Total Factor Energy Productivity and Efficiency Changes of the Gher (Prawn-Carp-Rice) Farming System in Bangladesh: A Stochastic Input Distance Function Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and the Study Area
2.2. Analytical Framework
2.2.1. Basic Energy Measures of Input-Output Ratios
2.2.2. The Stochastic Input Distance Function
2.2.3. The Empirical Model
3. Results and Discussion
3.1. Changes in Energy Performance of the gher Farming System over Time
3.2. Drivers of Energy Productivity of the gher Farming System
3.3. Total Factor Energy Productivity Change and Sources of Growth
4. Conclusions and Policy Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pimentel, D. Energy Inputs in Food Crop Production in Developing and Developed Nations. Energies 2009, 2, 1–24. [Google Scholar] [CrossRef] [Green Version]
- IEA. International Energy Annual. World Energy Overview. 2007. Available online: http://www/e/ia/doe.gov/iea/overview.html (accessed on 15 May 2008).
- PRB. World Population Data Sheet; Population Reference Bureau: Washington, DC, USA, 2008. [Google Scholar]
- Scott, G.J.; Rosegrant, M.W.; Ringler, M.W. Roots and Tubers for the 21st Century: Trends, Projections and Policy Options. In Food, Agriculture and the Environment Discussion Paper 31; International Food Policy Research Institute: Washing, DC, USA, 2000. [Google Scholar]
- Khosruzzaman, S.; Asgar, M.; Rehman, K.M.R.; Akbar, S. Energy intensity and productivity in relation to agriculture: Bangladesh perspective. J. Bangladesh Acad. Sci. 2010, 34, 59–70. [Google Scholar] [CrossRef]
- Rahman, S.; Barmon, B.K. Energy productivity and efficiency of the gher (prawn-fish-rice) farming system in Bangladesh. Energy 2012, 43, 293–300. [Google Scholar] [CrossRef]
- Rahman, S.; Kazal, M.M.H. Whether crop diversification is energy efficient: An empirical analysis from Bangladesh. Renew. Sustain. Energy Rev. 2015, 45, 745–754. [Google Scholar] [CrossRef]
- FRSS. Yearbook of Fisheries Statistics of Bangladesh; Fisheries Resources Survey System (FRSS), Department of Fisheries: Dhaka, Bangladesh, 2017; Volume 33, 124p.
- New, M.B. History and global status of freshwater prawn farming. In Freshwater Prawns: Biology and Farming; New, M.B., Valenti, W.C., Tidwell, J.H., D’Abramo, L.R., Kutty, M.N., Eds.; Wiley-Blackwell: Oxford, UK, 2010; pp. 1–11. [Google Scholar]
- FAO. Fishstat Journal; Version 2.11.4; FAO: Rome, Italy, 2015. [Google Scholar]
- Das, D.N. Fish farming in rice environments of North Eastern India. Aquac. Asia 2002, 7, 43–47. [Google Scholar]
- Galib, S.M. Integrated fish-farming: Rice-fish. In BD Fish; Available online: http://en.bdfish.org/2010/10/integrated-fish-farming-rice-fish/2010 (accessed on 1 November 2013).
- Ahmed, N.; Allison, E.H.; Muir, J.F. Rice fields to prawn farms: A blue revolution in Southwest Bangladesh? Aquac. Int. 2010, 18, 555–574. [Google Scholar] [CrossRef]
- Ahmed, N.; Bunting, S.W.; Rahman, S.; Garforth, C.J. Community-based climate change adaptation strategies for integrated prawn–fish–rice farming in Bangladesh to promote social–ecological resilience. Rev. Aquac. 2014, 6, 20–35. [Google Scholar] [CrossRef]
- Rahman, S.; Barmon, B.K.; Ahmed, N. Diversification economies and efficiencies in a ‘Blue-Green Revolution’ combination: A case study of prawn-fish-rice farming in the gher system in Bangladesh. Aquac. Int. 2011, 19, 665–682. [Google Scholar] [CrossRef]
- DoF. National Fish Week 2012 Compendium (in Bengali); Department of Fisheries: Dhaka, Bangladesh, 2012.
