar] [CrossRef]
- Okongwu, U.; Lauras, M.; François, J.; Deschamps, J. Impact of the integration of tactical supply chain planning determinants on performance. J. Manuf. Syst. 2016, 38, 181–194. [Google Scholar] [CrossRef]
- Han, J.; Lu, H.; Trienekens, J.H.; Omta, S.W.F. The impact of supply chain integration on firm performance in the pork processing industry in China. Chin. Manag. Stud. 2013, 7, 230–252. [Google Scholar] [CrossRef]
- Nyamah, E.Y.; Jiang, Y.; Feng, Y.; Enchill, E. Agri-food supply chain performance: An empirical impact of risk. Manag. Decis. 2017, 55, 872–891. [Google Scholar] [CrossRef]
- Handayati, Y.; Simatupang, T.M.; Perdana, T. Agri-food supply chain coordination: The state-of-the-art and recent developments. Logist. Res. 2015, 8, 2–15. [Google Scholar] [CrossRef]
- Van der Vorst, J.G.A.J. Performance measurement in agri-food supply chain networks. An overview. In Quantifying the Agri-food Supply Chain; Ondersteijn, C.J., Wijnands, J.H., Huirne, R.B., van Kooten, O., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 13–24. [Google Scholar]
- Trienekens, J.; Zuurbier, P. Quality and safety standards in the food industry, developments and challenges. Int. J. Prod. Econ. 2008, 113, 107–122. [Google Scholar] [CrossRef]
- Van der Spiegel, M. Measuring Effectiveness of Food Quality Management. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2004. [Google Scholar]
- Berti, G.; Mulligan, C. Competitiveness of small farms and innovative food supply chains: The role of food hubs in creating sustainable regional and local food systems. Sustainability 2016, 8, 616. [Google Scholar] [CrossRef]
- Rezitis, A.N.; Kalantzi, M.A. Investigating technical efficiency and its determinants by data envelopment analysis: An application in the Greek food and beverages manufacturing industry. Agribusiness 2016, 32, 254–271. [Google Scholar] [CrossRef]
- Vehapi, S.; Milanovic, M. The effect of market orientation on business performance of Serbian organic producers. Econ. Agric. 2017, 4, 1651–1668. [Google Scholar] [CrossRef]
- Uddin, N. Inter-organizational relational mechanism on firm performance: The case of Australian agri-food industry supply chain. Ind. Manag. Data Syst. 2017, 117, 1934–1953. [Google Scholar] [CrossRef]
- Sarkar, A.; Mohapatra, P.K.J. Evaluation of supplier capability and performance: A method for supply base reduction. J. Purch. Supply Manag. 2006, 12, 148–163. [Google Scholar] [CrossRef]
- Agarwal, G.; Vijayvargy, L. An application of supplier selection in supply chain for modeling of intangibles: A case study of multinational food coffee industry. Afr. J. Bus. Manag. 2011, 5, 11505–11520. [Google Scholar] [CrossRef]
- Lee, J.H.; Moon, I.K. Coordinated inventory models with compensation policy in a three level supply chain. In Computational Science and its Applicationsiccsa; Springer: Berlin, Germany, 2006; pp. 600–609. [Google Scholar]
- Katsikeas, C.S.; Paparoidamis, N.G.; Katsikea, E. Supply source selection criteria: The impact of supplier performance on distributor performance. Ind. Mark. Manag. 2004, 33, 755–764. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Dukovska-Popovska, I.; Damgaard, C.M.; Hvolby, H.-H. Supply uncertainty in food processing supply chain: Sources and coping strategies. In Proceedings of the APMS 2014, Ajaccio, France, 20–24 September 2014. [Google Scholar]
- Shukla, S.; Shankar, R.; Singh, S.P. Food safety regulatory model in India. Food Control 2014, 37, 401–413. [Google Scholar] [CrossRef]
- Amorima, P.; Curcioa, E.; Almada-Loboa, B.; Barbosa-Póvoa, A.P.F.D.; Grossmann, I.E. Supplier selection in the processed food industry under uncertainty. Eur. J. Oper. Res. 2016, 252, 801–814. [Google Scholar] [CrossRef]
- Dani, S. Food Supply Chain Management and Logistics: From Farm to Fork. 2015. Available online: https://www.koganpage.com/media/project_kp/document/food-supply-chain-management-and-logistics-sample-chapter.pdf (accessed on 11 December 2018).