- Ahmed, N.; Flaherty, M.S. Opportunities and challenges for the development of prawn farming with fish and rice in southeast Bangladesh: Potential for food security and economic growth. Food Secur. 2013, 5, 637–649. [Google Scholar] [CrossRef]
- Kendrick, A. The gher Revolution: The Social Impacts of Technological Change in Freshwater Prawn Cultivation in Southern Bangladesh; Bangladesh Aquaculture and Fisheries Resource Unit: Dhaka, Bangladesh, 1994. [Google Scholar]
- Ito, S. Globalization and agrarian change: A case of freshwater prawn farming in Bangladesh. J. Int. Dev. 2004, 16, 1003–1013. [Google Scholar] [CrossRef]
- Movik, S.; Mehta, L.; Mtisi, S.; Nicol, A. A blue revolution for African agriculture? Int. Dev. Stud. Bull. 2005, 36, 41–45. [Google Scholar] [CrossRef]
- Ahmed, N.; Brown, J.H.; Muir, J.F. Freshwater prawn farming in gher systems in southwest Bangladesh. Aquac. Econ. Manag. 2008, 12, 207–223. [Google Scholar] [CrossRef]
- Barmon, B.K.; Kondo, T.; Osanami, F. Water productivity of HYV variety of paddy production: Rice-prawn and year-round paddy farming systems in Bangladesh. Asia-Pac. J. Rural. Dev. 2008, 18, 99–118. [Google Scholar]
- Shaifee, S.; Topal, E. When will fossil fuel reserves be diminished? Energy Policy 2009, 37, 181–189. [Google Scholar] [CrossRef]
- Sabiha, N.-E.; Salim, S.; Rahman, S.; Rola-Rubzen, M.F. Measuring environmental sustainability in agriculture: A composite environmental impact index approach. J. Environ. Manag. 2016, 166, 84–93. [Google Scholar] [CrossRef]
- Hayati, D.; Ranjbar, Z.; Karami, E. Measuring Agricultural Sustainability. Available online: https://www.springer.com/gb/book/9789048195121 (accessed on 5 December 2018).
- Huang, H.; Wang, T. The Total-Factor Energy Efficiency of Regions in China: Based on Three-Stage SBM Model. Sustainability 2017, 9, 1664. [Google Scholar] [CrossRef]
- Chang, M.-C. A comment on the calculation of the total-factor energy efficiency (TFEE) index. Energy Policy 2013, 53, 500–504. [Google Scholar] [CrossRef]
- Marques, H.L.A.; New, M.B.; Boock, M.V.; Barros, H.P.; Mallasen, M.; Valenti, W.C. Integrated Freshwater Prawn Farming: State-of-the-Art and Future Potential. Rev. Fish. Sci. Aquac. 2016, 24, 264–293. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Cheng, X.-M.; Yuan, J.-H.; Gao, X.-J. Total-factor energy efficiency in developing countries. Energy Policy 2011, 39, 644–650. [Google Scholar] [CrossRef]
- Chang, T.-P.; Hu, J.-L. Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China. Appl. Energy 2010, 87, 3262–3270. [Google Scholar] [CrossRef]
- Honma, S.; Hu, J.-L. Total-factor energy productivity growth of regions in Japan. Energy Policy 2009, 37, 3941–3950. [Google Scholar] [CrossRef]
- Hu, J.-L.; Wang, S.-C. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Mukherjee, A.N.; Kuroda, Y. Productivity growth in Indian agriculture: Is there evidence of convergence across states? Agric. Econ. 2003, 29, 43–53. [Google Scholar] [CrossRef]
- Fan, S.; Hazell, P.; Thorat, S. Government spending, growth and poverty in rural India. Am. J. Agric. Econ. 2000, 82, 1038–1051. [Google Scholar] [CrossRef]
- Mohammadi, A.; Tabatabaeefar, A.; Shahin, S.; Rafiee, S.; Keyhani, A. Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Convers. Manag. 2008, 49, 3566–3570. [Google Scholar] [CrossRef]
- Banaeian, N.; Zangeneh, M. Study on energy efficiency in corn production of Iran. Energy 2011, 36, 5394–5402. [Google Scholar] [CrossRef]
- Canakci, M.; Topakci, M.; Akinci, I.; Ozmerzi, A. Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy Convers. Manag. 2005, 46, 655–666. [Google Scholar] [CrossRef]
- Quabili, W.; International Food Policy Research Institute, Washington, DC, USA. Personal communication, 2009.
- Kumbhakar, S.S.; Orea, L.; Rodriguez-Alvarez, A.; Tsonias, E.G. Do we estimate an input or an output distance function? An application of the mixed approach to European railways. J. Prod. Anal. 2007, 27, 87–100. [Google Scholar] [CrossRef]
- Irz, X.; Thirtle, C. Dual Technological Development in Botswana Agriculture: A Stochastic Input Distance Function Approach. J. Agric. Econ. 2004, 55, 455–478. [Google Scholar] [CrossRef]
- Morrison-Paul, C.J.; Nehring, R. Product diversification, production systems, and economic performance in U.S. agricultural production. J. Econom. 2005, 126, 525–548. [Google Scholar] [CrossRef]
- Färe, R.; Primont, D. Multi-output Production and Duality: Theory and Applications; Kluwer Academic Publishers: Boston, MA, USA, 1995. [Google Scholar]
- Morrison-Paul, C.J.; Johnston, W.E.; Frengley, G.A.G. Efficiency in New Zealand Sheep and Beef Farming: The Impacts of Regulatory Reform. Rev. Econ. Stat. 2000, 82, 325–337. [Google Scholar] [CrossRef]
- Rahman, S. Women’s labor contribution to productivity and efficiency: Empirical evidence from Bangladesh. J. Agric. Econ. 2010, 61, 318–342. [Google Scholar] [CrossRef]
- Battese, G.E.; Corra, G.S. Estimation of a production frontier model: With application to the pastoral zone of Eastern Australia. Aust. J. Agric. Econ. 1977, 21, 161–179. [Google Scholar] [CrossRef]
- Coelli, T.J.; Perelman, S. A comparison of parametric and non-parametric distance functions: With application to European railways. Eur. J. Oper. Res. 1999, 117, 326–339. [Google Scholar] [CrossRef]
- Coelli, T.J.; Fleming, E. Diversification economies and specialization efficiencies in a mixed food and coffee smallholder farming system in Papua New Guinea. Agric. Econ. 2004, 31, 229–239. [Google Scholar] [CrossRef]
- Rahman, S.; Hasan, M.K. Energy productivity and efficiency of wheat farming in Bangladesh. Energy 2014, 66, 107–114. [Google Scholar] [CrossRef]
- Rahman, S.; Rahman, M.S. Energy productivity and efficiency of maize accounting for the choice of growing season and environmental factors: An empirical analysis from Bangladesh. Energy 2013, 49, 329–336. [Google Scholar] [CrossRef]
- Rahman, S. Whether crop diversification is a desired strategy for agricultural growth in Bangladesh. Food Policy 2009, 34, 340–349. [Google Scholar] [CrossRef]
- Asadullah, M.N.; Rahman, S. Farm productivity and efficiency in rural Bangladesh: The role of education revisited. Appl. Econ. 2009, 41, 17–33. [Google Scholar] [CrossRef]
- Rahman, S.; Salim, R. Six decades of total factor productivity change and sources of growth in Bangladesh agriculture (1948–2008). J. Agric. Econ. 2013, 63, 275–294. [Google Scholar] [CrossRef]
Particulars | Unit | Energy Equivalent (MJ·unit−1) | References |
---|---|---|---|
A. Prawn and carp enterprise | |||
Inputs | |||
Prawn fingerling | kg | 4.40 | [6] |
Fish fingerling | kg | 4.52 | [38] |
Egg | kg | 6.20 | [38] |
Vermicelli | kg | 5.59 | [38] |