- Sellahewa, J.N.; Martindale, W. The impact of food processing on the sustainability of the food supply chain. Aspects Appl. Biol. 2010, 102, 91–98. [Google Scholar]
- Ruteri, J.M.; Xu, Q. Supply chain management and challenges facing the food industry sector in Tanzania. Int. J. Bus. Manag. 2009, 4, 70–80. [Google Scholar] [CrossRef]
- Hoefkens, C.; Camp, J.V.; Verbeke, W.; Aertsens, J.; Mondelaers, K. The nutritional and toxicological value of organic vegetables: Consumer perception versus scientific evidence. Br. Food J. 2009, 111, 1062–1077. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.P. Snowball Sampling: Introduction; Wiley & Sons: Chichester, UK, 2014. [Google Scholar]
- Malhotra, M.K.; Grover, V. An assessment of survey research in POM: From constructs to theory. J. Oper. Manag. 1998, 16, 407–425. [Google Scholar] [CrossRef]
- Prahinski, C.; Benton, W. Supplier evaluations: Communication strategies to improve supplier performance. J. Oper. Manag. 2004, 22, 39–62. [Google Scholar] [CrossRef]
- Armstrong, J.S.; Overton, T.S. Estimating non-response bias in mail surveys. J. Mark. Res. 1977, 4, 396–402. [Google Scholar] [CrossRef]
- Herman, H.H. Modern Factor Analysis; The University of Chicago Press: Chicago, IL, USA, 1976. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Yong, A.G.; Pearce, S. A beginner’s guide to factor analysis: Focusing on exploratory factor analysis. Tutor. Quant. Methods Psychol. 2013, 9, 79–94. [Google Scholar] [CrossRef]
- Kaiser, H.F. A second generation little jiffy. Psychometrika 1970, 35, 401–415. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Pearson Education, Inc.: Delhi, Delhi, 2009. [Google Scholar]
- Nunnally, J.C. Psychometric Theory, 2nd ed.; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Comrey, A.L.; Lee, H.B. A First Course in Factor Analysis; Erlbaum: Hillsdale, NJ, USA, 1992. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 29–50. [Google Scholar] [CrossRef]
- Ding, L.; Velicer, W.; Harlow, L. Effect of estimation methods, number of indicators perfactor and improper solutions on structural equation modeling fit indices. Struct. Equ. Model. 1995, 2, 119–143. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; The Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Ghose, B. Food security and food self- sufficiency in China: From past to 2050. Food Energy Secur. 2017, 3, 86–95. [Google Scholar] [CrossRef]
- M. Z. Marketing Communications. Exporting Fresh Fruit and Vegetables to China a Market Overview and Guide for Foreign Suppliers; PMA China Market Development Representative: Shanghai, China, 2016. [Google Scholar]
No. | Items | Producer (F1) |
---|---|---|
F2 | Product quality | 0.825 |
F4 | Animal/seeds/plant cost | 0.820 |
F3 | Labor and machinery cost | 0.816 |
F8 | Transportation cost | 0.803 |
F6 | Labor productivity | 0.798 |
F5 | Care cost | 0.796 |
F1 | Animal/field/tree productivity rate | 0.717 |
F7 | Postharvest rate | 0.703 |
Eigenvalue | 4.915 | |
Cronbach’s Alpha | 0.910 | |
Percentage of variance (61.436%) | 61.436 | |
KMO = 0.942, Barlett’s test of Sphericity = 1848.16 |
No. | Items | Supplier (F1) |
---|---|---|
S5 | Delivery reliability | 0.833 |
S1 | Collection cost | 0.820 |
S6 | Supplier lead-time | 0.815 |
S3 | Supplier product quality | 0.801 |
S4 | Delivery flexibility | 0.791 |
S2 | Cooling cost | 0.758 |
S7 | Distribution cost | 0.744 |
Eigenvalue | 4.427 | |
Cronbach’s Alpha | 0.903 | |
Percentage of variance (63.242%) | 63.242 | |
KMO = 0.907, Barlett’s test of Sphericity = 1590.014 |
No. | Items | Value (F1) | Cost (F2) | Processing (F3) |
---|---|---|---|---|
P19 | Employee turnover | 0.880 | - | - |
P1 | Stakeholder value | 0.868 | - | - |
P2 | Order fill rate | 0.865 | - | - |
P4 | Employee performance evaluation | 0.862 | - | - |
P12 | Customer complaint rate | 0.856 | - | - |
P11 | Customer retention rate | 0.774 | - | - |