Fish meal | kg | 12.14 | [6] |
Meat of snail | kg | 3.37 | [6] |
Oilcake | kg | 14.40 | [6,38] |
Broken rice | kg | 15.28 | [38] |
Wheat bran | kg | 9.02 | [6,37] |
Flattened rice | kg | 14.40 | [38] |
Pulses | kg | 14.11 | [38] |
Male labor | hour | 1.96 | [37] |
Female labor | hour | 1.57 | [37] |
Outputs | |||
Prawn | kg | 4.40 | [6] |
Fish | kg | 4.61 | [38] |
B. HYV rice enterprise: | |||
Inputs | |||
Rice seed | kg | 15.28 | [38] |
Power tiller (land preparation) | litre | 62.20 | [6] |
Irrigation (diesel) | litre | 56.31 | [35] |
Pesticides | litre | 120.00 | [35] |
Nitrogen (N) | kg | 66.14 | [35] |
P2O5 | kg | 12.44 | [35] |
K2O | kg | 11.15 | [35] |
Sulphur (S) | kg | 1.12 | [35] |
Outputs | |||
Rice | kg | 15.28 | [38] |
Rice Bran | kg | 13.23 | [38] |
Straw | kg | 2.25 | [6,38] |
Variables | Unit | Mean | Standard Deviation |
---|---|---|---|
Gher area | ha | 0.55 | 0.43 |
HYV rice area | ha | 0.34 | 0.28 |
Inputs | |||
Feed | MJ·ha−1 | 47,795.33 | 20,124.63 |
Chemicals | MJ·ha−1 | 6150.45 | 2562.13 |
Labor | MJ·ha−1 | 18,288.87 | 7085.77 |
Machine | MJ·ha−1 | 4460.24 | 1784.82 |
Seeds | MJ·ha−1 | 948.19 | 331.46 |
Total gher Input | MJ·ha−1 | 77,643.07 | 23,448.32 |
Total prawn-carp Input | MJ·ha−1 | 63,299.92 | 23,104.30 |
Total HYV rice Input | MJ·ha−1 | 14,343.14 | 3402.13 |
Outputs | MJ·ha−1 | ||
Gher output | MJ·ha−1 | 120,530.66 | 6832.39 |
Prawn-carp output | MJ·ha−1 | 6280.25 | 1300.85 |
HYV rice output | MJ·ha−1 | 114,250.41 | 6512.22 |
B. Socio-economic variables | |||
Farmer’s age | Years | 43.44 | 14.41 |
Farmer’s education | Completed years of schooling | 6.34 | 3.67 |
Household size | Number | 4.23 | 1.01 |
Number of observations | 1260 |
Enterprises | Unit | 2002 | 2005 | 2008 | 2011 | 2013 | 2015 | Growth Rate, 2002–2015 (%) |
---|---|---|---|---|---|---|---|---|
Prawn and fish enterprise: | ||||||||
Energy input | MJ·ha−1 | 64,536.19 | 64,430.67 | 68,102.57 | 62,381.54 | 61,465.86 | 58,421.40 | −0.10 |
Energy output | MJ·ha−1 | 6379.39 | 6500.11 | 6172.23 | 6215.33 | 6172.90 | 6239.80 | −0.20 |
Specific energy | MJ·kg−1 | 46.82 | 44.65 | 50.01 | 45.11 | 45.02 | 42.09 | −0.10 |
Energy use efficiency | - | 0.11 | 0.11 | 0.10 | 0.11 | 0.11 | 0.12 | −0.10 |
Energy productivity | kg·MJ−1 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.22 | −0.005 * |
Net energy | MJ·ha−1 | −58,156.80 | −57,930.56 | −61,930.33 | −56,166.22 | −55,292.96 | −52,181.60 | 1.30 *** |
HYV rice enterprise: | ||||||||
Energy input | MJ·ha−1 | 15,052.91 | 14,984.36 | 14,768.10 | 14,418.84 | 13,136.36 | 12,344.27 | −1.30 *** |
Energy output | MJ·ha−1 | 111,433.44 | 115,639.56 | 112,104.81 | 115,511.31 | 115,735.83 | 115,555.49 | 0.20 *** |
Specific energy | MJ·kg−1 | 2.17 | 2.07 | 2.11 | 1.99 | 1.81 | 1.71 | −1.50 *** |
Energy use efficiency | - | 7.94 | 8.13 | 8.01 | 8.34 | 9.17 | 9.78 | 1.50 *** |
Energy productivity | kg·MJ−1 | 0.50 | 0.51 | 0.51 | 0.52 | 0.58 | 0.61 | 1.50 *** |