P8 | Customer query time | 0.769 | - | - |
P18 | Information sharing cost | - | 0.752 | - |
P9 | Value added cost | - | 0.741 | - |
P6 | Processing cost | - | 0.737 | - |
P16 | Training cost | - | 0.729 | - |
P13 | Cooling cost | - | 0.712 | - |
P15 | Return on investment | - | 0.704 | - |
P3 | Material cost | - | 0.701 | - |
P5 | Processing flexibility | - | - | 0.847 |
P10 | Processing errors | - | - | 0.820 |
P7 | Processor lead-time | - | - | 0.741 |
P17 | Waste evaluation | - | - | 0.718 |
Alpha value | 0.934 | 0.949 | 0.863 | |
Eigenvalue | 9.726 | 2.185 | 1.352 | |
Percentage of Variance (74.29%) | 47.032 | 19.137 | 8.129 | |
KMO = 0.953, Bartlett’s Test of Sphericity = 6591.0778 |
No. | Items | Distributor (F1) |
---|---|---|
D6 | Product variety | 0.892 |
D1 | Distributor product quality | 0.836 |
D3 | Distributor lead-time | 0.803 |
D4 | Distribution cost | 0.795 |
D5 | Perfect order fulfillment rate | 0.788 |
D2 | Order returned rate | 0.783 |
Alpha value | 4.005 | |
Eigenvalue | 0.900 | |
Percentage of Variance (66.80%) | 66.74 | |
KMO = 0.850, Bartlett’s Test of Sphericity = 1598.54 |
No. | Items | Sale (F1) | Satisfaction (F2) |
---|---|---|---|
R4 | Average purchased value | 0.867 | - |
R11 | Sale growth rate | 0.849 | - |
R7 | Sale per square meter | 0.842 | - |
R6 | Incremental sale | 0.833 | - |
R1 | Customer entrance | 0.803 | - |
R5 | Lost-sale opportunities | 0.716 | - |
R10 | Customers satisfaction rate | - | 0.843 |
R9 | Billing accuracy | - | 0.833 |
R2 | Available product variety | - | 0.820 |
R3 | Product quality | - | 0.777 |
Alpha value | 0.926 | 0.885 | |
Eigenvalue | 5.965 | 1.427 | |
Percentage of Variance (73.91%) | 59.64 | 14.26 | |
KMO = 0.931, Bartlett’s Test of Sphericity = 3055.8979 |
No. | Hypotheses | Direct Effect (β) | Indirect Effect (β) | Total Effect (β) | t-value | p-value | Remarks |
---|---|---|---|---|---|---|---|
H1 | Producer’s performance → supplier’s performance | 0.37 | 0.00 | 0.37 | 6.62 | p < 0.001 | Supported |
H2 | Producer’s performance → processor’s performance | 0.29 | 0.21 | 0.50 | 5.53 | p < 0.001 | Supported |
H3 | Producer’s performance → distributor’s performance | 0.20 | 0.31 | 0.51 | 4.04 | p < 0.001 | Supported |
H4 | Supplier’s performance → processor’s performance | 0.56 | 0.00 | 0.56 | 9.17 | p < 0.001 | Supported |
H5 | Supplier’s performance → distributor’s performance | 0.23 | 0.25 | 0.48 | 3.68 | p < 0.001 | Supported |
H6 | Supplier’s performance → retailer’s performance | 0.20 | 0.37 | 0.57 | 3.04 | p < 0.004 | Supported |
H7 | Processor’s performance → distributor’s performance | 0.44 | 0.00 | 0.44 | 5.79 | p < 0.001 | Supported |
H8 | Processor’s performance → retailer’s performance | 0.34 | 0.17 | 0.51 | 4.09 | p < 0.001 | Supported |
H9 | Distributor’s performance → retailer’s performance | 0.38 | 0.00 | 0.38 | 5.30 | p < 0.001 | Supported |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shashi; Singh, R.; Centobelli, P.; Cerchione, R. Evaluating Partnerships in Sustainability-Oriented Food Supply Chain: A Five-Stage Performance Measurement Model. Energies 2018, 11, 3473. https://doi.org/10.3390/en11123473
Shashi, Singh R, Centobelli P, Cerchione R. Evaluating Partnerships in Sustainability-Oriented Food Supply Chain: A Five-Stage Performance Measurement Model. Energies. 2018; 11(12):3473. https://doi.org/10.3390/en11123473
Chicago/Turabian StyleShashi, Rajwinder Singh, Piera Centobelli, and Roberto Cerchione. 2018. "Evaluating Partnerships in Sustainability-Oriented Food Supply Chain: A Five-Stage Performance Measurement Model" Energies 11, no. 12: 3473. https://doi.org/10.3390/en11123473
APA StyleShashi, Singh, R., Centobelli, P., & Cerchione, R. (2018). Evaluating Partnerships in Sustainability-Oriented Food Supply Chain: A Five-Stage Performance Measurement Model. Energies, 11(12), 3473. https://doi.org/10.3390/en11123473