Net energy | MJ·ha−1 | 96,380.53 | 100,655.20 | 97,336.71 | 101,092.47 | 102,599.47 | 103,211.23 | 0.40 *** |
Gher system as a whole | ||||||||
Energy input | MJ·ha−1 | 79,589.10 | 794,15.03 | 82,870.66 | 76,800.39 | 74,602.22 | 70,765.67 | −0.40 ** |
Energy output | MJ·ha−1 | 117,812.83 | 122,139.67 | 118,277.04 | 121,726.64 | 121,908.73 | 121,795.30 | 0.10 *** |
Specific energy | MJ·kg−1 | 9.49 | 9.10 | 9.82 | 8.84 | 8.59 | 8.16 | −0.50 *** |
Energy use efficiency | - | 1.63 | 1.69 | 1.57 | 1.69 | 1.70 | 1.84 | 0.50 *** |
Energy productivity | kg·MJ−1 | 0.18 | 0.19 | 0.17 | 0.19 | 0.19 | 0.20 | 0.40 ** |
Net energy | MJ·ha−1 | 38,223.74 | 42,724.64 | 35,406.37 | 44,926.25 | 47,306.52 | 51,029.63 | 1.30 *** |
Name of test | Parameter Restrictions | LR Test Statistic | Degrees of Freedom | χ2 Critical Value 1% | Outcome |
---|---|---|---|---|---|
Functional form test (Translog vs. Cobb-Douglas) | H0: αkl = βmn = τkm = 0 for all k, l, m, and n | 558.80 *** | 36 | 58.62 | Cobb-Douglas model is inadequate |
Input-output separability | H0: all τkm = 0 for all k and m | 160.12 *** | 18 | 34.81 | Aggregating output into a single index will provide inconsistent result |
Returns to scale (Scale economy if εY < 1) | H0: (Σβm) = 1 for all m | 478.23 *** | 1 | 6.64 | Significant scale economy exists |
Time trend and interactions | H0: all κk = 0 for all k | 225.49 *** | 10 | 23.21 | Significant influence of time on productivity |
No inefficiency effects | H0: δz = 0 for all z | 174.33 *** | 4 | 13.27 | Inefficiencies are jointly explained by these variables |
Variables | Parameters | Coefficients | t-Ratio |
---|---|---|---|
Production Variables | |||
Constant | α0 | −8.5485 | −0.77 |
ln (Female labor energy/Machine energy) | α2 | 0.0204 *** | 3.56 |
ln (Male labor energy/Machine energy) | α3 | 0.3091 *** | 18.80 |
ln (Feed energy/Machine energy) | α4 | 0.1059 *** | 9.95 |
ln (Chemical energy/Machine energy) | α5 | 0.1555 *** | 14.53 |
ln (Seed energy/Machine energy) | α6 | 0.1779 *** | 13.35 |
½ ln (Female labor energy/Machine energy)2 | α22 | 0.0088 *** | 2.93 |
½ ln (Male labor energy/Machine energy)2 | α33 | −0.1408 ** | −2.34 |
½ ln (Feeed energy/Machine energy)2 | α44 | −0.1087 *** | −3.95 |
½ ln (Chemical energy/Machine energy)2 | α55 | 0.0003 | 0.01 |
½ ln (Seed energy/Machine energy)2 | α66 | 0.1621 *** | 3.26 |
ln (Female labor energy/Machine energy) × ln (Male labor energy/Machine energy) | α23 | −0.0133 | −0.40 |
ln (Female labor energy/Machine energy) × ln (Feed energy/Machine energy) | α24 | −0.0866 *** | −3.19 |
ln (Female labor energy/Machine energy) × ln (Chemical energy/Machine energy) | α25 | 0.1009 *** | 5.22 |
ln (Female labor energy/Machine energy) × ln (Seed energy/Machine energy) | α26 | −0.0608 * | −1.92 |
ln (Male labor energy/Machine energy) × ln (Feed energy/Machine energy) | α34 | 0.4066 *** | 6.22 |
ln (Male labor energy/Machine energy) × ln (Chemical energy/Machine energy) | α35 | −0.0113 | −0.22 |
ln (Male labor energy/Machine energy) × ln (Seed energy/Machine energy) | α36 | 0.0416 | 0.77 |
ln (Feed energy/Machine energy) × ln (Chemical energy/Machine energy) | α45 | 0.2565 *** | 3.77 |
ln (Feed energy/Machine energy) × ln (Chemical energy/Machine energy) | α46 | −0.2291 *** | −2.76 |
ln (Chemical energy/Machine energy) × ln (Seed energy/Machine energy) | α56 | −0.1597 *** | −2.54 |
ln (Rice energy) | β1 | −0.2641 *** | −3.56 |
ln (Prawn energy) | β2 | −0.3159 *** | −11.78 |
ln (Carp energy) | β3 | −0.0756 *** | −10.12 |
½ ln (Rice energy)2 | β11 | −5.2921 *** | −3.61 |
½ ln (Prawn energy)2 | β22 | −0.0665 | −0.78 |
½ ln (Carp energy)2 | β33 | 0.0305 | 1.71 |
ln (Rice energy) × ln (Prawn energy) | β12 | −2.0371 ** | −2.27 |
ln (Rice energy) × ln (Carp energy) | β13 | −0.0860 | −0.35 |
ln (Prawn energy) × ln (Carp energy) | β23 | −0.2505 *** | −2.83 |
ln (Female labor energy/Machine energy) × ln (Rice energy) | τ21 | −0.0962 | −1.11 |
ln (Female labor energy/Machine energy) × ln (Prawn energy) | τ22 | 0.1685 *** | 4.54 |
ln (Female labor energy/Machine energy) × ln (Carp energy) | τ23 | −0.0419 *** | −4.47 |
ln (Male labor energy/Machine energy) × ln (Rice energy) | τ31 | 0.8651 *** | 3.64 |
ln (Male labor energy/Machine energy) × ln (Prawn energy) | τ32 | 0.1224 | 1.35 |
ln (Male labor energy/Machine energy) × ln (Carp energy) | τ33 | −0.1289 *** | −5.20 |
ln (Feed energy/Machine energy) × ln (Rice energy) | τ41 | 0.0968 | 0.60 |
ln (Feed energy/Machine energy) × ln (Prawn energy) | τ42 | −0.1296 ** | −1.99 |
ln (Feed energy/Machine energy) × ln (Carp energy) | τ43 | 0.0200 | 1.12 |
ln (Chemical energy/Machine energy) × ln (Rice energy) | τ51 | 0.1157 | 0.63 |
ln (Chemical energy/Machine energy) × ln (Prawn energy) | τ52 | −0.0920 | −1.27 |
ln (Chemical energy/Machine energy) × ln (Carp energy) | τ53 | 0.0541 *** | 2.90 |
ln (Seed energy/Machine energy) × ln (Rice energy) | τ61 | −0.9501 *** | −4.18 |
ln (Seed energy/Machine energy) × ln (Prawn energy) | τ62 | −0.2477 *** | −2.87 |
ln (Seed energy/Machine energy) × ln (Carp energy) | τ63 | 0.0930 *** | 4.03 |
Time trend and interactions | |||
Time | κ1 | 0.0138 *** | 12.09 |
½ (Time)2 | κ11 | 0.0021 *** | 3.71 |
Time × ln (Female labor energy/Machine energy) | κ12 | −0.0026 ** | −2.22 |
Time × ln (Male labor energy/Machine energy) | κ13 | −0.0228 *** | −6.28 |
Time × ln (Feed energy/Machine energy) | κ14 | 0.0015 | 0.58 |
Time × ln (Chemical energy/Machine energy) | κ15 | −0.0001 | −0.05 |
Time × ln (Seed energy/Machine energy) | κ16 | 0.0167 *** | 4.65 |
Time × ln (Rice energy) | κ17 | −0.0514 *** | −2.68 |
Time × ln (Prawn energy) | κ18 | 0.0050 | 0.76 |
Time × ln (Carp energy) | κ19 | 0.0074 *** | 4.09 |
Model diagnostics | |||
Gamma | γ | 0.3007 * | 1.78 |
Sigma-squared | σs2 | 0.0151 *** | 25.08 |
Log likelihood | 855.6781 | ||
χ2(54,0.99) | 19,016.51 *** | ||
Inefficiency effects function | |||
Constant | δ0 | 0.2053 | 0.02 |
Experience | δ1 | −0.0018 *** | −5.92 |
Education | δ2 | −0.0061 *** | −5.32 |
Household size | δ3 | 0.0131 *** | 3.27 |
Gher area | δ4 | 0.1697 *** | 11.55 |
Number of total observations | N | 1260 |
Variables | Symbol | Value | t-Ratio |
---|---|---|---|
Output energy elasticities | |||
Scale economy | εY | −0.6556 *** | -- |
Rice energy | εY1 | −0.2641 *** | −3.56 |
Prawn energy | εY2 | −0.3159 *** | −11.78 |
Carp energy | εY3 | −0.0756 *** | −10.12 |
Input energy elasticities | |||
Female labor energy | εX2 | 0.0204 *** | 3.56 |
Male labor energy | εX3 | 0.3091 *** | 18.80 |
Feed energy | εX4 | 0.1059 *** | 9.95 |
Chemical energy | εX5 | 0.1555 *** | 14.53 |
Seed energy | εX6 | 0.1779 *** | 13.35 |
Machine energy | εX1 | 0.2312 | -- |
Output jointness or complementarity | |||
Rice energy × Prawn energy | εY12 | −2.0371 ** | −2.27 |
Rice energy × Carp energy | εY13 | −0.0860 | −0.35 |
Prawn energy × Carp energy | εY23 | −0.2505 *** | −2.83 |
Year | Energy Efficiency Scores (MTE) | Technical Change (TC) | Energy Efficiency Change (EEC) | Total Factor Energy Productivity (TFEP) |
---|---|---|---|---|
2002 | 0.7797 | 1.0000 | 1.0000 | 1.0000 |
2003 | 0.7803 | 1.3051 | 1.0007 | 1.3061 |
2004 | 0.7803 | 1.3134 | 1.0024 | 1.3165 |
2005 | 0.7841 | 1.3149 | 1.0024 | 1.3180 |
2006 | 0.7896 | 1.3261 | 1.0070 | 1.3354 |
2007 | 0.7897 | 1.3405 | 1.0001 | 1.3407 |
2008 | 0.7888 | 1.3481 | 0.9988 | 1.3466 |
2009 | 0.7900 | 1.3468 | 1.0016 | 1.3489 |
2010 | 0.7923 | 1.3483 | 1.0029 | 1.3522 |
2011 | 0.7948 | 1.3520 | 1.0032 | 1.3563 |
2012 | 0.7952 | 1.3514 | 1.0005 | 1.3520 |
2013 | 0.7950 | 1.3459 | 0.9998 | 1.3456 |
2014 | 0.8000 | 1.3301 | 1.0063 | 1.3384 |
2015 | 0.7992 | 1.3431 | 0.9989 | 1.3417 |
Geometric mean | 0.7899 | 1.3084 | 1.0018 | 1.3107 |
Growth rate (%) | 0.1905 | 2.5700 | −0.0075 | 2.5620 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, S.; Barmon, B.K. Total Factor Energy Productivity and Efficiency Changes of the Gher (Prawn-Carp-Rice) Farming System in Bangladesh: A Stochastic Input Distance Function Approach. Energies 2018, 11, 3482. https://doi.org/10.3390/en11123482
Rahman S, Barmon BK. Total Factor Energy Productivity and Efficiency Changes of the Gher (Prawn-Carp-Rice) Farming System in Bangladesh: A Stochastic Input Distance Function Approach. Energies. 2018; 11(12):3482. https://doi.org/10.3390/en11123482
Chicago/Turabian StyleRahman, Sanzidur, and Basanta Kumar Barmon. 2018. "Total Factor Energy Productivity and Efficiency Changes of the Gher (Prawn-Carp-Rice) Farming System in Bangladesh: A Stochastic Input Distance Function Approach" Energies 11, no. 12: 3482. https://doi.org/10.3390/en11123482
APA StyleRahman, S., & Barmon, B. K. (2018). Total Factor Energy Productivity and Efficiency Changes of the Gher (Prawn-Carp-Rice) Farming System in Bangladesh: A Stochastic Input Distance Function Approach. Energies, 11(12), 3482. https://doi.org/10.3390/en11123482